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1. Introduction

Quasi-convex functions play an important role in economics and many economic models are
actually quasi-convex functions. The properties of quasi-convex functions have been discussed
ineg. [1].

Let us introduce the concept of quasi-convex function.

Definition 1.1 Let  be a convex subset of IR™. The function f is quasi-convex on ) if the
following inequality

[z + (1= ANy] < max{f(z), f(y)} (1.1)
holds for any x,y € Q, and X € [0, 1].

The definition of the midpoint quasi-convex function is introduced as follows

Definition 1.2 Let © be a convex subset of IR™. The function f is midpoint quasi-convex on
Q if the following inequality holds
1 1
Flg + 5v) < max{f(2), £ ()} (12)
for any z,y € Q.
Compared with the above two concepts, it is clear that a quasi-convex function must be
midpoint quasi-convex. But not all midpoint quasi-convex functions are quasi-convex. We can

illustrate it by the following counterexample.

Example 1.1 Let Q =[0,1] and

0, if z is rational in €;
)= {

| 1, if x is irrational in Q.
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Now fix x,y € Q. If max{f(z), f(y)} = 1, then

1 1
f(Gr+ Sy) Smax f(z) = 1= max{f(z), f(y)};
2 2 z€Q

, 1 1. .
or else, max{f(z), f(y)} = 0 holds. Then z,y are all rational. Thus ot + QY is also rational.
Therefore, it follows that

1

F(Ge+ 39) = max f(2) = 0 < max{ f(2), S o)},

which together with (1.4) implies that function f is midpoint quasi-convex. But

f(\/i V2

o+ (1= F)y) = 1> 0= max{(x), f(y)}.

It means that f is not quasi-convex.
Since not all midpoint quasi-convex functions are quasi-convex, it is natural for us to ask
that what condition can ensure that a midpoint quasi-convex function is quasi-convex. This

paper is devoted to answer this question.

2. Main results

The example in the above section shows that quasi-convex function space is just a subset of
midpoint quasi-convex function space. But what would happen if the considered function space
is restricted?

Let © be a convex subset of IR™. Denote by LSC(Q2) a set containing all lower semi-
continuous function on €, and USC(2) a set containing all upper semi-continuous function on
Q. Now we discuss function f in the framework of LSC(Q2) or USC(2). We has the following

result.

Theorem 2.1 Let convex set Q C IR™ and f(-) € LSC(Q) U USC(R?). Then the midpoint

quasi-convex function f is quasi-convex.

Proof First, assume that f(-) € LSC(Q2) and f(-) is midpoint quasi-convex. Fix z,y € Q. It

follows by mathematical induction with respect to variable n that

k 2" — k
f(2_nx+ on y>§max{f('r)7f(y)}a TL:0,172,37, OSkS2n
k
Since set {2—n ,nm=0,1,2,3--- 0<k< 2”} is dense on [0, 1], there exists a sequence
k.
lim —7 =A

for any given A € [0,1]. Thus, the following inequality holds from the the lower semi-continuity

of function f

PO+ =) <t f( o+ 220y ) <m0, 7).

j—oo 2"
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Therefore, the midpoint quasi-convex function f is quasi-convex if f(-) € LSC(Q).
Secondly, assume that f(-) € USC(Q2) and f(-) is midpoint quasi-convex. It follows from the
upper semi-continuity of function f that there exists § > 0 for any £ > 0 such that the following

two inequalities hold,
f((l —T)x + Ty) < fz) + e <max{f(x), fy)} +¢,

flrz+(L=1)y) < fly) +e <max{f(z), f(y)} +¢

for any 0 < 7 < 4. We denote
Qo={1-7)x+7y|0<7<6§}, and Qo={re+1—-7)y|0<7<d}.
Then it is derived that

f(z) <max{f(z), f(y)} +&, V20U

Set {Qpn,0 <k <2" n=1,2,---} is defined by following recursion formulas

1 1 1 1
Qk,(n-{-l) = 59(%))71 + 59(%)@5 {521 + 522 ‘ z21 € Q(%)m, 29 € Q(%)m}, (21)

forallodd 1 <k <2" —1 and
Qi (n+1) = Lty o (2.2)

for all even 0 < k < 2™. It follows by mathematical induction with respect to variable n that

f(z) <max{f(z), f(y)} +e, Vze U Qk,n' (2.3)
0<k<2n

As a line segment, Q , is 6 in length for any n = 0,1,2,3,--- and 0 < k < 2", which together
k
with the fact that the set {2—n ,nm=0,1,2,3--- 0<k < 2"} is dense on [0, 1], implies that

U QUn=a+0-Nylo<a<1) (2.4)

n=0,1,-,
0<k<2™

Thus, it follows from (2.3)—(2.4) that
f(z) <max{f(x), f(y)} +¢, YVze{dz+(1-XNy|0< <1}

Let € — 0, then we get (1.1). Then the proof is complete. |

From the above Theorem 2.1, it is known that the concept of midpoint quasi-convex func-
tion is equivalent to that of quasi-convex in the framework of lower semi-continuous function
space or upper semi-continuous function space. Therefore, we could release the above continuity
constraint. In what follows, we would discuss in the framework of the space. Denote BM(2) be
a set containing all Lebesgue measurable function on € for a given convex set ) C IR™.

First we consider the case for the dimension of domain m = 1. Without loss of generality,
assume that = [0, 1] and the Lebesgue measurable function f satisfies max{f(0), f(1)} = 0.
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To obtain the main result of this paper, we need the following two lemmas.

Lemma 2.2 Let f(-) be measurable on [0,1] and max{f(0), f(1)} = 0. If f(-) is mid-point
quasi-convex on [0, 1], then the following equation holds

m([a,b] N E)

= 2-
b—a 007 ( 5)

for any 0 < a < b <1, where E = {\ € [0,1] | f(A) > 0}, Co = m(E), and m(-) is Lebesgue

measurable.
Proof Fix any zg,z1 € [0,1] \ E. Then f(xo), f(z1) < 0. Now let
=1 =Nz + Az1, Ae]0,1].

It follows from the definition of midpoint quasi-convexity of f that

flan) < max{f(xo), fa)}, ¥ A€ 5]

Due to f(xzo) <0, we have
f(.%‘g)\) > 0, if f(l')\) > 0. (2.7)

Thus, the following holds
1 1 1 1
{I2A|I)\€E,)\E[k—ﬂ,—k}}CEﬂ{I#LUJG[ k1:|} (28)
2 2 2k” 9
for any kK =1,2,3,---. Therefore,
1 1 1 1
Since m(A + z) = m(A) and m(2A4) = 2m(A) hold for any measurable set A C IR' and z € IR,

2m (Eﬂ{:c,\ A e [Qk—LQLk}D <m(Eﬁ{gcH e {21k72k1 J})

Sum up the both sides respectively with respect to k, then we have

m(Em{:v)\ | \e [0,1/2]}) < m(Eﬂ{x,\ | \e [1/2,1]}). (2.9)

If interchange z¢ with x1, similarly we have

(Eﬂ{:z:,\}/\e [1/2,1] ) ( (N {zx| A€, 1/2]})

which together with (2.9) implies that

m (B {ex [Ae0.1/20}) =m (B {ox | A€ [1/2,1]} ) m(E(lzo,z1])  (2.10)

holds for any xg,z1 € [0,1]\ E.
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If take g = 0 and x;1 = 1, then the above equality gives

m(E0,1/2)  m(EL/2,1])
1/2 B 1/2

E) = (. (2.11)

Note that
k/2" € [0,1]\E, Vn=0,1,2---, 0 <k <2".

It follows from (2.10)—(2.11) by mathematical induction with respect to variable n > 1 that

kE k+1
<Eﬂ[2n L"D —m(E) =Cpy, 0<k<2m
It follows from the continuity of the Lebesgue measure that

m(E m[a,b])

b—a

holds for any 0 < a < b < 1. O

:CO

Lemma 2.3 Let G be a measurable subset of IR* and 0 # m(G) < oo. If0 < a < 1, then there
exists (a,b) such that
m(G N la,b])
b—a
Proof By the measurability of the set G, there exist a sequence of open intervals {(a;,b;) | i =
2,---} such that

> .

G C U(ai,bz‘)§ m(G) > aZ[bi - ai,

for any given 0 < o < 112 Tt follows that

N m(G) g~ m(GN(ag,by) m(G N (b)) b —a,
a2 Z[b-—ai] 2

¢ [ mE ) > ™G0 (b))
j b—% Zb—al j bj —aj
Therefore, there exists a j such that M > . O
j J

Now, we present the following main result.

Theorem 2.4 Let f(-) be measurable on [0,1]. If f(-) is midpoint quasi-convex on [0, 1], then

f is either a quasi-convex function or a constant function almost everywhere.

Proof Without loss of generality, we still assume that max{f(0), f(1)} < 0. It follows by
Lemmas 2.2 and 2.3 that
C():O, or 00:1.
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(1) If Cy = 0, we claim that £ = (. To see this, suppose there exists an zy € F, i.e.,
1
f(zo) > 0. If 29 € [0, 5], it follows from the fact f(z) < 0 almost everywhere on [0, z¢] and

0 < f(zo) < max{f(2), f(2z0 — 2)},

that
fl®)>0 Vax e xg,2x],

which contradicts the fact Cy = 0. Thus [0,1/2] N E = . Similarly, [1/2,1] N E = (. Therefore,
E =0, that is, f is a quasi-convex function.

(2) If C =1, we claim that there exists 5 > 0 such that f(-) equals 8 almost everywhere on
[0,1]. To see this, fix a 7 > 0 and write

fr()=f() =7 and E:={ze€(0,1]] f(z)>0}.

Since max{f,(0), f-(1)} < 0 holds, it follows by Lemmas 2.2 and 2.3 that m(E,) = 0 or 1. Note

function m(E;) is monotone increasing with respect to 7. Hence there exists 3 such that:

me)={ 1 755

Therefore, f(-) = 3 almost everywhere on [0,1]. We obtain the result. O

Remark The above result can be extended to high dimensional Euclidean space by the same
method. Precisely, let convex set € C IR™ and suppose f(-) is measurable on € x [0,1]. If f(+)
is mid-point quasi-convex and satisfies f(x,0) < 0, f(x,1) < 0, for all 2 € , then one of the
following two results holds, either f(x,y) <0, V(z,y) € Q2 x[0,1] holds or f is a constant function

almost everywhere.
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