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1. Introduction

Quasi-convex functions play an important role in economics and many economic models are

actually quasi-convex functions. The properties of quasi-convex functions have been discussed

in e.g. [1].

Let us introduce the concept of quasi-convex function.

Definition 1.1 Let Ω be a convex subset of IRm. The function f is quasi-convex on Ω if the

following inequality

f [λx + (1 − λ)y] ≤ max{f(x), f(y)} (1.1)

holds for any x, y ∈ Ω, and λ ∈ [0, 1].

The definition of the midpoint quasi-convex function is introduced as follows

Definition 1.2 Let Ω be a convex subset of IRm. The function f is midpoint quasi-convex on

Ω if the following inequality holds

f(
1

2
x +

1

2
y) ≤ max{f(x), f(y)} (1.2)

for any x, y ∈ Ω.

Compared with the above two concepts, it is clear that a quasi-convex function must be

midpoint quasi-convex. But not all midpoint quasi-convex functions are quasi-convex. We can

illustrate it by the following counterexample.

Example 1.1 Let Ω = [0, 1] and

f(x) =

{

0, if x is rational in Ω;
1, if x is irrational in Ω.

(1.3)
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Now fix x, y ∈ Ω. If max{f(x), f(y)} = 1, then

f(
1

2
x +

1

2
y) ≤ max

z∈Ω
f(z) = 1 = max{f(x), f(y)};

or else, max{f(x), f(y)} = 0 holds. Then x, y are all rational. Thus
1

2
x +

1

2
y is also rational.

Therefore, it follows that

f(
1

2
x +

1

2
y) = max

z∈Ω
f(z) = 0 ≤ max{f(x), f(y)},

which together with (1.4) implies that function f is midpoint quasi-convex. But

f
(

√
2

2
x + (1 −

√
2

2
)y

)

= 1 > 0 = max{f(x), f(y)}.

It means that f is not quasi-convex.

Since not all midpoint quasi-convex functions are quasi-convex, it is natural for us to ask

that what condition can ensure that a midpoint quasi-convex function is quasi-convex. This

paper is devoted to answer this question.

2. Main results

The example in the above section shows that quasi-convex function space is just a subset of

midpoint quasi-convex function space. But what would happen if the considered function space

is restricted?

Let Ω be a convex subset of IRm. Denote by LSC(Ω) a set containing all lower semi-

continuous function on Ω, and USC(Ω) a set containing all upper semi-continuous function on

Ω. Now we discuss function f in the framework of LSC(Ω) or USC(Ω). We has the following

result.

Theorem 2.1 Let convex set Ω ⊂ IRm and f(·) ∈ LSC(Ω) ∪ USC(Ω). Then the midpoint

quasi-convex function f is quasi-convex.

Proof First, assume that f(·) ∈ LSC(Ω) and f(·) is midpoint quasi-convex. Fix x, y ∈ Ω. It

follows by mathematical induction with respect to variable n that

f

(

k

2n
x +

2n − k

2n
y

)

≤ max{f(x), f(y)}, n = 0, 1, 2, 3, · · · , 0 ≤ k ≤ 2n.

Since set
{ k

2n
, n = 0, 1, 2, 3, · · · , 0 ≤ k ≤ 2n

}

is dense on [0, 1], there exists a sequence

lim
j→∞

kj

2nj
= λ

for any given λ ∈ [0, 1]. Thus, the following inequality holds from the the lower semi-continuity

of function f

f
(

λx + (1 − λ)y
)

≤ lim
j→∞

f

(

kj

2nj
x +

2nj − kj

2nj
y

)

≤ max{f(x), f(y)}.
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Therefore, the midpoint quasi-convex function f is quasi-convex if f(·) ∈ LSC(Ω).

Secondly, assume that f(·) ∈ USC(Ω) and f(·) is midpoint quasi-convex. It follows from the

upper semi-continuity of function f that there exists δ > 0 for any ε > 0 such that the following

two inequalities hold,

f
(

(1 − τ)x + τy
)

≤ f(x) + ε ≤ max{f(x), f(y)} + ε,

f
(

τx + (1 − τ)y
)

≤ f(y) + ε ≤ max{f(x), f(y)} + ε

for any 0 ≤ τ ≤ δ. We denote

Ω0,0 = {(1 − τ)x + τy | 0 ≤ τ ≤ δ}, and Ω1,0 = {τx + (1 − τ)y | 0 ≤ τ ≤ δ}.

Then it is derived that

f(z) ≤ max{f(x), f(y)} + ε, ∀ z ∈ Ω0,0 ∪ Ω1,0.

Set {Ωk,n, 0 ≤ k ≤ 2n, n = 1, 2, · · ·} is defined by following recursion formulas

Ωk,(n+1) =
1

2
Ω( k−1

2
),n +

1

2
Ω( k+1

2
),n≡ {1

2
z1 +

1

2
z2

∣

∣ z1 ∈ Ω( k−1

2
),n, z2 ∈ Ω( k−1

2
),n}, (2.1)

for all odd 1 ≤ k ≤ 2n − 1 and

Ωk,(n+1) = Ω( k
2
),n, (2.2)

for all even 0 ≤ k ≤ 2n. It follows by mathematical induction with respect to variable n that

f(z) ≤ max{f(x), f(y)} + ε, ∀z ∈
⋃

0≤k≤2n

Ωk, n. (2.3)

As a line segment, Ωk,n is δ in length for any n = 0, 1, 2, 3, · · · and 0 ≤ k ≤ 2n, which together

with the fact that the set
{ k

2n
, n = 0, 1, 2, 3, · · · , 0 ≤ k ≤ 2n

}

is dense on [0, 1], implies that

⋃

n=0,1,···,
0≤k≤2n

Ωk,n = {λx + (1 − λ)y | 0 ≤ λ ≤ 1}. (2.4)

Thus, it follows from (2.3)—(2.4) that

f(z) ≤ max{f(x), f(y)} + ε, ∀ z ∈ {λx + (1 − λ)y | 0 ≤ λ ≤ 1}.

Let ε → 0, then we get (1.1). Then the proof is complete. 2

From the above Theorem 2.1, it is known that the concept of midpoint quasi-convex func-

tion is equivalent to that of quasi-convex in the framework of lower semi-continuous function

space or upper semi-continuous function space. Therefore, we could release the above continuity

constraint. In what follows, we would discuss in the framework of the space. Denote BM(Ω) be

a set containing all Lebesgue measurable function on Ω for a given convex set Ω ⊂ IRm.

First we consider the case for the dimension of domain m = 1. Without loss of generality,

assume that Ω = [0, 1] and the Lebesgue measurable function f satisfies max{f(0), f(1)} = 0.
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To obtain the main result of this paper, we need the following two lemmas.

Lemma 2.2 Let f(·) be measurable on [0, 1] and max{f(0), f(1)} = 0. If f(·) is mid-point

quasi-convex on [0, 1], then the following equation holds

m([a, b] ∩ E)

b − a
= C0, (2.5)

for any 0 ≤ a < b ≤ 1, where E = {λ ∈ [0, 1]
∣

∣ f(λ) > 0}, C0 = m(E), and m(·) is Lebesgue

measurable.

Proof Fix any x0, x1 ∈ [0, 1] \ E. Then f(x0), f(x1) ≤ 0. Now let

xλ = (1 − λ)x0 + λx1, λ ∈ [0, 1].

It follows from the definition of midpoint quasi-convexity of f that

f(xλ) ≤ max{f(x0), f(x2λ)}, ∀ λ ∈ [0,
1

2
]. (2.6)

Due to f(x0) ≤ 0, we have

f(x2λ) > 0, if f(xλ) > 0. (2.7)

Thus, the following holds

{

x2λ

∣

∣ xλ ∈ E, λ ∈
[ 1

2k+1
,

1

2k

]

}

⊂ E
⋂

{

xµ

∣

∣ µ ∈
[ 1

2k
,

1

2k−1

]

}

. (2.8)

for any k = 1, 2, 3, · · ·. Therefore,

m

({

x2λ

∣

∣ xλ ∈ E, λ ∈
[ 1

2k+1
,

1

2k

]

})

≤ m

(

E
⋂

{

xµ

∣

∣ µ ∈
[ 1

2k
,

1

2k−1

]

})

.

Since m(A + z) = m(A) and m(2A) = 2m(A) hold for any measurable set A ⊂ IR1 and z ∈ IR1,

2m

(

E
⋂

{

xλ

∣

∣ λ ∈
[ 1

2k+1
,

1

2k

]

})

≤ m

(

E
⋂

{

xµ

∣

∣ µ ∈
[ 1

2k
,

1

2k−1

]

})

.

Sum up the both sides respectively with respect to k, then we have

m
(

E
⋂

{

xλ

∣

∣ λ ∈ [0, 1/2]
}

)

≤ m
(

E
⋂

{

xλ

∣

∣ λ ∈ [1/2, 1]
}

)

. (2.9)

If interchange x0 with x1, similarly we have

m
(

E
⋂

{

xλ

∣

∣ λ ∈ [1/2, 1]
}

)

≤ m
(

E
⋂

{

xλ

∣

∣ λ ∈ [0, 1/2]
}

)

,

which together with (2.9) implies that

m
(

E
⋂

{

xλ

∣

∣ λ ∈ [0, 1/2]
}

)

= m
(

E
⋂

{

xλ

∣

∣ λ ∈ [1/2, 1]
}

)

=
1

2
m

(

E
⋂

[x0, x1]
)

(2.10)

holds for any x0, x1 ∈ [0, 1] \ E.
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If take x0 = 0 and x1 = 1, then the above equality gives

m
(

E
⋂

[0, 1/2]
)

1/2
=

m
(

E
⋂

[1/2, 1]
)

1/2
= m(E) = C0. (2.11)

Note that

k/2n ∈ [0, 1] \ E, ∀ n = 0, 1, 2 · · · , 0 ≤ k ≤ 2n.

It follows from (2.10)—(2.11) by mathematical induction with respect to variable n ≥ 1 that

2nm

(

E
⋂

[ k

2n ,
k + 1

2n

]

)

= m(E) = C0, 0 ≤ k ≤ 2n.

It follows from the continuity of the Lebesgue measure that

m
(

E
⋂

[a, b]
)

b − a
= C0

holds for any 0 ≤ a < b ≤ 1. 2

Lemma 2.3 Let G be a measurable subset of IR1 and 0 6= m(G) < ∞. If 0 < α < 1, then there

exists (a, b) such that

m
(

G ∩ [a, b]
)

b − a
≥ α.

Proof By the measurability of the set G, there exist a sequence of open intervals {(ai, bi) | i =

1, 2, · · ·} such that

G ⊆
∞
⋃

i=1

(ai, bi); m(G) > α

∞
∑

i=1

[bi − ai],

for any given 0 < α < 1[2]. It follows that

α <
m(G)

∑

i

[bi − ai]
=

∑

j

m(G ∩ (aj , bj))
∑

i

[bi − ai]
=

∑

j















m(G ∩ (aj , bj))

bj − aj

· bj − aj
∑

i

[bi − ai]















≤
[

sup
j

m(G ∩ (aj , bj))

bj − aj

]

∑

j

bj − aj
∑

i

[bi − ai]
= sup

j

m(G ∩ (aj , bj))

bj − aj

.

Therefore, there exists a j such that
m(G ∩ [aj , bj])

bj − aj
≥ α. 2

Now, we present the following main result.

Theorem 2.4 Let f(·) be measurable on [0, 1]. If f(·) is midpoint quasi-convex on [0, 1], then

f is either a quasi-convex function or a constant function almost everywhere.

Proof Without loss of generality, we still assume that max{f(0), f(1)} ≤ 0. It follows by

Lemmas 2.2 and 2.3 that

C0 = 0, or C0 = 1.
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(1) If C0 = 0, we claim that E = ∅. To see this, suppose there exists an x0 ∈ E, i.e.,

f(x0) > 0. If x0 ∈ [0,
1

2
], it follows from the fact f(z) ≤ 0 almost everywhere on [0, x0] and

0 < f(x0) ≤ max{f(z), f(2x0 − z)},

that

f(x) ≥ 0 ∀ x ∈ [x0, 2x0],

which contradicts the fact C0 = 0. Thus [0, 1/2] ∩ E = ∅. Similarly, [1/2, 1]∩ E = ∅. Therefore,

E = ∅, that is, f is a quasi-convex function.

(2) If C = 1, we claim that there exists β > 0 such that f(·) equals β almost everywhere on

[0, 1]. To see this, fix a τ > 0 and write

fτ (·) = f(·) − τ, and Eτ = {x ∈ [0, 1]
∣

∣ fτ (x) > 0}.

Since max{fτ(0), fτ (1)} ≤ 0 holds, it follows by Lemmas 2.2 and 2.3 that m(Eτ ) = 0 or 1. Note

function m(Eτ ) is monotone increasing with respect to τ . Hence there exists β such that:

m(Eτ ) =

{

0, τ < β,
1, τ ≥ β.

Therefore, f(·) = β almost everywhere on [0, 1]. We obtain the result. 2

Remark The above result can be extended to high dimensional Euclidean space by the same

method. Precisely, let convex set Ω ⊂ IRn and suppose f(·) is measurable on Ω × [0, 1]. If f(·)
is mid-point quasi-convex and satisfies f(x, 0) ≤ 0, f(x, 1) ≤ 0, for all x ∈ Ω, then one of the

following two results holds, either f(x, y) ≤ 0, ∀(x, y) ∈ Ω× [0, 1] holds or f is a constant function

almost everywhere.
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