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Abstract. We investigate the security of protocols with logarithmicranunication complexity. We
show that for the security definitions with environment,,iReactive Simulatability and Universal
Composability, computational security of logarithmic fmr@ols implies statistical security. The same
holds for advantage-based security definitions as commasdyl for individual primitives. While
this matches the folklore that logarithmic protocols carb®computationally secure unless they are
already statistically secure, we show that under realesifoplexity assumptions, this folklore does
surprisinglynot hold for the stand-alone model without auxiliary input, iteere are logarithmic pro-
tocols that are statistically insecure but computatignsdicure in this model. The proof is conducted
by showing how to transform an instance of an NP-completblpro into a protocol with two proper-
ties: There exists an adversary such that the protocoltistatally insecure in the stand-alone model,
and given such an adversary we can find a witness for the proipigtance, hence yielding a com-
putationally secure protocol assuming the hardness offindiwitness. The proof relies on a novel
technique that establishes a link between cryptograpHinitiens and foundations of computational
geometry, which we consider of independent interest.
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1 Introduction

In this work, we investigate the security of cryptographiotpcols with logarithmic communi-
cation complexity (logarithmic protocols for short). Thentral question we are aiming to solve
is the following: Are there logarithmic protocols that amputationally secure but not statis-
tically (information-theoretically) secure, i.e., can b@se the security of logarithmic protocols
on suitable complexity assumptions? At first glance, thevanseems obviously negative and
constitutes a folklore in cryptography: If a protocol is stdtistically secure anyway, and if all
messages have logarithmic length, the protocol can beesfflgi attacked by brute-force and
hence cannot be computationally secure. We investigat¢hehthis folklore indeed withstands
a formal investigation. (Anticipating the answer: No, iedmot in general.)

We consider the question in three different security modelsurity with environment, stand-
alone security and advantage-based security. Securityamitironment is a family of very strin-
gent security definitions, out of which the Reactive Simaltétty framework and the Universal
Composability framework constitute the most prominent bers. Because of strong compo-
sitionality results, security with environment has rapidlined momentum in the last years.
Stand-alone security on the other hand does not entail starigscompositionality guarantees,
but it allows to derive suitable security guarantees for ynamptographic protocols for which
security with environment is too strong a notion. Standialsecurity thus still constitutes one of
the standard security notions in cryptography. Both sgcwith environment and stand-alone
security define security by comparing a protocol with songaidpecification. This intuitively
guarantees that all properties enjoyed by the ideal speatific are also fulfilled by the real
protocol. In contrast, advantage-based security notiefieela particular concrete property the
protocol must satisfy. More precisely, one specifies a gamndeaawell-defined goal, and then
requires that every adversary only attains that goal witlhuficgently small probability (the
so-called advantage). Stand-alone security is often seeraad in fact was designed with the
intuition of being—the union of all security propertiesfflikd by the ideal specification. In
other words, one expects a protocol to be stand-alone sédareny advantage-based security
notion that is fulfilled by the ideal specification, the readtpcol also fulfils this property.

In the case of security with environment and of advantagetaecurity, we show that the
folklore statement indeed holds true: For these notionspeational security implies statistical
security. In the case of security with environment we prdwe by showing that adversaries that
randomly choose their communication are complete for itlgaic protocols, i.e., if there is
some (possibly unbounded) adversary breaking the protthe the adversary using randomly
selected messages also breaks the protocol. In the caseanitage-based security we analyse
the protocol in a game-theoretic setting and show that aimaptstrategy can efficiently be
computed.

Most interestingly, and more surprisingly, we show thathie tase of stand-alone security,
the folklore statemerdoes not holdn the case without auxiliary input. We give a reduction that
allows to convert an instance of the NP-complete set cowaslem into a protocol with the fol-
lowing property: If the set cover instance has a witness) there exists a successful adversary
and the protocol is not statistically secure, and given arcladversary, we can extract a wit-
ness for the set cover instance. The consequence is thaliifdimitnesses for set cover is hard
(more exactly, ifNP ¢ BPTIME(n°(°2™)) in our specific case), finding a successful efficient



adversary is hard, too. In order to show that it is not onlydharfind an adversary, but even
that no efficient adversary exists, we additionally assumaeefficiently computable sequences
of hard instances of some NP-problem exist. We then corsirpmtocol that uses one of these
instances for each security parameter. A successful effiaidversary would consequently be
able to solve infinitely many of the hard instances, yieldingpntradiction. Hence the resulting
protocol is computationally secure but not statisticaigure. This argumentation also holds for
a uniform auxiliary input. However, in the case abnuniformauxiliary input (in the sense of
[Gal93]) the argument fails since we can encode the witn@ssthe auxiliary input.

This separation has several interesting implicationsstfFit shows that the proof idea of
breaking any logarithmic protocol with brute force does wotk in general and that there are
cryptographic problems that are more than exponentialig lrathe length of the communica-
tion. Second, since we showed that for advantage-basedtgamtions computational implies
statistical security, it follows that stand-alone seguigtmore that just the union of all advantage-
based security properties fulfilled by the ideal specifaatirhis stands in contrast to the folklore
point of view mentioned above, and it can even be seen asregdbat the intuition underlying
the stand-alone model has not been fully met. Arguably thstimteresting implication is the
third one: Another folklore theorem states thaPif= NP (or BPP = MA to be more exact),
cryptography becomes generally insecure in the sensevbat statistically insecure protocol
is also computationally insecure. However, the intuitionerlying this statement is similar to
the intuition of using a brute-force attack to break any fdbenic protocol. As we have shown
the latter intuition to be unsound, it may be that a similggrapch might also show the first one
to be incorrect, i.e., it might be the case that evan £ NP andBPP = MA, computationally
secure protocols exist that are not statistically secure.

Related Work. The paper that comes closest to our work is [Uhr06]. Thesag shown that for
security with environment and polynomial-time protocdtgtistical security and security with
respect to exponential-time adversaries coincide. Ttaaasogous to our result for the setting of
security with environment, only one level higher in the céewjiy hierarchy. Note however that
directly applying their technique to the setting of lodamitic protocols yields a weaker result
than the one we achieve when dealing with security with emwvirent: For protocols that have
logarithmic communication complexignd run in logarithmic timecomputational security with
environment implies statistical security with environrnefiowever, the results in [Unr06] still
served as the inspiration for analysing the security offlitigaic protocols.

Additionally relevant for our work are the various securitpdels for dealing with crypto-
graphic primitives. The idea of using a simple ideal systera gpecification for a cryptographic
system was first sketched for secure multi-party functiadwation, i.e., for the computation of
one output tuple from one tuple of secret inputs from eackigigant in [Yao82] and defined
(with different degrees of generality and rigorosity) inLl@®), [Bea91| MR91, Can95, Can00,
Gol04]. These models are currently jointly denoted stend-alone modedf cryptography. Ex-
tensions of this idea to specific reactive problems werediven in [GM95/ BCK98, CG99] but
without a detailed or general definition. In a similar waynswuction of generic solutions for
large classes of reactive problems were proposed [GMWS8R8;6IMOQ], but usually yield-
ing inefficient solutions and assuming that all parties fadue in all subprotocols. The currently
prevalent frameworks for dealing with reactive protocabsthe Reactive Simulatability (RSIM)
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framework [PWO1, BPWO04] and the Universal ComposabilitZjiramework [Can01, Can05],
which both pursue the idea of augmenting the stand-aloneehwaith an environment that es-
sentially ensures security in arbitrary surrounding cetstan which the protocol under consider-
ation is executed. Thisecurity with enviromentan be shown to entail strong compositionality
guarantees and has proven successful in analyzing varigpgographic primitives and pro-
tocols. Advantage-based definitiors cryptographic primitives have been playing a key role
from the very start in essentially all cryptographic defaris, e.g., semantic security [GM84],
CMA-security of signatures [GMR88], and many more.

Outline. In[Section 2, we present the notation and security defirstiosed in the subsequent
sections. In_Section 3 we give an intermediate result: I6loam variables of logarithmic length
are computationally indistinguishable, they are alsdastieally indistinguishable. 16 Section 4
we show that for logarithmic protocols, computational sggwvith environment implies statis-
tical security with environment. In_Section 5 we show that $tand-alone security, this does
not hold in general. We construct logarithmic protocold tir@ computationally stand-alone se-
cure without auxiliary input but not statistically stankd@e secure. In the presence of auxiliary
input, we show that if a logarithmic protocol is computattip stand-alone secure, it is also
statistically stand-alone securel[In Sectibn 6 we showfthiatdvantage-based security notions,
computational security implies statistical security.

2 Notation and Security Models

Notation. The real numbersare denotedR, the natural numbersoy N = {1,2,...}. The
statistical distancebetweenX andY we denoteA(X;Y"). Two families of random variables
{X.}.ez and{Y,}.c arestatistically indistinguishabléf A(X;Y.) is negligible in|z|. The
families { X, }.c» and{Y,}.c~ arecomputationally indistinguishablé for any probabilistic
polynomial-time algorithmD the differencePr[D(z, X,) = 1] — Pr[D(z,Y,) = 1]] is negli-
gible in|z|. A family {X,}.c is efficiently constructibléf there is a probabilistic polynomial-
time algorithmsS such thatS(z) has distributionX .. If Z = N, we interpret: € N as its unary
encodingl?.

If A andB are interactive Turing machines (ITMs), we writd, B) for the outputof B in
an execution ofA and B. We write (A, B)) for the pair consisting of the outputé A and B. If
A and B take some input andy, we write (A(x), B(y)) and{(A(z), B(y))).

For two vectorse, y € R"™, we write (z,y) := >, a;y; for theirinner product Thel;-norm
of x we write ||z||; := >_,|=;|. Thel;-distanceis written d; (z,y) := ||z — y||;. For a matrix
S = (si;) € R™*", lets;. denote itsith row. Given two sets{,Y C R™ and a scalar € R,
wewriteX +Y :={z+y:z € X,y e Y}andaX := {ax : x € X}. AsubsetX C R"is
ahalfspacef it has the formX = {z : (¢,z) < b}, and X is called apolytopeif it is bounded
and the intersection of finitely many halfspaces.

Security models. An important class of security models are thecurity models with envi-
ronment its best-known representatives being the Reactive Stahilay (RSIM) framework
[BPWO04] and the Universal Composability (UC) framewark fl0&]. In the Reactive Simulata-
bility framework, we consider an execution of a protoeologether with an adversany and
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an honest useH (also known as the environment). The sequence of all intstates ofH and
messages sent and receivediys called its view and writtemiew, 4 1 (H). Herek € N is
the security parameter available to all machines. For dlddtdefinition we refer to [BPWO04].
In the Reactive Simulatability framework, security is thgfined as follows:

Definition 1 (Reactive Simulatability (sketch)). A protocol 7 is as secure as a protocol
p Wwith respect tocomputational universal reactive simulatabilify for every polynomial-
time machineA (the adversary) there is a polynomial-time machisi€the simulator) such
that for every polynomial-time maching (the honest userf viewy a mr(H)},  and
{view, s 1 x(H)}, .\ are computationally indistinguishable in

We speak ofbtatisticaluniversal reactive simulatability if in the above definitiA4, A and
S are unbounded and statistical indistinguishability is disestead of computational indistin-
guishability.

Other variants of security models with environment exigl, generalreactive simulatability
where the simulator may depend on the honest User [BPWO0d),J&security, which is similar
to[Definition 1 but formulated in the UC framework [Can05].

Another very common security definition $sand-alone securityit is weaker than the se-
curity models with environment, and many useful protocois@nly stand-alone secure. Since
there are many variants of stand-alone security (¢.9.,.968.880l04]), we work with the follow-
ing generalised definition.

Definition 2 (Stand-Alone Security). Let 7 and p be ITMs. We say thair is as secure
as p with respect to computational stand-alone security witkilawy input, if for every
polynomial-time ITMA (the adversary) there is a polynomial-time ITM (the simulator)
such that for sequencesand z of strings of polynomial length, the families of distrilmrts
{((A(l’“,zk),w(l’f,mk)»}k’%xk and {<<S(1’“,zk),p(lk,mk)»}k’%xk are computationally in-
distinguishable irk.

We speak oftatistical stand-alone security with auxiliary inpithe above holds with un-
boundedA and .S and statistical indistinguishability.

We speak ofcomputational/statistical stand-alone security withaukiliary input if A
and S do not get the additional input;, (i.e. the distributions({(A(1%), 7(1%,z;)) and
(S(1%), p(1%, 1)) are compared).

Depending on the variant of stand-alone security we condide protocolsr andp do not only
incorporate the actual behaviour of all uncorrupted psytieit also mechanisms for delivering
messages, corrupting parties and—of specific importanrabéddeal model—passing inputs to
the corrupted parties. In many definitions, the ideal proiteds not allowed to be an arbitrary
protocol, but only a probabilistic function. This can beligad by requiringp to receive only
one message (corresponding to the input from the simulatat)to send only one message (to
pass the output of the corrupted parties to the simulatan).cOnstruction i Secfion 5 is of that
form.

Finally, one is often not interested in protocols that adistinguishable from some ideal
protocol, but in protocols where the adversary is unablectioexe a specific goal with more
than a certain probability (the advantage of the adversdiygseadvantage-basedefinitions
can be capture by the following definition.



Definition 3 (Advantage-Based Security)Let B be an ITM andy a function. We say tha® is
~-secure with respect to computational advantage-baseuityeeith auxiliary inputif for every
polynomial-time ITMA and for all sequences and z of strings of polynomial length, there is a
negligible functiory: such thatPr[(A(1%, z;.), B(1¥,z3)) = 1] < y(k) + (k) for all k € N.

We speak of statistical advantage-based security if theebolds with unbounded.

We speak of advantage-based security without auxilianytiiipd does not get the additional
input z;, (i.e., the distribution{ A(1%), B(1*, 2;,)) is considered).

In this definition, the ITMB takes the role of both the protocol under consideration begame
defining the desired security property. In the definitionafy., IND-CPA security,3 would
expect two plaintexts fromd, encrypt one of them, and then output if the adversary gsesse
correctly which plaintext was encrypted.

3 Indistinguishability of Logarithmic Random Variables

Before analysing more complex security notions, we staringstigating the indistinguisha-
bility of random variables. For random variables of lodamic length, statistical and compu-
tational indistinguishability coincide. This fact will heseful in the equivalence proofs for the
more complex security notions.

Theorem 4 (Indistinguishability of Logarithmic Random Var iables).Let Z C {0,1}*. Let
X ={X.}.ez andY = {Y.},c~ be efficiently constructible families of random variablds o
logarithmic length.

If X andY are computationally indistinguishable, then they areistetally indistinguish-
able.

Proof (sketch)lf X andY are statistically distinguishable, there is a polynomiauch that
A(X,,Y.) > % for infinitely many lengthgz|. SinceX, andY, have a range of polynomial
size we can approximate the distribution¥f andY, using a polynomial number of samples
with an expected error o(f whereq is an arbitrary polynomial. Given an explicit description
of the true distributions o, andY,, we can efficiently derive an optimal distinguisher: Upon
input z, determine whether is more likely when drawing fronX, or from Y. If we use the
approximated distributions instead, the resulting efficidistinguisherD is not optimal any-
more, but for sufficiently large, the error introduced by the approximation is at mé};stso
[Pr[D(X,) = 1] = Pr[D(Y;) = 1]| > A(X,,Y,) — 55 > 5 infinitely often. ThusX andY” are
computationally distinguishable. O

4 Security with Environment

We show that for the security notions with environment (iRSIM and UC) computational
security implies statistical security in the case of lotpemic protocols. These notions contain
two adversarial entities—the environment and the adwverdais well-known that the latter
can be assumed to be a fixed machine that just forwards mesbatyeeen environment and
protocol (the so-called dummy-adversary). For the enwirent, no such reduction is known in
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general. However, in the case of logarithmic communicatiomplexity, the set of all possible
communication traces has polynomial size, so the prolatfi randomly guessing a given
communication trace is noticeable. Then, if a (possiblyaumgled) environmenkt succeeds in
distinguishing the real and the ideal protocol, an envirentiit’ that simply guesses all messages
thatE aaends can be shown to be a successful distinguisher, tamisi¢aptured in the following
lemm

Lemma5. Let X andY be oracle Turing machines. Letbe an oracle. Assume bofti andY
call their oracle at most times, and that the total length of the answers givembg at most
1. Assume further that all oracle queries and oracle answarshe extracted from the output of
X andY. Let A be the oracle that first uniformly choose asupel (01,...,0.) Of strings such
that the total lengthy_ o; is at mostl, and then upon itg-th activation responds with;. Then
AXA YA) > 2700 A(XA YA,

This lemma is proven by induction over the number of rounds.

The construction in this lemma represents the essentiglgeafefinitions of Reactive Simu-
latability and UC (and probably other flavours of securityhweénvironment). The oraclé (or
A) represents the environment, while andY represent the real and the ideal protocol execu-
tion. More exactly, the machin& contains the complete real model, including adversary, rea
protocol and the underlying network model, while all messagent to the environment are re-
alised as oracle calls td. Similarly, the maching” contains the simulator, the ideal protocol
and the underlying network model. In this light, Lemma Sestahat (independent of adversary
and simulator), we can replace any environment by an enviemt that randomly chooses its
messages, and which hence runs in probabilistic polynotinied. Additionally exploiting that
the view of the environment has logarithmic length, and kahat computational and statisti-
cal indistinguishability of the views of the environmentircide by[Theoreml4, we obtain the
following theorem:

Theorem 6 (Computational Implies Statistical Simulatabiity/UC). Let = and p be
polynomial-time protocols with logarithmic communicaticomplexity. Assume thatis as se-
cure asp with respect to computational universal Reactive Simuiiditg. Thenr is as secure as
p With respect to statistical universal reactive simulatdii The same holds for general reactive
simulatability and for UC.

5 Stand-Alone Security

Surprisingly, the results of the preceding section do nptyaip the stand-alone model (without
auxiliary input): Under realistic complexity assumptiptigere are logarithmic protocols that are
statistically insecure, but computationally secure. Kiis section, security always means stand-
alone security without auxiliary input.) The random adeeyswe used in the previous section
does not work in this case as illustrated by the followingregke: Consider the insecure coin-
toss protocol where Bob randomly chooses the outcome ardb seto Alice. An adversary

1 However, in the actual proof the factor by which the statitiistance is reduced is not the probability of guessing
a given communication, but instead” times that probability, where is the number of rounds. It would be
interesting to know whether this is an artifact of our praofwhether this factor is indeed necessary.



thatrandomlychooses its messages would—in the case of a corrupted Ballwsetaandom
outcome, which corresponds to Bob’s honest behaviour.

To prove the separation, we give a construction that tramsf@ yes-instance of the set cover
problem into a protocol with two properties: There existsadmersary such that the protocol is
statistically insecure, and given such an adversary we ndmafivitness for the set cover instance.
Consequently, such a protocol is computationally seculessrsuch withesses can be found in
probabilistic polynomial time.

Definition 7 (Set Cover).Letn € N, s;; € {0,1} withi = 1,...,mandj = 1,...,n and

d < n.lets;. # 0forall: =1,...,m. Then(n,m,S,d) is an instance of set cover (with
S = ((s45))). LetS; := {i : s;; = 1}. Then(n,m, S, d) is a yes-instance of set cover if there is
asetC C {1,...,n} suchthat#C < dandJ;.- S; = {1,...,m}.

Set cover is well-known to be NP-complete. To describe omstraction in more detail, we
first define the class of good adversaries, namely those #rédrm an attack that cannot be
simulated.

Definition 8 (Good Adversaries).Letr andp and A be ITMs, and let > 0. We callA e-good

for (m, p) if for all ITMs S the statistical distance betweg, 7)) and (.S, p)) is bounded from
above by. We callA good for(, p) if A ise-good for some > 0. Strongly goodadversaries
are defined analogously, wittd, ) and (.S, p) instead of((A4, 7)) and {(S, p)).

Obviously, a protocofr is statistically as secure as a protopdf and only if there is a negligi-
ble functione such thatA(1%) is £(k)-good for ((1¥), p(1¥)). The stricter notion of strongly
good adversaries represents adversaries for which altbadyrotocol output (without the ad-
versary’s/simulator’s output) is distinguishable in tealrand the ideal model. So intuitively, a
strongly good adversary breaks the correctness and nott@ngecrecy of the protocol. However,
the protocols we are going to construct will not keep anyetsdrom the adversary/simulator,
so good and strongly good adversaries coincide in this €asegoal at this point is to transform
a given set cover instance into a protocol pair such that goedrsaries correspond to witnesses.
(At this point, we are interested in protocols that are noapeetrised by the security parameter.
Later, a sequence of set cover instances will be used toraohstparametrised protocol.)

For our transformation, we interpret the property of beingpad adversary geometrically.
With any protocolr we associate the set of all probability distributionstéf output when run
with different adversaries. We consider these distrilm#tias points in an Euclidean space as
follows: for an ITM T' whose output lies in the sétl, ..., ¢}, we considep := (A, T) as a
vector inR! by settingp; := Pr[(A,T) = i]. This gives rise to the following definition:

Definition 9 (Adversary-Polytope). Theadversary-polytopdr C R! of the ITMT is defined
asAp :={(A,T): Aisan ITM}.

We can now reformulate strongly good adversaries georadiyricAn adversaryA is strongly
good for(7, p) if (A, m) ¢ A,, and itis strongly-good ifd; ((A4, ), A,) > 2¢. So the problem
of finding stronglys-good adversaries corresponds to the following geometdblpm: Given
two polytopesA and X (the adversary-polytopes of the real and the ideal proteesidp), find

a point in A that is at least away fromX (w.r.t. thel;-norm). In particular, ifX is the set of
all pointsp with ||p||; < I (a higher dimensional octahedron, the so-called crosgqu#), an
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adversaryA is stronglye-good if and only if|| (4, 7)|[1 > [ + <. So in this case, the question
whether strongly-good adversaries exist can be reduced to the problem ofiastg the size
of A (w.rt. thell-norm)E However, estimating the size of a polytope is hard in genéetla
set cover instancén, m, S, d) be given. LetP, C R™ be the polytope defined by the following
inequalities:zr € P, if 0 < z; <1, z; < d,andforalli =1,...,m: > xjs;; > 1. If
we associate a point € {0,1}" with a setC' := {i : v; = 1}, it is easy to see that such
a pointv is in P, if and only if C' is a witness for the set-cover instance. Simce [0, 1]"

is in {0,1}" if and only if di(v,u) = % whereu := (1,...,3)T, andd;(v,u) < % for all

v € [0,1]", if follows that || P, — ul|; > % if and only if (n,m, S, d) is a yes-instance, and any
pointv € P, with d; (v, u) > N gives us a witness for that set cover instance. Moreoverrist
out that approximating P. — u/||; up to an additive constant is already sufficient. Unfortalyat
we cannot construct protocols that haWeas their adversary-polytope (for some no-instances
(n,m, S, d), P, is empty, which cannot happen for adversary-polytopesiuRately, requiring
the equations defining, to hold only approximately still allows to reduce the set@owstance
to it, and the resulting polytope can be constructed as agraary-polytope as we will see below.

Definition 10 (Set Cover Polytope)Lets € (0,1). Let P be a polytope. We calP an s-set
cover polytope fon, m, S, d) if the following holds:

- P CI0,1]™

— Letv € {0,1}". If |[v]s < dand(s;,v) > 1foralli=1,...,m,thenv € P.

— Letv € [0,1]™. If |[v]|1 >d+ 1 —eor (s;,v) < eforsomei € {1,...,m}, thenv ¢ P.

Obviously, P as constructed above is arset cover polytope for arny € (0, 1).

Lemma 11 (Reducing Set Cover to Polytope 1-Norm).et P be ane-set cover polytope and
let P' := P — Lu. Then there is @ € §2(</poly(n)) such that
(i) If (n,m,S,d) is a yes-instance, thef’||; = 5.
(ii) If (n,m,S,d)is ano-instance, thefiP’||; < § — 0.
(iii) Moreover, given a vector € R" with d; (v, P') < § and||v||; > § — ¢, we can efficiently
compute a witness fdn, m, S, d).

Assume the real protocol has adversary-polytgpas ifLemma 11, and the adversary-polytope
of the ideal protocol is the cross-polytope = {z : ||z[; < § — g}. Then if (n,m, S,d) is a
yes-instance, dy Lemmall1 there is & P’ with |v||; = §. SinceP” is the adversary-polytope
of the real protocol, there exists a stronghgood adversary as seen above. Conversely,iff

a good adversary, we havel, 7) € P" and|[(A, )| > § — g With black-box access td,
we can efficiently sample the distributiga, 7) with errorg (w.r.t. thel;-norm). This gives a
point v satisfying the conditions ¢f Lemmall1{iii) and hence yieddaitness for(n, m, S, d).

The results we achieved so far are summarised as follows:

Lemma 12 (informal). Assume that we can construct protocobnd p such that the adversary-
polytope ofr is ane-set cover polytope, and the adversary-polytope igfa cross-polytope (of

2 Of course, sinc® € X and0 does not correspond to a valid probability distributiore #etX cannot be an
adversary-polytope. This problem can be solved by dowfirgral and.S and embedding them into the subset
of R™™! corresponding to the set of probability distributions. W# ignore this issue in this proof outline and
pretend that all points € R™ correspond to valid probability distributions.



Fig. 1. Polytopes for set cover instan¢e, m, S,d) withn = m = 2,d = 1, S; = {1,2},

Sy = {1}. (a) PolytopeD enforcing the condition that the set cover consists of attrooe set

(d = 1). (b) PolytopeS! enforcing that the set cover contains Sgbr S, (becausd is contained

in both). (c) Polytopes? enforcing that the set cover contaifis (because is only contained in
S1). (d) PolytopeP. = (1—2¢)D+¢eS* +¢5? enforces all aforementioned conditions. The only
remaining square-vertex {4, 0), corresponding to the only withe§s= {1} of (n, m, S, d).

suitable size). Then there is a stronghgood adversary ifn,m, S, d) is a yes-instance, and
given a strongly good adversary we can efficiently computéreess for(n, m, S, d).

Constructing the cross-polytope is easy: The cross-poéytoin R™ has2n verticesv, . . . , vay,.
We construct the protocal as follows: Upon first activatiory expects an € {1,...,2n} from
the adversary and then chooses its output according toshédtionv;. By choosing a suitable
distribution fori, the adversary can achieve any convex combination oftheo the adversary-
polytope is their convex combinatioN. Sincei can be transmitted usin@(logn) bits, the
communication complexity gf is logarithmic.

Constructingr is more difficult. In general, we cannot expect a set coveytppk to have a
polynomial number of vertices, so the approach used fails. Instead, we have to investigate
in more detail which adversary-polytopes can be constauétiest, every polytope consisting of
a single point{v} can be constructed: the corresponding protocol choosesitisit according
to the probability distributiorv (we call this the singleton-construction). Second, if wa ca
construct the polytope#’;, ..., P., we can also construct the convex hillof their union:
The corresponding protocol expects am {1,...,r} from the adversary and then executes
the protocol having adversary-polytopg (union-construction). This is a generalisation of the
construction ofX above. Third, we can also construetP; + --- + «,. P, whered_ a; = 1,

a; > 0: The protocol randomly chooses awith probability o;; (sum-construction). In all cases
we assume that whenever the protocol makes a random chioieigrms the adversary about
the outcome of that choice.

To construct a set cover polytope, we first assume that we laeeta construct poly-
topes for each defining inequality independently. That is, agsume that we can construct
the upper bound polytopd := {v € [0,1]" : |jv|y < d} and thelower bound polytope
St :={v € [0,1]" : (s;.,v) > 1}. The intersection of these polytopesitswhich we saw above
to be a set cover polytope. Unfortunately, we cannot makeofiskis fact, since we cannot
efficiently construct the intersection as an adversarytppke. We instead define ttembined
polytopeP. := (1—me)D+ >, £S% which can be constructed from and.S* using the sum-
construction. Since there are only+ 1 summands, the communication complexityifog m).

It is left to see thatP. is anc-set cover polytope.

Lemmal3. If0<e < ﬁ then P. is ane-set cover polytope.



The actual proof is by verifying all inequalities requireglBefinifion 10. For the proof sketch,
we instead try to give some geometric motivation (see Fidufer an example). First, since
the polytopesD and S’ are enclosed in the unit cub, 1], so is P. (since the factors in the
construction ofP. add up tol). Furthermore, let € {0,1}" be a cube-vertex that should not be
included inP. (either becaus@v|; > d or becausés;., v) < 1). Then in at least one summand
R of P. (i.e., D or one of theS?), the cube-vertex is “cut off” by the inequality definingR. It
follows that in the sunP. that corresponding vertex is also cut off. Finally, if we okez small
enough, not too much is cut off, so all cube-vertices thattrhasontained inP. according to
are preserved. For a full geometric understandf the construction, we suggest
to examine the example 1 or the interaciweexample in[[BUOB].

It is left to show that we can construd? and S° as adversary-polytopes. We will only
sketch the construction db; the polytopeS? is constructed similarly. The vertices &f are
V = {v € {0,1}" : ||v|1 < d}. Again, D has an exponential number of vertices, so a
direct construction as done fdf is not possible. However, each vertexan be considered as
a word of lengthn and Hamming-weight at most If we decompose into its left and right
halvesv; andv,, we get two words of length and weightsd;, d; with d; + d, < d. Thus
V =, Vi x V4—; wherei ranges (at most) oveld, . .., d} andV; is the set of words of length
5 and weight at most Since eacly; is again a set of the same structuréd/asve can recursively
apply that decomposition and constrictfrom sets of words of length. Furthermore, if we
again considel” as a subset aR", itis V = |J, V; + V,_; if we embed theZ-dimensional
setsV; andV,_; suitably intolR™. More exactly, the left summand, is embedded int®R™ as
V; x R™/2 and the right summant];,_; is embedded aB"™/2 x V,_,. The recursion is preserved
when we take the convex hull, i.e:onv V' = |, conv V; + conv V;_;. SinceD = convV
we found a recursive construction &f from one-dimensional sets that uses only the unions
and sums. The one-dimensional sets have a constant numbertices and can therefore be
directly constructed. The unions can be handled using tlmmtsonstruction. The sums however
cannot be implemented directly. The sum-construction amdsallow to constructonv V; +
conv Vy_;, but only% conv V; + conv V;_;. As a consequence, the resulting polytope ispt
but D scaled by the factoz—©(°¢4) whereO(log d) is the depth of the recursion. However,
this problem is easily solved by accordingly scaling allestbonstructions. The communication
complexity for realisingD is O(logn) rounds, andD(logn) communication in each round
(the adversary has to choose the indéx the union-construction). This gives communication
complexity O((log n)?) which isnot logarithmic. Summarising, we can construct a protacol
with O((log n)?) communication complexity that has adversary-polytdpeWith
we get:

Lemma 14 (informal). There are protocols andp with communication complexit((log n)?)
such that the following holds: There is a strongl(1/poly(n))-good adversary ifn, m, S, d)

is a yes-instance, and given a strongly good adversary weetffamiently compute a withess for
(n,m,S,d).

The remaining problem is that the communication compleadty is not logarithmic inn. This
can be remedied if we do not require thats the security parameter. Indeedpif.= 2v1og¥,
thenO((log n)?) = O(log k). If we assume that solving NP-complete problems is hard &ven
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nOUogm)_time, it follows that solving set cover instances with= 2v°2% is hard inO (poly (k))-
time. By construction, the protocotsandp share all information with the adversary. From this
it can be derived that an adversary is good(farp) if and only if it is strongly good. Combining
these observations with Lemmal 14 and the NP-completenesst obver, we get the following
theorem:

Theorem 15. If NP ¢ BPTIME(n®(°e), the following holds for alk > 0: There is no
efficient probabilistic algorithm that finds a good adversdor a pair of polynomial-time algo-
rithms with logarithmic communication complexity, everewlthey are guaranteed to have a
strongly k¢-good adversary.

This result already almost separates statistical and ctatipoal security for logarithmic pro-
tocols. However, two problems still have to be solved. Faisteparation not only requires that
it is hard to find a good polynomial-time adversary, but thathsan adversary does not even
exist. Second, an adversary may not be good while still beirmgessful in distinguishing the
real and the ideal protocol, because the simulator (whielfsis computationally bounded) does
not simulate optimally. The second problem can be solvechbwig that at least for the proto-
cols constructed here, there exists an efficient black-boxlator that simulateperfectlyif the
adversary is not strongly good. To solve the first problemydwer, we have to strengthen our
assumption:

Assumption 16. There exists a sequengg of Boolean formulas computable in deterministic
polynomial time such that infinitely marfy, are satisfiable and such that for any probabilistic
Turing machined that runs inn©(°™)-time, the probabilityPr[f, (A(1™)) = 1] is negligible in

n.

We now construct protocols and which on input the security parameteicomputef, ez,
convert it into a set cover instance and then#wor p, respectively, on this instance. As infinitely
many f,, are satisfiable, stronglg?(1 /poly(2\/@))-good adversaries exist infinitely often by
[Cemma 1#. Sar is not statistically as secure AsHowever, if some polynomial-time adversary
was good for infinitely many:, we could usé Lemma 114 to find witnesses farwith non-
negligible probability inn. This yields the following theorem:

Theorem 17 (Computational Does Not Imply Statistical StangAlone Security Without
Auxiliary Input). If Assumption 16 holds, computational stand-alone segwithout auxiliary
input does not imply statistical stand-alone security withauxiliary input for polynomial-time
protocols with logarithmic communication complexity.

It is easy to see that this result also holds in the case wvittorm auxiliary input (in the sense
of [Gol93]). However Theorem 17 does not cover the case withuniformauxiliary input.
This reason is that Assumption|16 cannot hold for nonunifadversaries. In fact, if we allow a
nonuniform input it turns out that whenever a good (but piigdlg unbounded) adversary exists,
its strategy can be encoded into the auxiliary input. Foaitletsee Appendik DI3. This yields
the following result:

Theorem 18 (Computational Implies Statistical Stand-Alore Security With Nonuniform
Auxiliary Input). Lets andp be polynomial-time ITMs such that the communication corilyle
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and the length of the output afand p on input(1¥, z) is logarithmic ink. If 7 is as secure ag
with respect to computational stand-alone security witRikary input, thenr is as secure ag
with respect to statistical stand-alone security with diery input.

6 Advantage-Based Security

In the case of advantage-based security, we show thatisttend computational security coin-
cide. The basic idea of our proof is as follows. A protoBoas ifDefinifion 8 can be considered
as a one-player-gam@”, the adversaryl being the player. The payoff of the game is the output
of B. Then the expected payoff for a given adversdris the advantag®r[(A, B) = 1]. Thus
an optimal strategy for the gani&® corresponds to an adversary with maximal advantage. If we
can show that a nearly optimal strategy ¥ can be found in polynomial time, it follows that
for any successful adversary, there is a successful polatdime adversary, and thus statistical
and computational security coincide.

Two obstacles have to be overcome. First, in the advantageebsecurity definition? has
an input, while in the game-theoretic setting, the concépincexternal input to the game does
not exist. However, when inspecting the definition of adagetbased security, we see that the
input = is chosen jointly with the adversary, so we can assume it tchbsen by the adversary.
Since we assume a logarithmic bound®is communication complexity, there is a polynomial
n such that the length aof is bounded bylog n. Moreover, we deal with a sequence of games,
parametrised by the security parameter, giving rise todlieviing definition:

Definition 19 (Game of a Protocol).Let B be an ITM. ThegameG,f’n of the protocolB is the
following one-player game: 7
— First, player 1 may choose a stringwith |z| < logn.
— Then, the game consists of the interactieh B(1%, x)), where player 1 learns all messages
that A receives, and may choose all message thaends.
— The payoff of the game isif B outputsl, and0 otherwise.

This of course does not yield a one-to-one correspondentveebr optimal adversaries and
(sequences of) optimal strategies anymore. A stratemcorporates an input, while the cor-
responding adversan® only implements the behavioafter choosingz. Nevertheless, for an
adversaryA“ corresponding to an optimal strategy, we get

max Pr[(A%(1%), B(1¥,2))] > max Pr[(A(1%), B(1* z))]
|z|<logn A,|z|<logn
since the maximum ranges over aJlin particular over the one thatwould have chosen. (Here
we use thafu can be assumed to be deterministic.) Sidtdas logarithmic communication
complexity, the game tree (ﬂﬁn has polynomial size. For one-player-games optimal stiegeg
can be found in polynomial-time in the size of the game trégding the following result (both
in the case with and without auxiliary input):

Lemma 20 (informal). If we can efficiently compute the game treeG@fn, there is an opti-
mal polynomial-time adversary. Hence computational aadistical advantage-based security
coincide.

12



The second obstacle is the fact that in general we cannoteetiic compute the game tree
of Gﬁn. We remedy this problem by sampling the probabilities in ghene tree yielding an
approximation. Ifu. is an optimal strategy for the approximated game, then tpeard payoff
of x4 in the original game is at mos% below the optimum where is a polynomial we may
choose. IfB is statisticallyy-insecure, there is an adversatysuch that (omitting arguments)
Pr[(A,B)] > v+ % infinitely often for some polynomiaj. By chosing e.g.p := 2g¢, it follows
that Pr[(A%, B)] > v + i Since A% runs in polynomial time, computationatinsecurity of
B follows. Concluding, we have the following result:

Theorem 21 (Computational Implies Statistical AdvantageBased Security).Let B be a
polynomial-time ITM that upon inputl”, =) has logarithmic communication complexity in
and reads only a prefix af of logarithmic length ink. Assume thaB is ~-secure for some func-
tion v with respect to computational advantage-based securitiyout auxiliary input. TherB

is y-secure with respect to statistical advantage-based #yonithout auxiliary input The same
holds for advantage-based security with auxiliary input.
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A Correspondence Between Main Part and Appendix

To make the appendix more readable, we have repeated mdst definitions and theorems
from the main part of this paper in the appendix (sometimegeaater detail). To make it easier
to find details and proofs for a definitions or theorem in thémnpart of the paper, we give the
correspondences between the main part and the appendi fiollibwing table.

[Main part Appendix

Definifion 1 on page 17

[Definition 2 [Definition 31 on pade 27

De 0 on pade 47

[Theorem # [Theorem 23 on pdgé 15

emma b [Lemma 27 on pagel24

[Theorem b Theorenis 29 aind 30 on pdgés 24-ahd 26, resp.
Definifio on page 28

[Definifion 8 [Definition 3% on pade 28
Definition 9 on pade P8
[Definifion 10 [Definition 36 on pade 29
[Cemma 11

[Lemma37 on pafgel29

No exact correspondence. Implicit in the proof of
oh 38

[Lemma 39 on pagel30

Lemma 14 [Theorem 49 on pajge 38

[ Corollary 51 on pafel40

[Assumption I6 [ Assumption b2 on pdge 41

[ Theorem 58 on pdge 44

Theorem 1B [ Theorem 60 on pdge 46

Definition 19 Definition 6P on pade #7

No exact correspondence. Implicitly contained in
the proof of Theorem 69 on pafel52

[Theorem 69 on p&ge 52

B Indistinguishability of Logarithmic Random Variables — D etails and Proofs

Before we can prove that for efficiently sampleable randoriatstes of logarithmic length com-
putational and statistical indistinguishability coinejdve first need the following lemma that
states that the distributions of such random variables eagsbmated sufficiently well.

Lemma 22 (Estimation of Random Variables).Let Z C {0,1}*. LetX = {X.}.cz be an
efficiently constructible family of random variables ofdoighmic length in|z|.
Then there exists a probabilistic polynomial-time algomitSx with the following property:
Upon input(z, 1/), the algorithmS'x outputs the description of a probability distributios,
with the property thatA(X; X) < % holds with probability at least — %
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Proof. Leti(k) > 1 be an efficiently computable logarithmic bound on the lerajtx, for all
|z| = k. Let M}, be the set of all strings of length at mégt). (Then we always havk, € M,,.)
Note that# M, is polynomially bounded irk.

We defined the algorithrix as follows: Oninputz,1/), letn := & -#Mﬁ;‘ -f3 and choose
independent values,, . .., z, distributed according t&,. Let P, := #{i < n :xz; = z}/n
be the relative frequency of in our sample. Output the probabilitiQSPx}ggeM‘z‘ as rational
numbers. (l.e., th@, define a distributionX with Pr[X = 2] = P,.)

Obviously, we havé" P, = 1, thusX is a probability distribution.

Fix somez € Z andf € N. Sincen - P, has(n, p)-binomial distribution forp := Pr[X,

<

z], we haveE[nP;] = np andVar[nP,] = np(1—p) < %. HenceE[P,] = pandVar[P,] < L.
From this it follows that for any: € Z, it holds that
. _ 2
Pr[3z € M, : |P, — Pr[X; = z]| > m]
< D Pr[|P = PrX. =a]| > A ]
TEM).|
< Z Pr |:‘P1‘_E[P$H > i Vvar[Px]
5 I-#M;
zEM|z
Y 1My MY
- syl 16n 16n f
Here(x) is an application of Chebyshev’s inequality.
Therefore the following holds with probability at ledst- %:
2
Ve e M, : |P, —PrlX, =2x|| < ——. 1
2] ¢ | [ ] F#M 1)
If (L) holds, we have
1 1 2 1
AX;X) =3 > P —Pr[X. =a]| < 1-#M), RN T
TEM|, ||
Since [1) holds with probability at least— % the lemma follows. a

We can now prove that for efficiently sampleable random et of logarithmic length
computational and statistical indistinguishability code.

Theorem 23 (Indistinguishability of Logarithmic Random Variables). Let Z C {0,1}*. Let
X ={X.}.ez andY = {Y.}.c~ be efficiently constructible families of random variablds o
logarithmic length.

If X andY are computationally indistinguishable, then they areistatally indistinguish-
able.
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Proof. Assume thatX andY are computationally indistinguishable.
Let Sx andSy be algorithms as in Lemnial22. We define a probabilistic patyiabtime
algorithm D as follows: On input(z, 1/, ), invoke dx — Sx(z,17) anddy — Sy(z,17).

Thendy anddy are the descriptions of some distributioisandY . If Pr[X = z] > Pr[X = y],
returnl, otherwise).
Fork, f € N, let
Ay(k) == max | Pr[D(z, 170 X)) = 1] — Pr[D(2, 170 v,) = 1]|.
zE
|z|=k

We also defined for functions f by Ay (k) := A gy (k).
First we are going to show that for any functignwe have

6
F(I=0)

For fixeddy anddy, let D*(z) := 1if Pr[X = z] > Pr[Y = 2], andD*(z) :=
First, fix somez € Z. Assume that soméx anddy are given withA(X; X

AY;Y,) <

A(XYz) < Ap([2]) + ()

0 other\lee
2) < \) and

(| ik We then have

Pr[X = 2] — Pr[V ‘ —Pi[D*(X) =1 - Pr[D*(¥V) =1]. (3)

However, we also haviPr[D*(X) = 1] — Pr[D*(X.) = 1]| < A(X; X.) < f(‘z‘) and analo-
gously fory” andY. By the triangle inequality we hava(X.;Y,) < A(X; X) + A(X;Y) +
AY;Y,) < AX;Y) + ﬁ Combining these inequalities withl (3) we get
4
f(20)
By construction,D(z, 1/, z) first chooseslx anddy usingSx andSy, and then outputs
D*(x). We haveA(X; X,) > m at most with probabilityﬁ by definition of Sy, and

analogously forA(Y;Y,). Therefore the conditions under which we showed (4) arelltdfi
with probability at leastl — f(‘ - Consequently, we have

A(X,:;Y,) < Pr[D*(X.) = 1] — Pr[D*(V,) = 1] + (4)

A(X.:Y.) < Pr[D(z /00, X)) = Pr{D(z, 170D, X)) + ﬁ
This shows[(R). In particular, if is superpolynomial and\; is negligible, thenA(X.,Y) is
negligible in|z|.

For any polynomialp, D(z,17(?D) z) runs in polynomial time in|z|, hence using the
computational indistinguishability ok, andY~, it follows that A, is negligible (otherwise
D(z,17(2D) z) would be a distinguisher).

We now show that there is some superpolynomial funcfisach thatA ¢ is negligible. This
will show thatA(X ;Y. ) is negligible in|z| and hence conclude the proof.
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We say that a functiop™ asymptotically dominates a functignif for sufficiently largek,
we haveu® > . In [Bel02] it is shown that for any countable s&t of negligible functions,
there exists a negligible functiom* such that the functiom™ asymptotically dominates for
anyu € N.

Let P be the set of all positive polynomials with integer coefiintg& ThenP is countable,
so there exists a functiogm™ such that for any € P, the functiony* asymptotically dominates
Ap.
Let f(k) := max{f € N : A¢(k) < p*}. ThenA; < p* and therefored s is negligible.
Further, we show thaf is superpolynomial. For contradiction, assume thetnot superpolyno-
mial. Then there exists a polynomiale P such thatf (k) < p(k) for infinitely manyk. Then,
we also haved, (k) > p*(k) for infinitely manyk (by construction off). This is a contradiction
to the fact thay* asymptotically dominatesd\,. Thereforef is superpolynomial.

In a nutshell, there is a superpolynomial functipsuch thatA ; is negligible, and byL(2) we
haveA(X.;Y.) < A¢(l2]) + ﬁ so X, andY, are statistically indistinguishable. 0

C Security with Environment — Details and Proofs

We first give definitional sketches of two popular variantsexdurity with environment: Reactive
Simulatability (RSIM) and Universal Composability (UC)in8e the full definitions of the un-
derlying machine model and network semantics, we referehder to[[BPWO04] for the RSIM
model and[[Can(5] for the UC model.

Definition 24 (Reactive Simulatability (sketch)).A protocolr is as secure as a protocplwith
respect tacomputational general reactive simulatabilityjor every polynomial-time maching
(the adversary) and every polynomial-time machhigthe honest user) there is a polynomial-
time machines (the simulator) such that

{m’ewmA,H’k(H)} and {m’ewp,g7H,k(H)}

keN keN

are computationally indistinguishable.

A protocol 7 is as secure as a protocel with respect tacomputational universal reactive
simulatabilityif for every polynomial-time machin (the adversary) there is a polynomial-time
machineS (the simulator) such that for every polynomial-time maehih (the honest user)

{m’ewmA,H’k(H)} and {m’ewp,g7H,k(H)}

keN keN

are computationally indistinguishable in

We speak abougtatisticalgeneral/universal reactive simulatability if in the abalefinitions
A, H and .S are unbounded and statistical indistinguishability is d$estead of computational
indistinguishability.

Definition 25 (Universal Composability (sketch)).A protocolr is as secure as a protocel
with respect tacomputational UCIf for every polynomial-time machiné (the adversary) there
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is a polynomial-time maching& (the simulator) such that for every polynomial-time maehih
(the environment) and every sequenagf strings of polynomial length,

{EXECEA,Z(IC, zk)} and {EXEC,,,SZ(IC, zk)}

keN keN

are computationally indistinguishable.
We speak aboutatistical UCIf in the above definitiord, Z and S are unbounded and
statistical indistinguishability is used instead of cortgiional indistinguishability.

In this definition, we assumed that the output of the enviremimmay be a string. Another
variant of UC that is often considered requires the enviremno give a single bit as output.
These variants are equivalent [Can05, Section 4.3, “Orr@mvients with non-binary outputs].
The definition of statistical UC is sketched [n_ [Cah05, Seti#.2, “On statistical and perfect
emulation”].

In order to capture all the above definitions of security vetivironment, we take a gener-
alised point of view that can capture both settings. For, this consider the execution of the
real protocolr (including the adversary) as an oracle Turing machintat takes the environ-
ment/honest user as an oracle and outputs its view or ougsgectively. Similarly, an oracle
Turing machingY” represents the ideal protocetogether with the simulator. Thus we can first
analyse the security of logarithmic protocols in an exact simple setting i Lemma 26, and
then derive results for the more conventional settings dMR&hd UC in Theoremp 29 arid 30,
respectively.

Given two oracle Turing machine¥ andY’, we say that all oracle queries and oracle an-
swers can be extracted from the output’dfandY if the following holds: For every:, there
is a function f,, such that for any oracl®, the following two conditions are fulfilled: (i) We
havef,(X®) = (i, 0) wherei ando are the input and output @ in then-th oracle query in an
execution ofX©. (i) We havef, (Y©) = (i,0) wherei ando are the input and output @ in
then-th oracle query in an execution B,

Lemma 26. Let X andY be oracle Turing machines. Let be an oracle. Assume bo#ti and
Y call their oracle at most times, and that the total length of the answers giverlliy at most
1. Assume further that all oracle queries and oracle answarshe extracted from the output of
X andY.

Let D be some distribution on the setefupels of strings. Letl be the oracle that chooses
anr-tupel(oy, ..., o,) of strings according t@ and in itsi-th activation responds with;.

LetO C ({0,1}*)" be the set of alF-tupelsw satisfying that the total length";_, w; is at
mostl. Letpyiy := mingeo Prp[w].

ThenA(X4;Y4) > 37 pim AXA; YA).

Proof. If Prp[w] = 0 for somew € O, we havep,,;, = 0 and the lemma is trivially fulfilled.
We can therefore assunitep[w| # 0 for all w € O.

To show the lemma, we first define some random variables. Inxacuton of X4, let X
denote the output ak 4, let IX denote the input to the orackin then-th query, and leO;X
denote the corresponding responseldfvith I.¥ = O;X = L if Ais queried less than times).
Let VX .= (X, 05, ..., X, 0X). ThenVX := VX is the view ofA.

rTmn
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Analogously, we define the random variablésl), OY, VY and VY for an execution of
YA,

For executions o4 andY 4 we augment the random variables with a tilde (efl‘:ﬁ ,is the
n-th output of A in an execution ot ).

In the following we use the convention that Pr[A|C] = 0, even ifPr[C] = 0 (and thus
Pr[A|C] is undefined). Similarly, we ld¢i- A(A|C; B|D) = 0 even ifPr[C] = 0 or Pr[D] = 0.
The main effect of this convention is that the Bayesian Rilp4, C] = Pr[A|C] - Pr[C] holds
even ifPr[C] = 0.

For any finite sequence of strings, let#w denote the number of elementsvof and||w/|

the total length of the strings. That is,w = (o01,...,0,), we have#w = n and||w| =
2 i—1lod]-

Let o be a string. If#w < r and ||w| + |o| < [, let p(o|lw) = Pr[Wywi =
o|(Wi,..., Wy ) = w| whereW is a random variable distributed accordingo

For#w = rand||w| <, letay := 1. For#w < r and|w|| <, let
Oy 1= %moinp(o|w) * Qo

where the minimum ranges over all stringsvith ||w|| + |o| < . Herew||o denotes the result
of appending the elementto the sequence.
By induction, it follows that

T
oy =3" #IgviBTHp(wi|(w1, . ,Wi,l)) =37 #vat]iilr P(W =7)=3"pmin

—1i=1 (=

[[wll

whereW is again distributed according . Here A denotes the empty sequence.
For some (partial) view = (i1, 01, ..., in,0n), letw(v) := (o,...,0},) whereo, := X if

rn

o; = L, ando := o; otherwise (i.e.w(v) denotes the sequence of the outputsiaifr Ainthe
view v, where we assume the empty outpuor thei-th query if there was néth query).
Let

Vo = {v: Pr(V;X = 0] >0, Pr[V}} =] >0, Pr[V,¥ =v] >0, Pr[V,} =] >0}
and

VI, = {(v,i): Pr[V,;* = v, I}

i]>0, Pr[V,\,=uv1I
i>0, Pr[VY, =oI¥

il >0,
i] > 0}.

For anyv € V, and allz, itis P(X = z|VX =v) = P(X = z|VX = v). The same holds
for Y instead ofX. So for allv € V,, itis

AXIVE =0, YIVY =0) = AX|VE =0; YVY =0). (5)

Here and in the followingd| B denotes the random variableconditioned on the everis.
Now fix somel < n < r and assume that

AXVE =0 YV =) > aww)AX|V) = YV =) (6)
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forall v’ € V,.

We try to boundA(X|VX, = v, IX = 4 Y|VY | = v, IV = i) from below for all
(v,i) € VI,. First, we find that

AX|VE =0, IX =i, YVY, =01V =)
S AX,OXVE, =0, IX =i, Y,0Y|VY | =v1IV =4
= %Z Pr[X = z|VX | =0, IX =i,05 = 0] - Pr[OF = o|VX | = v, [X =]
e Pr[Y = z|VY | =v, IV =i,0Y =o] - Pr[OY =o|VY | =v, I} = 2]‘
o ZPr[Of =o|VX | =0, IX =
CAXVE =0 I =0,0, =0 YV =v1 =i,0} =0) (7

n

Here (i) stems from the fact that by assumption, the oraclpaeses and thus in particul@g®
andO)’ can be extracted fronX andY’, respectively. We have (i) becauBe[O;X = o|V,.X | =
v, IX =i = Pr[OY = o|V}Y ; = v, I} = i] (which again holds because theh oracle answer
depends only on the oracle and its view so far).

From [7) we get that there is somgdepending ori andv) such that the following three
inequalities hold:

Pr[VX, =v,IX =i,0X =6 >0, Pr[VY,=v1Y =i0 =6 >0, (8)
and

AXIVE =0 =4,0; =6, Y|V, =0, I} =i,0) =0)
> AXIVE =0, L =i YIVY =01 =i). (9)

Since the total length of all query answers given Ayis bounded byl by assumption, it is
|lw(v)|| + o] <loré= L.

Sinceo = L only if i = L, and since(v,i) € VZ,, and using the fact thatl when
activated outputs any stringwith ||w(v)| + |6] < [ with nonzero probability, we further have
Pr[VX, =0, IX =4,0; = 6] > 0andPr[V)Y , = v,IY =4,0Y = 6] > 0. Combining this
with ) we getv||(z,6) € V,. (Herev||(i, 6) denotes the view resulting from appendifigo) to

v.)
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So in the case # | we have

AX|VE =0, X =iy YV =vI) =i
o ZPr[O?f =o|VX | =0, IX =1

A(Xﬁ/n)fl :v,f,i( :i,é,i( = o; }7|‘~/ny,1 :v,fz :i,OZ :0)
o Z p(olw(v)) A(Xﬂzl)il = v,]?f = Z,O~T)f = 0; }7|f/ny_1 = v,I?Z/ = z',OE: = 0)

o with
llw(v)[|+]o] <l

> p(olw() A(X|V,E ) =0, I =i,05 =6, Y|V)Y =01 =i,0} =0)
® .

> p(6|w(v) Aw(w)0) AX|Vity = v, I =i,0;

> Bo(o) AX|VE =0, I =4,05 =6; Y|V, =0,IY =i,0) =0)

[©)
> Bo(o) AXVE =0, I =4 Y[V =01} =i). (10)

n

Here equality (i) is proven exactly lik&l(7), and (ii) usee fact thtA’s answers are distributed
according toD by construction. At this point, we used that L, sincel;X = | means that
there is non-th oracle query and therefotgX = 1.

Inthe caseé = L, i.e., in the case where noth oracle query occurs, fromX = i it follows
thatO;X = i (and the same fa¥), so we have

AXWE =u ¥ =i YV =0, L) =)

® . .

> O‘(w(v),)\)A(X|Vn)£1 =, IT)L( =1 Or)z( =1 Y|VnY71 = IU’IZ =1 0131/ = J—)
> 3aw(v)A(X‘Vn)£1 = ?},Ié( - 1705 = 1; Ylvrzf—l = U7Ir)z/ - 2,03: - J‘)
= 30w AXIV,Y ) =0, X =i YV =01 =i)

So [10) holds in all cases.
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We now want to bound\(X |V.X | = v; Y|VY | = v) from below for allv € V,,_;. Itis

A(X|‘N/n)i1 =1 i/|‘7ny—1 =)

LAX LV =0 VLV =)

= %Z‘Pr[)? = z|VE | =0, IX =i - Pr[IX =i|VX | =]
TPy =2V =0, LY =] Pr[ly =iV, =]

> 3 Prl =iV, =] [Pr[X =2V, =0, LY =i - Pr[Y = 2|V, =v,I) =i
x,0
=3 Py =V =, 1Y =) [Pr(I) =iV, =] = Pr[IY =i[V;X, =]

T,

_ (Z Pr[[X = i|VX | = o] AKXV, =0, X =4 V[VY | =0, I = z‘))

7

Equation (i) uses the fact that the oracle queries, and thpsuiticular X andIY” can be ex-
tracted fromX andY’, respectively.
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For convenience, we abbreviaty(I,X|V.X | = v; I)|VY | = v) asA;. Then we continue
the above calculation.

(I0i)
@D (P = i1V =] B ACIVE, = v 1Y =i YV, = 0.2 =) - 4

- (?’“g# SOIPrX = 2V,X ) = 0, IX =] - PrIY = i[V;¥, =]
i

~PrlY =V =, Y =) P =iV = )]) - 4

= (_30‘3/(1)) Z

i

—Pr]Y =2|VY | =0, IV =i]-Pr[I} =iV}, =0
—PrfY =2l =0, 1) =] (P =iV = o] = Pr{ry =iV, =) )
— A;
> (?’“VQ# STIPrX = 2|V, =0, 1X =) - Pr[) = i|V,;X, =]

PriX = 2|VX, =0, IS =] - Pr[IX =i[V;X, =]

z,i
—PrlY =2|VY =0, I} =] Pr[I} =iV, | =]
—PrY = 2|V =0, 1Y =] [P =iV =] = Pr[IY =iV = H)
— Az
= 3aw(v)A(X7 IV)L(Wn{l =v; Y, I}{Wnyq =v) — 3aw(v)A(I§|Vn)£l = Ir}ﬂvnyfl =v) - Ai
Q 3aw(v)A(X7 Ir)z(lvn{l =v; Y, IX’Vanl =v)—(1+ 3aw(v))A(ir)L(“7n)£1 =1 fy’f\Vn’il =)

(W) ~ o~ ~ o~
> 3aw(v)A(X’Vn)£1 = Y‘Vnyfl = U) - (1 + 3aw(v))A(X‘Vn)il = Y‘Vny;l = U)'
(12)

Inequality (ii) uses (besides the bound giveriin (10)) thet flaat given the inputs and responses
of all oracle queries up to thg — 1)-st query, the input of the-th query depends only on the
querying machineX, but not on the oracle. So givéni* ; (or V.X |, resp.),[X andI.X have the
same distribution. Equality (iii) uses exactly the same.facequality (iv) we used thatX and
IY can be extracted fronX andY’, respectively, and thatX andI) can be extracted fromX
andY’, respectively.

Since|lo(v)|| =n — 1 < r, we haven,,, < 3. From [12) we then get:

. e o) > 30éw(v)

AX|VE =0 YV =)

> Ay (v) A(X|Vn)£1 =1 Y|Vny;1 = ) (13)

So recapitulating, if for somé < n < r, (@) holds for allv’ € V,, we have [(IB) for all
v € V,_1. By induction over decreasing (using [5) for the induction basis = r) we see that
the following holds for allv € V;:

AX|VEE =0 YV =v) > aw(v)A(XH/OX =u; Y|Vy =),
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SinceVi¥ = V' = Vi¥ = V" is the sequence of lengthwith probability 1, we can rewrite
the last inequality as\(X;Y) > ap A(X;Y) = 37" pmin A(X; Y). O

We restaté Lemma P6 in an asymptotic setting:

Lemma 27. Let X andY be oracle Turing machines. Lt be an oracle. Assume bofti and
Y call their oracle at most times, and that the total length of the answers giverly at most
1. Assume further that all oracle queries and oracle answarsle extracted from the output of
X andY.
Let A be the oracle that first uniformly choose astupel (01,...,0,) Of strings such that
the total length) _ o; is at most,, and then upon ité-th activation responds with;.
ThenA(X4;Y4) > 270N A(X A, YA,

Proof. We can encode artupel (o1, ..., 0,) with total length at most as a string of length
O(l + r). Therefore there are at ma@?(+7) suchr-tupels. If D is the uniform distribution
on theser-tupels, in the notation df Lemmal26 we hayg, € 2-°(*"). So by[Llemma 26
we haveA(X4;Y4) > 377270041 A(X 4, Y4). Since3—72-0U+7) € 270047 the lemma
follows. .

To applylLemma 27 to the setting of RSIM or UC, we need the falhg well-known fact:

Lemma 28. The following holds with respect to computational/statat general/universal re-
active simulatability and computational/statistical UC.

Let 7 and p be protocols with communication complexity bounded@hen there is an ad-
versary A jmmy (the so-called dummy-adversary) with communication cerigyl O(b) such
that 7 is as secure ag if and only if 7 is as secure ag with respect to the dummy-adversary

A dummy

This is easily shown using the so-called dummy-adversaryrigue. Se€ [Can05, Section
4.3.1, “Security with respect to the dummy adversary”] foroaerview.

We can now apply TemmaP7 to the setting of RSIM and concludeiththis setting, com-
putational implies statistical security for logarithmimfocols.

Theorem 29 (Computational Implies Statistical Simulatabiity). Lets and p be polynomial-
time protocols with logarithmic communication complexkgsume that is as secure ag with
respect to computational general reactive simulatabilfiienr is as secure ap with respect
to statistical general reactive simulatability.

The same holds for universal reactive simulatability.

Proof. By definition, the viewview, 4 g (H) consists of the sequence of all messages sent
and received byH together with all internal states &f. Similarly, we define the external view
extviewr A g, (H) to consist only of the messages sent and receivel without the internal
states). Obviouslyeztview, 4 m,(H) is a function ofview, o m(H).

By Lemma 28, there exists a logarithmic bouhg such that we can w.l.o.g. assume all
adversaries to have communication complexity at h@ssince a simulator that communicates
more than the adversary with the honest user will be trigidistinguished from the adversary,
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we can assume the simulator to communicate at mgstith the honest user. Further, since
the communication complexity of the protogols logarithmically bounded, we can assume the
total communication of the simulator to be boundedbly Since there are fixed logarithmic
upper bounds on the communication complexityrop, the adversary and the simulator, we can
also assume the honest user's communication complexitsve & fixed bound.

By choosing the same logarithmic bouhdor all the entities above, we can assume all
simulators, adversaries and honest users, as well as tteepisor andp to have communication
complexity at mosb. This holds for statistical and computational general amdarsal reactive
simulatability. We will implicitly assume this bourigdfor the rest of this proof.

Assume now thair is as secure ag with respect to computational general reactive simu-
latability. We want to show that this implies thatis as secure ag with respect to statistical
universal reactive simulatability. Since universal regcsimulatability implies general reactive
simulatability, this show the theorem both in the case ofgalnand of universal reactive simu-
latability.

For any adversary, we can now construct a sequence of oracliegTmachinesX 4 ;, so

that X f §j"> simulates the interaction between protogphdversaryd and honest uself upon
security parametek and then outputs the external view Hf. Here we identify honest users
(which are machines in the sense of the Reactive Simulayafsdmework) with oracles in the
following natural way: A query td (1*) corresponds to an activation &f through an incoming
message (or in its capacity as scheduler) upon securitmﬁemk and outgoing messages sent

by H are modelled by the oracle responses. Th’éﬁj andeztview, 4 g 1 (H) have the same
distribution. SinceA and = have communication complexity at mdstwe can assume that
the number of timedT is called by X Agﬁ ) and the total length of the answers given Hyis
bounded by a bountd (k) € O(b(k)) (independent of the choice df).

Similarly, for any simulatotS we can construct a sequence of oracle Turing machikgs

k
such thaﬂffél ) and extview, s i (H) have the same distribution. As above, we can bound

the number of timedd is called beigk) and the total length of the answers given Byby
b' (k).

Note that smchH(1 )

k
and Yf,fl ) output the external view off by construction, the se-

guence of all queries t& and of all its answers is contained in the outpufkof ; (1) andeélk),
respectively. ’

Let thanH be the honest user/oracle that chooses randomly a sequigrice)anessages of
total length at most/ (k).

B H(1%)  H(1¥) X HAR)  HAR)

yLemma?2y, ifA(X, ;. *;Yg, ') is notnegligible ink, thenA(X , ;5 Yg, ) is not
negligible ink, either.

We can now finish our proof by showing thatis as secure as with respect to statistical
universal reactive simulatability. Let an adversahbe given. ByL [Lemma 28 we can assume
A to be polynomial-time. Then, sinceis as secure gswith respect to computational general
reactive simulatability, there is a polynomial-time siiaolr S such that{ extvz’ewmAﬂk(ﬁ)}k
and{extviewp’&ﬁk(ﬁ)}k are computationally indistinguishable (we are even gueshthat
the views, not only the external views é¢f are computationally indistinguishable). Since
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extview ., g (H) andextview , 5 (H) can be efficiently computedr( p, A, H andS are

polynomial-time), and since the external view Hf has logarithmic length, by Theorem]23
if fgllows th_at{extm'ewm Aix(H)}e and{eztview , ¢ 7, (H)}x are even statistically indistin-
guishable, i.e.,

. ~ ) =~ H(1F H(1*
A(emtvzewmA’H’k(H); extmewmsﬁ’k(f-[)) = A(XAJ(,g );Y&k( ))

is negligible. Then for any honest use (not only polynomial-time ones) we
have thatA(Xigk); Yﬁflk)) is negligible. In other words{extview, A x(H)}x and
{eatview, s i (H)}i are statistically indistinguishable. Since the distridtof the view can
be (inefficiently) computed from the external view (givenpedfic honest useH), it follows
that also{view 4,k (H)} and{view, s i 1(H )} are statistically indistinguishable.

Sor is as secure gswith respect to statistical universal reactive simuldiybi a

Similar to[Theorem 29 we get that also in the UC setting, caatfmnal implies statistical
security for logarithmic protocols.

Theorem 30 (Computational Implies Statistical UC).Letw and p be polynomial-time proto-
cols with logarithmic communication complexity. Assunag this as secure ag with respect to
computational UC. Then is as secure ag with respect to statistical UC.

Proof. Analogous to the proof of Theorem|29, we can w.l.0.g. assulmgsaaithmic upper bound
b on the communication complexity of environmer#fs adversariesd, simulatorsS and the
protocolst andp. We will implicitly assume this bound for the rest of this proof.

In the case of statistical UC, we can assume that the envienhf just outputs its view,
i.e., all messages it sent and received, since the digtibof Z’s output can be (possibly inef-
ficiently) computed from its communication.

As in the proof of Theorem 29, we construct sequences of@fling machines( 4 5, and
Ys ;. and an efficiently computable logarithmic upper bowhdith the following properties:

— For all simulatorsS, adversariesd and environmentsZ that output its view, and for all

z € {0,1}*, the distributionst(,ik’z) and EXEC a,z(k, z) are identical, and so are the

istributi Z(1%,2)
distributionsY; ;" " and EXEC 4 7z(k, z).

— For all simula’EorSS, adversariesA and environmentsZ, the oracle Turing machines
k k
Xf% #) and Yf,(: #) call Z at mostt/(k) times and the total lenght of’s answers is

bounded by (k).

Then letZ be the environment/oracle that on security paramktand auxiliary inputz
randomly chooses a sequencebtifc) messages of total length at maétk). (The auxiliary
input is ignored.) The environmett outputs its view. i

By [emma 2y, ifA(X 2\ yZ" ) is not negligible ink, then A(XZ("9; y 21" 9))
is not negligible ink, either.

We now show that ifr is as secure gswith respect to computational UC, theris also as
secure a with respect to statistical UC. Let therefore an adversabe given. By Lemma 28
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we can w.l.o.g. assumé to be polynomial-time. Then, sinceis as secure gswith respect to
computational UC, there exists a polynomial-time simul&tsuch thaf EXEC _ , ~(k, z) }x
and{EXECp s 7(k, z1) }x are computationally indistinguishable for any sequencé strings.

So {Xf(,jk’z"’)};C and{YAZSk’Z’“)}k are computationally indistinguishable, too.

SinceZ outputs its view by construction, we then have t A(klk’z’“)}k and{}fAZ,(;k’Z"’)};C
are even statistically indistinguishable. Then for all isswments Z that output only
their view, also {Xf’(klk’z’“)}k and {Yj,&lk’z"’)}k are statistically indistinguishable. Thus
{EXECr a,7z(k,z;)}ir and{EXEC, s z(k, z1,) }1, are statistically indistinguishable. Since in
the case of statistical UC it is sufficient to consider envwinents that output their view, it fol-
lows thatr is as secure gswith respect to statistical UC. O

D Stand-Alone Security — Details and Proofs

We first give a definition of stand-alone security.

Definition 31 (Stand-Alone Security). Let 7 and p be ITMs. We say thatr is as secure
as p with respect to computational stand-alone security witkileuwy input, if for every
polynomial-time ITMA (the adversary) there is a polynomial-time ITM (the simulator)
such that for sequencesand z of strings of polynomial length, the families of distrilmurts
{((A(l’“,zk),w(l’f,mk)»}k’%xk and {<<S(1’“,zk),p(lk,mk)»}k’%xk are computationally in-
distinguishable irk.

We speak oftatistical stand-alone security with auxiliary inpithe above holds with un-
boundedA4 and .S and statistical indistinguishability.

We speak ofcomputational/statistical stand-alone security withaukiliary input if A
and S do not get the additional input;, (i.e. the distributions({(A(1%), 7(1%,2;)) and
(S(1%), p(1%, 1)) are compared).

Our definition is considerably simpler than that of elg., @3 since it abstracts away from
details like the possibility of corruptions, asynchronoousssage delivery, and even the fact that
there are different parties in the protocol.

However, it is easy to see that our results also hold for momepiex definitions of stand-
alone security since one can see our definition as a simpt@aspase of a more general def-
inition (the case of a single-party protocol), and the maeaagal definition can be seen as a
special case of our definition by including the corruptiod amtwork delivery mechanisms into
the specification of the real or ideal protocol (i.e., thd peatocol in our model can be consid-
ered as being all protocol machinasd the networkn one machine, and similarly for the ideal
protocolp).

In many models of stand-alone security, in the ideal modetlavaot allow arbitrary proto-
cols, but only ideal functions. In order to be able to capthis restriction, we characterise the
ITMs that correspond to such functions using the next defimit

Definition 32 (Function-Like ITMs). We say an ITM is function-like if it sends only one mes-
sage and receives only one message (in that order) and thres gutput.
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D.1 On The Complexity of Finding a Good Adversary-Strategy

We are now going to construct protocoetsand p such that there always exists a good (i.e.,
successful) adversary against the securityr dfvith respect top), but such that finding that
adversary is hard.

A central concept in our construction will be that of the adesey-polytope. The adversary-
polytope of a protocol (with some fixed inputs) is the set bélatributions of the output of that
protocols that can occur with various adversaries. If them distribution that can occur with
some adversary in the real protocol but not in the ideal paténot even approximate), then
m iS not as secure gswith respect to statistical security. Reformulated in temh adversary-
polytopes, this condition reads as follows: There is a pwirihe adversary-polytopd . of 7
that is (sufficiently far) outside the adversary-polytofg of p. However, if this point cannot
be found efficiently, we still can hope for computationals@g. Thus our goal is to construct
protocolsm and p such thatA ;. contains a point sufficiently far outside &f,, but such that
finding a point inA.; \ A, implies finding a witness to an NP-hard problem.

Definition 33 (Adversary-Polytope).Let an ITMT be given. Assume that the outputlofs in
{1,...,t}. Foran ITM A, let (A, T'(z)) denote the distribution of the output ‘Bfinvoked with
input z and running withA. Then we can consideA, T'(x)) as a vectorp € R! by setting
pi == Pr[(A, T(x)) = i]. Then for some input, theadversary-polytopé 1,y C R’ of T'(x) is
defined as

Ary = {(A,T(x)) : Aisan ITM.

To be able to speak more easily of adversaries that breakdbacpl, we give the following
definition of good and strongly good adversaries.

Definition 34 (Good Adversaries).Letm andp and A be ITMs, and let > 0.
We call A e-good for (rr, p) if for all ITMs S the statistical distance betweé, 7)) and
(S, p)) is bounded from above hy We call A good for(, p) if A ise-good for some > 0.
We call A stronglye-good for(m, p) if for all ITMs S the statistical distance betwegd, )
and (S, p) is bounded from above lay We call A strongly good for(r, p) if A is stronglys-good
for somes > 0.

It is easy to see that a protocol is statistically insecurihdre exist-good adversaries with
sufficiently larges. On the other handstrongly e-good adversaries exist iff there exists a point
in A, that is at least-far from A, with respect to the 1-norm. So in general, the criterion in
terms of adversary-polytopes does not necessarily cangith the definition of stand-alone
security. However, in all our constructioasgood adversaries will be equivalent to strongly
good adversaries.

The NP-complete problem that we will reduce finding pointdin\ A, to is the following:

Definition 35 (Set Cover).Letn € N, s;; € {0,1} with: =1,...,mandj = 1,...,n and

d < n.lets;. # 0forall: =1,...,m. Then(n,m,S,d) is an instance of set cover (with
S = ((s45))). LetS; := {i : s;; = 1}. Then(n,m, S, d) is a yes-instance of set cover if there is
asetC C {1,...,n} suchthaty#C < dandJ;.- S; = {1,...,m}.
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Note that set cover is NP-complete with a witness-presgriéauction, i.e., a SAT instance
can be reduced to set cover such that a witness of the setiostance can be transformed into
a witness for the SAT instance in deterministic polynomiialet See e.g.| [Papd3].

For the remainder of this section, we will often implicitigsume(n, m, S, d) to be a set
cover instance and;; to be the components @. So if in some lemma, definition, or proof
an unqualifiedn, m, .S, or d appears, it refers to the corresponding component of theoser
instance(n, m, S, d).

We now define a particular type of polytopes, the set coveytppés. Such a set cover
polytope encodes an instance of set cover and is addityopatlametrised over an additional
parameter: € (0,1). Here a high value of intuitively denotes that the set cover polytope
encodes the set cover instance well. We will later see thaeitan let the adversary-polytope
A be a set cover polytope with sufficiently largeand A , a suitable cross-polytope, the points
in A\ A, encode the witnesses for the encoded set cover instance.

Definition 36 (Set Cover Polytope)Let(n,m, .S, d) be an instance of set cover. Let (0,1).
Let P be a polytope. We calP an-set cover polytope fofn, m, S, d) if the following holds:

- PC0,1)™
— Letv € {0,1}". If ||v]y < dand(s;.,v) > 1foralli=1,...,m, thenv € P.
— Letv € [0,1]™. If |[v]|1 >d+ 1 —eor (s;,v) < eforsomei € {1,...,m}, thenv ¢ P.

An example of arz-set cover polytope is the polytope given by the inequalitie [0, 1],
|lv|li < dand(s;.,v) > 1. (It is ane-set cover polytope for everyc (0,1)).

The following lemma give us a reduction that maps points ietacever polytope that have
sufficiently large 1-norm (i.e., that are outside a suitadress-polytope) to witnesses of set
cover.

Lemma 37 (Reducing Set Cover to Polytope 1-Norm)et (n,m, .S, d) be an instance of set
covere € (0,1), u:= (1,...,1)T € R", and P ane-set cover polytope. Let’ := P — Lu.

(i) If (n,m, S,d) is a yes-instance, thef’||; = %.
(ii) If (n,m,S,d) isano-instance, thefp”'||; < § — =7

(i) Moreover, given a vector € R" with d; (v, P') < 55 and|jv]l1 > § —
efficiently compute a witness fot, m, S, d).

n%ﬂ, we can

Proof. First, to showl{i), assume théat, m, S, d) is a yes-instance. Then there is a Setvith
#C < dsuch thal ), . S; = {1,...,m}. Letv* € R" be defined by} := 1if j € C
andv; := 0 otherwise. Sincg#C < d we have|v*||; < d. Fix somei € {1,...,m}. Then
1€ UjeC S;, so we can choose somie= C with s;; = 1. Sinces;. > 0 andv* > 0, we have
(si,v*) > sijvr = 1. Thereforev* € P. Letv' := v* — ju € P'. Sincev* € {0,1}", itis
| = 5 forall j, thus|[v|y = 5. So[P'|, > [[v/|, = %. SinceP" C [—-3,3]", itis also
[P'|x < ||I[-3,4]"|l1 = 2. Summarising, we gétP’|| = Z. This showsl[{i).

We proceed by showing {jiii). Let := —>7 and assume that a vectore R" is given with
di(v, P') < d and|lv[1 > § — ¢. We definev* as follows: Ifv; > 0, letv} := 1, otherwise
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let vy := —3. Sinced; (v, P') < dand P’ C [—3, 3], itis di(v,[—3, 3]") < & and therefore
lvj| < %+ 6 for all j. Furthermore, sincgv||; > 2 — 4, itis >_jlvil > § — 4. It follows that
|vj| > § —né for all j. Then|v; — v}| < né for all j and thusd, (v, v*) < n?4.

Sinced; (v, P") < ¢, there is a’ € P’ with d;(v,v") < ¢ (the existence is sufficient, we
do not need to compute). Then||v'|y > |jv]1 — & > % — 24. Furthermored; (v/,v*) <
di(v,v') + di(v,v*) < (n? +1)6. Letd := v/ + Juand?* := v* + Lu. Then? € P and
o* € {0,1}". SinceP is ane-set cover polytope, it i§v’||; < d+1—e and(s;.,v") > ¢ for all
i€ {1,...,m}. Thus we have|t*||; < ||7'|l1 + d1(v/,v*) <d+1—e+ (n®>+1)§ =d+ 1.
Sincev* € {0,1}", the valu€||o*||; is an integer. Thereforgr*|| < d. Since alls;; € {0,1}, we
have further(s;., 5*) > (s;.,%') — d1(v',v*) > e — (n? 4+ 1)§ = 0. Since(s;., 7*) is an integer,
it follows that (s;., o) > 1for all i. LetC' := {j : 7 = 1} C {1,...,n}. We will show that
C'is a witness for the set cover instange m, S, d). Sincev* € {0,1}* and||v*||; < d, we
have#C < d. Fix somei € {1,...,m}. Then(s;.,0*) > 1 and sinces;;,v; € {0,1} for all
Jj,thereis g € {1,...,n} such thaw; = 1 ands;; = 1. Sincev; = 1, we havej € C, and
sinces;; = 1, we havei € S; C ;¢ ;. Since this holds forall € {1,...,m}, the seC is a
witness for(n, m, S, d). Sincej € C'if and only if v; > 0, we can efficiently computé’ from
v. This provesl(ii).

To show (i), it is sufficient to note that if”’|| > 5 — .55, there exists @ € P such that
lv]li = [P > % — 755 (note thatP’ is a polytope and thus closed). Sinces P, it is
di(v,P")=0< nQLH So by ({iil) there exists a witness fon, m, S, d), in contradiction to the

assumption thatn, m, S, d) is a no-instance. 0

We are now going to construct a set cover polytope for a giwstance of set cover from sim-
ple polytopes. This construction we will later transforntoia recursive definition of a protocol
w whose adversary-polytope will then also be a set cover ppéyt

The following definition states the building blocks of oucuesive construction:

Definition 38. For [ € [0,1] ande € (0,1) andi € {1,...,m} andz,y € {0,1}" and
g €10,..., ||z - y|l1}, we define the following sets:

— Theupper bound polytop®; := conv{v € {0,1}" : ||v]1 < ld}
— Thelower bound polytopes! := conv{v € {0,1}" : (s;.,v) > I}
— Thecombined polytope’. := Dy, + > 10, St
— Therecursive vertex sét;” := {v € {0,1}" : (z - y,v) < g, v <y}
— Therecursive polytop&;"¥ := conv VY.
Note that these sets implicitly depend on the set coverngsta, m, S, d).
The next lemma will show thak. is indeed ar-set cover polytope, and the Lemnia$[40-43
thereafter will allow to recursively construét from polytopes of formCy* with g € {0,1}.
These polytopeg’;*Y have at most two vertices and are therefore very easy torcohst

Lemma39.1f0 < e < #ﬂ then P. is ane-set cover polytope.
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Proof. SinceDy_,e C [0,1 —me]™ andS: C [0,]™, itiS P. = Dy_pe + > vy SLC[0,1 —
me]™ +m - [0,e]" = [0, 1]™.

Leta vectorw € {0,1}"™ be given with||v||; < dand(s;.,v) > 1foralli. Then(1—me)v €
{0,1—me}™ and||(1—me)v|; < (1—me)d, sSo(1—me)v € Dy_pe. Furthergv € {0,}™ and
(si.,ev) > ¢,s0ev € Stforalli. Thusv = (1 —me)v+ Y1 ev € Dy_ype + >y St = P..

Let now a vectow € [0, 1]™ be given with||v||; > d + 1 — e. Since||P:||1 < ||Di—mell1 +
SSH < (1 —me)d+ 3" ne <d+1—¢,itfollowsv ¢ P..

Now, let a vectow € [0, 1] be given with(s;., v) < e for somei. Assume that € F.. Then
we can writev = v, +v, With v, € S andv,, € Dl,m€+zk# SE. Thenvy, > 0, s0(s;., vp) > 0.
Sincev, € S, itis (s;.,v,) > €. Therefore we havés;., v) = (s;.,v,) + (s;i., ) > e. Thisis a
contradiction, hence ¢ P..

We have verified all properties given[in Definition 36, heritds ans-set cover polytope.

O

The following lemma allows to writé- in terms of polytope&’;"¥ (but we do not necessar-
ily haveg € {0, 1}, so these polytopeS;™¥ may still be complex).

Lemma40. Letu = (1,...,1) € {0,1}" and! € [0,1]. ThenD; = [ - C}" and S} =
S U

I (u— CHSi-Ih—l)'

Proof. Since for anyv € {0,1}" we have|v||; = (u,v) andv < u, we haveD; = C;"* and

thusD; =1- Dy =1-C}". Sinces;. > 0 we have(s;.,u — v) = ||s;.||1 — (s;.,v) and thus

St = conv{v € {0,1}" : (s;.,v) > 1}
= conv{v € {0,1}" : (s;.,u —v) < |si|1 — 1}
= conv{u —v' : v' € {0,1}", (s;.,v) < |si.|l1 — 1}
— _ \/Siu _ 1S
= conv(u V’||si,||171) =u—C g

From this it follows thatSj = 1- S} =1+ (u — C|| ). O

The following lemma states some probably well-known fabisud the convex hulls of sums
and unions of sets. We give the proof for completeness.

Lemma 41. For sets A, B, Ay,..., A, C R", itis conv|J;A; = conv|J,convA4; and
conv(A + B) = conv A + conv B.

Proof. Since A; C conv A; we haveconvJ; A; C conv (], conv A;. To show the other
direction, we first show J, conv A, C conv|J; A;. Let = € |J,conv A; be given. Then
there is ani such thatr = > ,rjz; with }°.r; = 1, 7; > 0O andz; € A4, C ;4.
Thusz € conv|J; A; and therefore J, conv A; C conv|J; 4;. From this it follows that
conv | J;conv A; C convconvlJ; A; = convlJ; 4;. So we have showmonv|]J;, 4; =
conv | J, conv A;.

We now showconv(A + B) C conv A 4 conv B. Letx € conv(A + B) be given. Then
xr = Zj rj(aj + bj) with Zj i = 1 andrj > 0. With z, := Zj Tia; andxy, := Zj ijj we
haver = z, + x, € conv A + conv B.
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Now, we showconv A + conv B C conv(A + B). Letz € conv A + conv B be given.
Then we can writer = > .rjc; + 32, sja; + >, t;b; with ¢; € A+ B anda; € A and
bj € Band) ;rj+ > ;s; = land) ;r;+ > ;t; = 1andr;,s;,t; > 0. We call the
number of summands of the forma; andt;b; (but notr;c;) the degree of the representation.
Letz =3 rjc; + 3, §ja; + > tib; be such a representation with minimal degree. Then all
sj,t; > 0. Assume that minimal degree is greater thamhen the second and the third sum both
contain at least one summand, since otherises; = >, t; = 1 — >, r;. Then there exists
an sy, or aty that is minimal under alk; and¢;. W.l.o.g., we assume that soragis minimal.
Thensy < ty. Lett] :=t1 — s, andtg = t;» for j > 1. Letcy := ay, + by andrg := s;. We then
have

T = Z ricj + Z sjaj + Z tjbj = rgCco + Z ric; + Z sja; + Z t}bj.
J J J J J#k J
Since the right hand side is a representation @fith smaller degree this is a contradiction to
the minimality of the original representation. So the or@irepresentation had degreeso
x =73 ;rjc;With . r; =1andr; > 0ande; € A+ B. Thusz € conv(A4 + B).
It follows thatconv A + conv B = conv(A + B). 0

The following definition provides some notation to wiite Lem43 more concisely.

Definition 42. For a vectory € {0,1}" with w := ||ly||1, leti(y) andr(y) be the vectors with
the first[ 4] and last| 7 | bits ofy set, respectively.
Formally, leti(y) andr(y) be the unique vectors satisfying

I(y),r(y) € {0,1}" and y=I(y)+r(y) and [i(y)=T[%] and
lrw)ll =13] and (y);=r(y); =1=1i<j
The following lemma gives a recursive constructiogf using sums and unions. The base
case of the recursion are s€t§¥ with g € {0, 1} and the depth of the recursion is logarithmic

in ||z - y||; and its width is polynomial iffz - y||;. Together with the preceding lemmas, we can
now recursively construd®. using only sums and unions of convex sets.

Lemma 43. For z,y € {0,1}" and0 < g < ||z - y||1, we have

Cg¥ = conv <U <C’Z-m’l(y) + C';’_Ti(y))>

1

wherel :=={i=0,...,9:7<|z-l(y)|1andg —i < ||z - r(y)|1}.

Proof. Lete; := ||z -I(y)|1 ande, == |l r(y)||1. We first showV"¥ = U1<Vf’l(y) +%x_’§(y))
wherel := {i =0,...,g:i<c¢andg—i <c¢}.

Letv € V;"Y. Then by definitiony € {0,1}" and(z - y,v) < g andv < y. Letv; :=
v-l(y) < l(y)andwv, := v-r(y) < r(y). Leta = (z - y,v;) = (x - U(y),v) < ¢. Then

U € Vax’l(y).
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Similarly, letd := (z - y,v,) = (- 7(y),v,) < ¢. Thenv, € Vf’r(y).

Sincel(y) + r(y) = y, we havev = v - y = v; + v, and therefores + b < (z - y,v) < g.
Furthermoreg < ||z - y|1 = ¢ + ¢-. Sowe haves + b < g < ¢ + ¢, anda < ¢ and
b < ¢,. Therefore it exists an integér< i < gwitha < i < ¢ andb < g —i < ¢.. Then

v € V}):v,l(y) g V;m,l(y) andvr c V;L"vr(y) g ‘/;3 T( ) . Thusy = U +u, € UI( m 1Y) + Vm r(y))
T z,l x,r
Therefore we havé,¥ C |, (Vi W 4 Vg_i(y)).
Let now some € |J, (Vf’l(y)+vgx_”;(y)) be given. Then there exist are I and vectors;, €

Vo'W andw, € V;;Z(y) such thav = v; +v,.. Sincev; < I(y), we havelz -y, v;) = (z-1(y), v;).
Analogously, it follows(z - y,v,.) = (x - r(y), v,). Hence(x - y,v) = (z - y,v;) + (x - y,v,) =
(x-U(y),v)+{(x-r(y),v) <i+g—i=g.Furthermorep = v; +v, <lI(y)+r(y) = y. And
sincev;, v, € {0,1}" andv <y € {0,1}",itisv € {0,1}". Hencev € VY.

Therefore we havé¥ C |J, (Vf’l(y) - Vf;’;(y)).

Applying[Cemma 41 twice (marked witfx)), it follows

Cg¥ = conv V¥ = conv <U (Vx’l(y) + V“;(y)))

*

= conv

Uconv V 2 )—i—Vgx_’Z-(y)))
I

*

(
= conv(U (conv V. +coan ( )))
(

I
conv U xly)—kar(y))).
I

O

We now have a recursive construction of a set cover polytgpegsums and unions of sets.
In the following, we will transform this construction intoracursive construction of a protocol
7 whose adversary-polytope is a set cover polytope (up toeaffansformation).

In order to do so, we first need to be able to express sums aadsuof adversary-polytopes
by operations on protocols. The following lemma gives ustieans to do so.

Lemma 44 (Constructions of Adversary-Polytopes)LetT" an ITM. Letry,...,r, > 0 with
>, = 1. Letx,xy,...,2y € X*. Let R be an ITM that upon input: chooses some value
with probability r;, send& and then executéb(z;). ThenA g,y = > 1iA7(s,)-

LetU be an ITM that upon input expects a messages {1,...,q} and then executes(x;).
(If U receives a message of different form, it assuined.) ThenAy ;) = conv | J; Ar(,)-

Proof. First, we show thal p(,) = > ; 7 Ap(y,)-

Letv € Ap(,). Then there exists an ITM such tha4, R(x)) = v. Let R; be the ITM
that behaves aB(x), except that it always chooses messagehen(A, R(x)) = > . ri(A, R;).
SinceR; behaves likél'(z;), except that it first sends a fixed message tove can construct an
ITM A’ from A that does not expect this first message but assumes ititcabe get(A, R;) =
<A,,T(£CZ')> S AT(%) Thusv € Zz TiAT(:z:i)- SOAR(:E) - Zz TiAT(mi)-
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Now, letv € 3, riAq(,,). Thenv = 3, rw® with o) € Ag(,,) and there are ITMs
A; such thatv® = (A;, T(x;)) for all i. Let A be the ITM that expects a messagend
then executes!;. Since each is chosen with probability; by R(z), we have(A, R(z)) =
Zi T <AZ,T($Z)> = v, SOV € AR(J:) ThUSAR(x) = Zi ’I“ZAT(%)

We proceed by showindy;(,) = conv {J; Ap(,)-

Letv € Ayy(,). Then there is an ITMA such that = (A4, U(x)). W.l.o.g., we assume that
the first message sent byis in {1,...,q}. Letr; be the probability that that first message is
i. Then(A,U(x)) = >, ri(A;, T(x;)) whereA; is the residual ITMA after sending. Then
v = (A, T(x;)) € Aqezy € Ui Ar(z;), SOV = ) riv® € conv |J; Ap(y,). It follows that
AU(:):) C conv Uz AT(:L%)

Now, letv € convJ; Ar,). Then we can decomposesuch thatv = 3=, rv(® with
Sri =17 > 0andvl® € convAg,,) = Az(,,). So there are ITMs4; such that?) =
(A;, T(x;)) for all 7. Let A be the ITM that chooses anc {1,..., ¢} with probability »; and
then executest;. Then (A, U(x)) = > 7i(A;, T(z;)) = v. SOv € Ay, It follows that
AU(x) = conv UZ AT(%) O

The reader may have noticed that Lemmé 44 does not give usotsbpity to construct
an adversary-polytop@ r that is the sumAp(;) + A, of two adversary-polytopes\ ()
and A2, but only a downscaled sur@(AT(l) + Ar(z))- This is to be expected since the
sum of two sets of probability distributions (consideregpamts inIR™) is not necessarily a set
of probability distributions. Therefore, we cannot ditgahap the recursive construction from
[[emma 43 into a recursive construction of a protocolnstead, we have to keep track of the
additional downscaling of the polytopes. Similarly, wehallso have to transform the occurring
polytopes so that they will be a subset of the set of all pridipakistributions.

To keep track of these scalings and translations we will ffaeearansformations that map
the unit cube iMR” into the set of probability distributions considered aslasstiofR"*!. Such
maps we call valid.

Definition 45 (Valid Affine Maps). An affine mapf : R®* — R"! is called valid if
f(0,1]") € {z € R* : 2 > 0,||z||y = 1} and if f(z) = Az + b for some rational
matrix A and rational vectoi.

We can now start to construct our protocol. First, we comstam ITM H that given a set
of points as input constructs a polytope with that vertiegstp transformation by a valid affine
map). Given this ITM we can then construct adversary-ppigsothat have few vertices.

Lemma 46. There exists a polynomial-time ITHM such that forn € N, a finite nonempty set
X € [0,1]" N Q" and a valid affine magf, we haveA y, x 5y = f(conv X). Upon input
(n, X, f), the ITMH has communication complexiffog # X |. The ITMH is function-like.

Proof. Let V be the ITM that upon input € Q™! with 3" v; = 1 andv; > 0 for all i chooses
avaluei € {1,...,n + 1} with probability v;. ThenV" sends: to the other ITM and outputs
Then(A, V (v)) = v for all valid inputsv and all ITMs A4, sOAy(,y = {v}.

The ITM H behaves as follows: Upon inpyt, X, f) satisfying the conditions given
in the statement of this lemma, it enumerat€s(in some deterministic fashion) such that
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{z1,...,x4x}. Then it expects a message= {1,...,z4x} and runsV(f(z;)). Sincef is
a valid affine map#(z;) is a valid input forV’. So bylLemma 44 we have

Afnx,f = CODVUAv(f(mZ.)) = conv{f(x1),..., f(zxx)} = f(conv X).

Since ani € {1,...,#X} can be encoded iflog #X | bits, H has communication com-
plexity [log #X]. Obviously,H is function-like and runs in polynomial time. O

We can now transform the recursion fY given bylLemma 43 into a construction of a
protocol that ha<”y"Y as an adversary-polytope (up to an affine transformatiom).tife base
case of the recursion we use the ITMfrom[Lemma 46 and the sums and unions are handled
using the constructions from Lemmal 44. The resulting adwgrpolytope is a downscaled ver-
sion of Cy"Y since we cannot directly construct sums, however, it wilydre downscaled by a
polynomial factor which turns out to be good enough for outppses.

Lemma 47. There exists a polynomial-time ITKI such that for alln € N, =z € {0,1}",
y € {0,1}"\ {0}", g € {0,..., ||z - |1} and all valid affine mapg : R* — R"*!, we have

— The communication complexity 6fupon input(n, z,y, g, f) is O((log n)?).
— The adversary-polytope 6f(n, z,y, g, f) is

Acnayg.f) = f()\(HyHl) : Cgm’y)-
where(y) := 2 leellyl],

Proof. We call an input tuplén, x, y, g, f) valid if it satisfies the conditions given in the lemma,
e, ifn e N,z € {0,1}",y € {0,1}"\ {0}", g € {0,..., ||z - y|l:} and f is a valid affine
map.

For [ly|l; > 2, defineh as follows: If {log[”%”lﬂ = {logt”%”lﬂ, let h := 1. Otherwise,

leth := 1.If fis avalid affine map, soig'(v) := f(hv).
We defineC recursively. Upon valid inputn, =, y, g, f) with ||y||; > 2, it behaves as fol-
lows:

— Let I be defined as in Lemmalk3. Note tas nonempty.

— First, C expects an € I from the adversary. If né € I is received,C' setsi := min [
otherwise.

— Then,C chooses a uniformly random lite {0, 1} and send$ to the adversary.

— If b =0, the ITM C execute<” (n, z,l(y), i, f) and otherwis&” (n, z, r(y),g9 — 4, ). (For
the functions and! sed Definition 4P.)

Upon valid input(n, z,y, g, f) with |ly|1 = 1, we computeV’ := V,;”¥ and execute the ITM
H(n,V, f) from[Cemmad4®. (Note that in this cagel/;"¥ < 2.)

Upon invalid input,C terminates with outpuit.

For the recursion to make sense, we first have to verify tr@tTMs C that are invoked
as subprograms are always invoked with valid input. In thisecofH this is straight-forward:
Vy7¥ € {0,1}™ andf is a valid map.
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To see thatC' is invoked with valid input, first consider the case= 0. In this case, we
have to verify that: € N, z € {0,1}", I(y) € {0,1}",4 € {0,...,]||z - y|1} and f is a valid
affine map. The conditions for, = and f are satisfied by assumption. Singg|; > 2, we have
I(y) € {0,1}™\ {0}" by definition ofl(y) and we have € {0,..., ||z - (y)|1} by definition
of I. In the casé = 1 the map/’ is valid as seen above and we hayg) € {0,1}" \ {0}" by
definition ofr(y) andg — i € {0, ..., ||z - r(y)|1} by definition ofI.

Note that the recursion terminates since figt|y > 2, |[I(y)]1, [|[*(y)l]1 < |ly||1. More-
over, sincel|ll(y)|l1, [|7(v)]l1 < [llyll1/2], the recursion has at most logarithmic depth (and no
branching takes place), so in particul@trjs polynomial-time.

We now examine the communication complexity @f In each round (with exception of
the last, where is invoked),C receives an element froth C {1,...,n} and sends a bi.
Therefore the communication complexity within one roun@idog ). In the last roundd is
invoked. Since#V,¥ < 2 in this case, the communication complexityffis O(1).

Since there ar®(log n) rounds, the overall communication complexitydg(log n)?).

Itis left to show thatA ¢, ..y,¢, 1) has the required form.

For||ly|ls = 1itis A(y) = 1. By construction off/, we then have

AC(n,a},y,g,f) = AH(n,ng’y,f) = f(CODV(VgaC’y)) = f(A(y) ’ Cg’y)'

Now consider the caspy; > 2. Itis [log|ly|l:] = [log[”yznlﬂ +1 = [log|li(y)]1] + 1.
ThusA(y) = 2A\(I(y)). Further, by definition of., we have
hoNoglr@)h — po~[tog 1] _ o= los[ M5 ] _ o-TogliwlnT — 5 (1(y)).

So summarising, we hav\(i(y)) = $hA(r(y)) = Ay).
Then, by induction we get

(%) 1 1
Acmayg.n) = conv | JEACmaim)if) T SACHr @ g—if))

) cony ZEI(%f()\(l(y)) . Cf’l(y)) + 3£ (hA(r(y)) - Cgfi(y)))
el

= cone (£ - 071 + i) - €771
i€

o (00 (€210 +6570)
S

=f ()\(y) - conv U (Cf’l(y) + iji(y))>

el
=) - CpY).

We used Lemma 44 fd), the induction hypothesis fgk+), andLemma 43 fo(sxx).
So for all valid inputs, we hav&.c.,, ., 0. 1) = f(A(y) - Cg"?). O
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Finally, since we can construét. from polytopes of the fornCy" (by [Definition 38 and
[emma 40), we can now construct an ITMthat hasP. as its adversary polytope (up to trans-
formation by a valid affine map). This ITMP is almost the protocok we want to construct,
except thatr takes an valid affine map as an additional argument.

Lemma 48. There exists a polynomial-time ITNP, such that for a set cover instance
(n,m, S,d) and a valid affine mag, the following holds:

— The communication complexity Bfupon input(n, m, S, d, f) is O((log n)* + log m).

— The adversary-polytope @f(n,m, S,d, f) is

Apmmsaf = F218" P+ )
an andy := me(1 — 2-M¢7hy andw := (1,...,1) € R™

Proof. Let C be the ITM fromi Lemma 47.
Upon input of a set cover instan¢e, m, S, d) and a valid affine mag, the ITM P behaves
as follows:

— Itchooses a randome {0, 1, ..., m} with the following distribution;j = 0 has probability

1 — me, and eacly # 0 has probability:.

— The valuej is sent to the adversary.
— If 7 =0, invokeC(n,u,u,d, f).
— If 7 > 0, invoke C(n, s;.,u, ||si.|[1 — 1, f") wheref’ is the affine map defined b/ (v) :=

f(u—v).

Sinced < n = |lu- u|, the ITM C is called with valid input in the cas¢ = 0. Since
|si.]li =1 < ||si. - ulj1, @and sincef’ is a valid affine map, the ITM' is always invoked with
valid input in the casg > 0.

SinceC is polynomial-time, so i”. The communication complexity @f is O((logn)?),
and sending the valug takes O(logm) bits, so the communication complexity d? is
O((logn)* + logm).

We now examine the adversary polytopeft, m, S, d, f). We have

wheree =

AP(ndef) (1_m€)AC(nuudf +ZACns, Ay |lsi-[1=1),f
1=1

(**) ogn uu ogn SiyU
(1 —me) f(2~Meenl . cp- +Zsf ~Hesnl. cre )

lls|
=1

= (1 —me)f(2-TeEn]. cpy +Zef “Mognl . et )
- 1 (00 me e 3t -qu:ﬁ@)

=f (2_“%"1 ((1 —me)Cy" + Y e(u— Gt )) +me(l — 2—“0g”1)u>

i=1
$f<2 logn] . p, +’y)
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Here(x) is an application dfLemma #4 ariex) of Lemma4y. The equalitysxx) follows from
Lemma 40 and Definition 38. 0

Using the tools given so far, we can finally give a constructbprotocolsr andp such that
strongly good adversaries correspond to witness for a set dastance. Thus finding a strongly
good adversary is equivalent to solving a set cover instaNote however that the protocol
7 constructed in the following theorem is not logarithmict B (log n)?). We will solve this
problem later by using shorter set cover instances.

Theorem 49. There exist a function < Q(ﬁ) and polynomial-time ITMs and p such that
the following holds for every set cover instariecem, S, d):

— The communication complexity of(n,m,S,d) is in O((logn)* + logm), that of
p(n,m,S,d)in O(logn). The ITMp is function-like.

— If (n,m, S,d) is a yes-instance, there is a stronghgood adversary forr(n,m, S, d) and
p(n,m,S,d).

— If (n,m,S,d) is a no-instance, there is no strongly good adversaryf@i, m, S, d) and
p(n,m,S,d).

Furthermore, given black-box access to a strongly good dwe for 7(n,m,S,d) and
p(n,m,S,d), we can compute a witness for the set cover instgmcen, S, d) in probabilis-
tic polynomial time and with overwhelming probability.

Proof. For avectow € R", let f,(v) := (2v,1-Y; 2v;) € R™™. Letu:= (1,...,1) e R"
andeym == g and&, , = % and )\, := 278"l and~y,, ., := men (1 — \y)u.
Then for a vecton € R”, letwy, ,(v) == (v 4+ u — Yy m).

Obviously, f,, is a valid affine map. To see thdf o w, ,, is a valid affine map, first note
that0 < me, ,» < 1and0 < A, <1 and thus) < ~, ,,, < u. Then forv € [0,1]", we have
%(v +u—Ypm) < %(v +u) <u and%(v +U—Ynm) > %v > 0. Thuswy, ([0, 1]™) C [0, 1]™
and thereforef,, o wy, ,,, is valid.

Let X :={ey,...,en, —e€1,...,—e,} Where the; are the unit vectors dR". Thenconv X

is the cross-polytope that is the unit ball|ofi1. Let B,, := (% — &,.) - conv X + Su. Let
X = Pha(§ = um) - X + Fu) + Ju

UsingX C [-1,1]", 2 — &, € [0, 2] and), € [0, 1], one verifies thaiX,, C [0, 1]".

The ITMs = and p are constructed as follows. Upon inplt, m, S, d), the ITM 7 runs
P(n,m,S,d, f, o wy,m). And for the same input, the ITM runsH (n, X,,, f5).

Since(n,m, S, d) is a set cover instance, arfg o w,, ,, is a valid affine mapp is called
with valid input. And sinceX,, C [0, 1]™ and f,, is a valid affine map, the ITM{ is also called
with valid input.

SinceP is polynomial time, so is. And sinceH is polynomial-time and#X,, € O(n), the
ITM pis also polynomial-time. SincB has communication complexity ((log )?+log m), S0
doesr. And sinceH has communication complexity (log #X,,) = O(log n) and is function-

like, so doew.
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We now determine the adversary-polytoper¢f, m, S, d). Itis

Aﬂ—(n7m7s7d) = AP(Tl7m7S,d7anwn m)
(%)
= fn Ownm()‘ Panm + Ynm)

where(x) is shown by Temma 48.
We now determine the adversary-polytopep@f, m, S, d). Itis

Ap(n7m7svd) = AH(n7X7L7f7L)
& fo(conv X,,)

where(x) follows from[Lemma 46.

We will now show that if(n, m, S, d) is a yes-instance, there is a strongtgood adversary.
Sincee,, , = ﬁ by [Cemma 3P the polytop&., . is ane-set cover polytope. Thus, by
Lemma 37, it isHPgn,m — dull; = %. Since|| B, — $ull1 = % — &, there exists a vector
v € P. . — iusuch tha'[dl(v, —su) > fnm Then forv’ := M, (v + 1u) + Su, we
havev' € A, P, .. + uanddl( . 3 A By + L) > 20,6, . For any two vectors,, vy, it is
d1(fn(va), fn(vb)) > dl( Va, Tvp) = 1d1(va,vb) So forv” := f,,(v") we have

N|—

En,m

>\n n,m

v € Aw(n,m,S,d) and dy (’U/, Ap(n,m,S,d)) > 25717 :
Sincev’ € Ar(nm,s.4), there exists an adversary such that(4, 7(n,m, S,d)) = v'. Fur-
ther, for any simulatorS' we have(S, p(n,m, S,d)) € A, m,s.q) and therefore the statis-
tical distance betweenA, w(n,m,S,d)) and (S, p(n,m,S,d)) is bounded from below by
sdi((A,m(n,m, S,d)), (S, p(n,m,S,d))) > ’\”EZ"” = §(n,m). SOA iS a stronglyd(n, m)-
good adversary forr(n,m,S,d) and p(n,m, S, d). Sincee, , € Q( —) we havef, ,, €
2(=-). Further,\, € 2(1). Sod € 2(=5-).

Now we prove that given black box access to a strongly goodradwy A, we can efficiently
compute a witness fofn, m, S, d). Letvy € R™! be the distribution of A, 7(n,m, S, d)).
SinceA is strongly good, itisa € A, m.5.d) \ Apn,m,s,q)- SiNCEV 4 is a probability distribu-
tion, £, }(va) exists. Then

7}14 = %n(frjl(vA) - %U,) B %U, € (Pen,m - %U,) \ (Bn - %u)

SinceB,, — su={v € R": ||v|j1 < (£ — &um)}, We havel|v/y[l1 > 2 — &y .

Given black box access tal, we can efficiently sampl€A, 7(n,m,S,d)). Then by
, We can estimate a probability distribution € R™*! such that with probability
at Ieast§ we haved; (04,v4) < 52&, m. (Note for this tha%gn m IS notlceabIeB

— 2n
3 Strictly speaking, the formulation Bf Lemmal 22 only guaesstthat random variables of logarithmic length can be
sampled if they are efficiently constructible, but does e the case when the random variables are efficiently
constructible using an oracle (in this cage However, it is easy to see that the proofof Lemmia 22 resss/and
therefore also applies to the present situation.
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Sinced, is a probability distribution f, ! (v4) is defined. Then leby := = (f, (74) —
1

$u) — Lu. For any two vectors,, vy it is di (f,,(va), fn(vp)) > di(Eve, tvp) = Ldi(va, v).
Thusd: (f; 1 (va), £ (04)) < ndi(va,©a) < 22&, m. Therefore we havé (v/y,v4) < &nm.

3

Since [v[li > § — &um we have|[t)|i > § — 26, = § — ;375. Since further
di(Vy, Pr,,.) < di(0y,v) < Eum < zg—fl and sinceP., , is ane-set cover polytope, by

[Cemma 37 we can efficiently compute a witness form, S, d) from ¢,. So given black-box
access tod we can compute a witness with probability at IeésSince set cover is in NP, we
can efficiently verify the solution and therefore amplifg thuccess probability by repetition.

It is left to show that if(n, m, S, d) is a no-instance, there is no strongly good adversary for
7w and p. Assume there was a strongly good adversdryThen we can efficiently compute a
witness using black-box accessAoln particular, such a witness exists. This is a contraaficti
to the assumption thdt, m, S, d) is a no-instance. O

is formulated in terms of strongly good adveesatiowever, to derive results
about stand-alone security, we need to consider good adiessFortunately, for the protocols
7 andp given in[Theorem 49, these notions coincide as the follodengma shows.

Lemma 50. Letr andp be ITMs. Assume that in an interaction with an I'Byithe ITMp sends
its output toS at some point. Thed is a good adversary fofr, p) if and only if it is a strongly
good adversary fofr, p).

Moreover, the ITMp from[Theorem 49 satisfies the above condition.

Proof. Since a strongly good adversary is always a good adversargnly have to show that a
good adversary fofr, p) is a strongly good adversary fér, p).

Assume therefore that is nota strongly good adversary. Then,[by Definifion 34 there gxist
an ITM S such that(A, 7) and (S, p) have the same distribution. Define the random variables
X andO by (X,0) := (A, ), i.e., X denotes the output of the ITM andO the output of
the ITM «. For a stringo, let u, be the distribution ofX under the condition thad = o. We
construct an ITMS’ as follows: First,S’ executesS. By assumption, in an interaction between
S’ andp, the ITM p sends the output it is going to give . We can therefore assume th#t
knows the outpub of p when the interaction between the simulatedndp has finished. Then
S’ chooses a string according to the distribution,, and output. SinceS’ differs from.S only
in its output, the distributions afA, =) and(S’, p) are identical. And therefore by construction
of p, it follows that (A, 7)) and((S’, p)), too. Therefored is nota good adversary fdrr, p). It
follows that any good adversary fér, p) is also strongly good.

The ITM p as constructed in the proof 49 always sends imibta S (sincep
invokes the ITMH from[Lemma 46 which sends its output by construction). Sacthwlitions
of this lemma are fulfilled for the ITM from[Theorem 49. O

Finally, we can deduce froin_Theoreml| 49 that finding good adr@s is hard (given a
realistic complexity assumption).

Corollary 51. If NP ¢ BPTIME (n©(°m), the following holds for alk > 0:

There is no efficient probabilistic algorithm that finds a doadversary for a pair of
polynomial-time algorithms with logarithmic communicaticomplexity, even when they are
guaranteed to have a stronghf-good adversary.
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Proof. Assume thaNP ¢ BPTIME(k©(°2%)) and that we can efficiently find good adversaries
under the conditions specified in the corollary.

Since set cover is NP-hard add® ¢ BPTIME(kC(°gk)) we also have that set cover is
not in BPTIME(k?(°ek)) (To see this note that for any polynomialit is p(k)©Uogr(k) C
k©OUogk) ) Then for any functionf € 22(VIeF) set cover with instances of size at most
f(k) is hard for probabilistic algorithms running in polynomitéine in k. Let 6(n,m) be
as in[Theorem 49. W.l.o.g., we can assumdo be monotonous. (Simply replace by
§'(n,m) = min(y < (nm) 6(n,m’) € 2(=-).) Sinced(n,m) € (=), there is a func-
tion f e 20(V18k) gych thats(f(k), f(k)) > k. Then by Theorem 49 we can convert any
set cover instancén, m, S, d) of size at mostf (k) (in particular,n,m < f(k)) into a pair of
protocolst andp with the following properties: The protocols run in polyniafrtime and their
communication complexity is bounded @((log f(k))?) = O(log k). Furthermore, they are
guaranteed to have a strondlfn, m)-good adversary. And given a strongly good adversary (as
a black-box) we can efficiently compute a witness (form, S, d). Sinced(n, m) > k, by as-
sumption we can find a good adversary in probabilistic patyiabtime ink. By[Lemma50, this
adversary is then also strongly good. So summarising, focaesr instances of length at most
f(k) we can find witnesses in probabilistic polynomial timekirSincef € 20(V1ogk) this is a
contradiction to the fact that set cover with instances z# sit mostf is hard.

So our assumption is disproved. O

Although this hardness result is interesting in its owntjgldoes not yet show that there are
computationally secure protocols that are not statidficacure. The first problem is that a pro-
tocol that has no good adversaries is not necessarily sdétaray be that there are adversaries
that necessitate superpolynomial-time simulators. Thablpm will be solved by showing that
(at least for the protocols and p we constructed in the reduction) we can always efficiently
compute a simulator. The second problem is that althoughighttbe infeasible to compute
a good adversary for a given protocol, it might still be pbkesithat thereexistsan adversary
that is good for all security parametégtsThis we solve by using a stronger assumption which
roughly states that there are efficiently computable sempgenf NP-instances that are hard for
polynomial-time machines. Then we can define a protocolfthatach security parameter uses
another such instance.

D.2 Separation of Computational and Statistical Security Vithout Auxiliary Input

In the preceding section we showed that finding a good adweishard. However, a good (and
polynomial-time) adversary might still exist. To show tleamputational and statistical security
fall apart (in the case without auxiliary input), we need ddidonal assumption:

Assumption 52. There exists an sequengg of Boolean formulas computable in deterministic
polynomial time that has the following two properties:

— Infinitely manyf;, are satisfiable.
— For any probabilistic Turing machined that runs in n°{°8")-time, the probability
Pr[fi(A(1%)) = 1] is negligible ink.

41



Although rarely written in this general form, Assumption] B2a common assumption
in cryptography. For example, a collision-resistant fgm{iHy }.cn of hash functions that is

collision-resistant against uniform quasi-polynomiat¢ adversaries impli¢s Assumption 52.

In the lemmas in this section, we will tacitly assume Assuarpb32.

Given a sequence of hard instances a§ in Assumptipn 52, we@anconstruct proto-
cols © and p that encode these hard instances as in Theorém 49. Notehthabhstruction
of gives protocols with communication compiexit((logn)?) wheren is the
length of the NP-instance, so we have to use sufficientlytshetances to get protocols with
logarithmic communication complexity.

Definition 53. Letw andp be the ITMs froth Theorem 49. LAt be as irf Assumption 52. L&t
be a withess-preserving reduction from SAT to set coven Ti& and g be the following ITMs:
Upon inputl®, # and 5 run 7 and p, respectively, with inpuR(f[w@1 )

For the remainder of this sectiofi,andp denote the ITMs frorh Definition 53.

The following lemma states thatandp are indeed suitable protocols for a separating exam-
ple between computational and statistical stand-alonerisgdn the case of logarithmic com-
munication complexity.

Lemma 54. The ITMs7 and 5 run in polynomial-time and have logarithmic communication
complexity. The ITM is function-like.

Proof. By [Theorem 4D, the runtime of and p with input R(fpmﬂ is polynomial in the
length ofR(fmm]). This again is polynomial ifi2v'°&*] which is sublinear. So the runtime
of 7 andp is polynomial ink.

Let(n,m,S,d) := R(fmm] ). By[Theorem 49, the communication complexityroéndp
with input R(f 10557 is in O((log n)* +log m) = O((log[2V'¢¥7)?) = O(log k). Therefore
the communication complexity af andp is logarithmic ink.

Sincep is function-like by Theorem 49, so j5 O

First we show thaf is not as secure aswith respect to statistical stand-alone security.

Lemma 55. The ITM7 is not as secure as the IT with respect to statistical stand-alone
security without auxiliary input.

Proof. For a givenk € N, let x; := 1 if f; is satisfiable, andy; := 0 otherwise. Let
(n,m,S,d) = R(fpmﬂ- Assume thaty, = 1. Then(n,m,S,d) is a yes-instance of

set cover. Then, by Theorem]49, there is a strongbood adversaryd for = (n,m, S, d)
and p(n,m, S,d) with § € 2(=L-). Sincen andm are polynomial in[2V°¢*], we have
§ € 270WIek) C (1),

Let A be the ITM that upon input® with y, = 1 executesd;. For x;, = 0 let A;, behave
arbitrarily. ThenA(1%) is a stronglyyd-good adversary fof (1) and 5(1%). Sincey; = 1
holds infinitely often and < Q(%), we have thajk . is not negligible, so for every simulatér
we have that A, 7(1%)) and (S, p(1¥)) are statistically distinguishable. Then akéd, 7 (1%)))

and((S, p(1%))) are statistically distinguishable.
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Thereforer is not as secure gs with respect to statistical stand-alone security without
auxiliary input. O

First we want to show that is as secure ag with respect to computational stand-alone
security. By Theorem 49 we will get that a polynomial-timeveiary cannot be a strongly good
adversary. This implies that there is a simulator for thigeaslary. However, we do not know
that this simulator is also polynomial-time. The followitegnma guarantees that this is at least
the case for the protocofsandg constructed above.

Lemma 56. There is a probabilistic polynomial-time oracle ITH such that for every oracle
ITM A and everyk € N, the following holds: IfA is not a strongly good adversary far(1%)
andp(1%), then((A, 7(1%))) and (S4(1%), 5(1¥))) have the same distribution.

Proof. SincesS can fix the random tape of, we can w.l.0.g. consider only deterministic ITMs
A.

Sincew has logarithmic communication complexity, there are onlyofynomial number
of communication traces possible betwe¢rand 7 (1*) and a polynomial number of possible
outputs of7. We call C' the set of these traces and the set of outgt®y construction of
7, O = {1,...,n} for somen. For each(c,0) € C x O, the ITM S can efficiently compute
the probability P, , that the communication and outputo occur in an interaction betweef
and7 (k). (Note that this does not holds in general, since some oéthesbabilities might be
efficiently constructible, but not efficiently computabléowever, the reader may verify that for
the protocolr as constructed here, and using the fact that deterministic, it is indeed possible
to efficiently computeF. ,.) In particular, P., € Q. Furthermore, for each communication
c € C, leta, be the output ofd after communication.

Thenv, := Y .~ P., is the probability that A, 7 (k)) = o. Thenv := (v1,...,v,) € Q™.
Since A is not strongly goody € A ;). We remember the construction @{see in particular
[Lemma 46): The ITMp (or, more concretely, the ITMH simulated byp) expects a single
messageg of logarithmic length fromS. Let J be the set of these possible messages. Then, for
each;j € J there is a probability distributiom) such that upon messagethe ITM / gives
output: with probability vgj). Therefore the adversary-polytope @) has the formA ;) =
conv{v) : j € J}. Note thatS can efficiently compute at?).

Sow € conv{v) : j € J}. Therefore there is a convex combinatior- >~ , rjv") with
Zj r; = L andr; > 0. Since#J is polynomial ink, andv andv?) are efficiently computable,
we can efficiently compute the value]sB

Let S choose messagewith probabilityr;. Then(S4(1%), 5(1%)) = v. So(S4(1%), 5(1%))
andv = (A, 7(1%)) have the same distribution.

To be able to investigat¢S4 (1), 5(1%))), we have to specify the output 6f Sincea, and
P.,force C, o€ O are known taS, it can efficiently compute the distribution ¢fA, 7 (1%))).
(Itis Pr[((A,7#(1%)) = (a,0)] = X .ccd(ac = a)P., whered(a, = a) = 1if and only if

4 Finding the convex combination can be recast into a lineagi@amming problem: Find a vectdr:, ..., r4x)
satisfying the linear equalities and inequalities= 3", rjvl?” forall4, >, r; = 1, andr; > 0 for all
j € J. Since these are polynomially many equations with rati@oalfficients, we can efficiently compute an
exact solution using the ellipsoid method (see €.0.. [Gl,. S8&orem (6.4.9)]).
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a. = a and0 otherwise.) Since(1*) sends its output t& (cf. in particular the construction
of H from[Lemma 46), we can assume tifaknows the output’ of p(1%). ThereforeS can
compute the distribution ofa, o) = (A, 7(1%))) under the conditiom = o’. ThenS chooses:
according to that distribution and outputsSince(S4 (1%), 5(1%)) and(A, 7(1*)) have the same
distribution, it follows that the distributions dfS“(1%), 5(1%))) and (A4, #(1¥))) are identical,
too. O

Using this lemma we can now show thats indeed as secure awith respect to computa-
tional stand-alone security.

Lemma57. The ITM7 is as secure as the ITM with respect to computational stand-alone
security without auxiliary input.

Proof. Assume for contradiction thatis not as secure gswith respect to computational stand-
alone security without auxiliary input. Then there existgrababilistic polynomial-time ITM
A such that for every polynomial-time ITM the following distributions are computationally
distinguishable

{(AQ"),7(1F)) and (S(1F), p(15)). (14)
Let K be the set of allk € N such thatA(1*) is strongly good forr(1¥) and p(1%). By
there is a polynomial-time probabilistic oracl®ITS such that{(A(1%), 7 (1))
and (A" (1%), 5(1%))) have the same distribution for all ¢ K. Since A(1%) runs in
probabilistic polynomial timeS4(*)(1%) does, too. So ifK is finite, (A(1%),#(1%))) and
(SAGH) (1K), 5(1%))) are computationally indistinguishable in contradiction{4). Therefore
K is infinite.

By[Theorem 4D, for alk € K, given black-box access #(1*) we can compute a witness
for R(f(wmﬂ in probabilistic polynomial time ik. SinceR is a witness-preserving reduction,
from w we can efficiently compute a witness (i.e., a satisfyinggsaient) forfmm . By
outputting that witness, we can construct a probabilistilypomial-time algorithmB witL the
property that fork € K, the probabilityPr[fr, e (B(1%)) = 1] is at least.

Forn € N, letK,, :== {k € N : [2V™°gk] = p}. Let C be the following Turing machine:
Upon input1®, for eachk € K, it invokes B(1*) (it may invoke no instance aB if K,, = @).
If one of these instances returns a witnessfjpthe machine’' outputs that witness.

Since fork > nlos™ itis [2VI5F] > p all k € K, satisfyk < nl°2™ and in particular,
#K, <nl°" SoC(1") has running time impoly(n'°¢™) = nOUosn),

Fork € K andn := [2V1°8%] the Turing machin&’(1") calls B(1*) and thus gets a
witness forfﬂml = f, with probability at Ieast%. Since K is infinite, this happens for
infinitely manyn. So the probabilityPr[f,,(C'(1")) = 1] is at Ieast% for infinitely manyn. This
is a contradiction tp Assumption 52. So our assumptionzhiainot as secure gsis wrong. [

Combining the results from this section, we get the segaraif computational and statisti-
cal stand-alone security without auxiliary input.

Theorem 58 (Computational Does Not Imply Statistical Seclty Stand-Alone Security

Without Auxiliary Input). If Assumption 52 holds, computational stand-alone seguwvith-
out auxiliary input does not imply statistical stand-alosecurity without auxiliary input for
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polynomial-time protocols with logarithmic communicatiocomplexity, even if the ideal proto-
col is a function (i.e., a function-like ITM).

Proof. Immediate from Lemmds b, 57 and 55. O

Because dfLemma’6, analogous theorems hold for black4mxisy and if we require the
simulator to be efficient even in the statistical case.

One might ask whether this result also holds in the case withiary input. Here we have to
distinguish two cases, nonuniform and uniform auxiliaqguit[Definition 31 defines stand-alone
security with nonuniform auxiliary input. In contrast, torim auxiliary input in the sense of
[Gal93] means that protocol-inputs and auxiliary input@resen by a probabilistic polynomial-
time machine. This allows to model additional informatidwe tadversary might have on the
protocol-inputs and still enables sequential compositidhout introducing nonuniform com-
plexity assumptions. If the protocols take no inputs (asiésdase witht and ), stand-alone
security with uniform auxiliary input and stand-alone s#guwithout auxiliary input coincide
since the adversary may choose the auxiliary input him§btreforé Theorem 58 also applies in
the case of stand-alone security withiformauxiliary input. In the case afonuniformauxiliary
input however, our approach does not work, since we would meeariant of Assumption $2
that holds against nonuniform adversaries, which of coigsmpossible. In fact, in the next
section we will show thaf Theorem158 does not holds in the @agenonuniform auxiliary
input.

D.3 The Stand-Alone Model With Auxiliary Input

We will now show that with nonuniform auxiliary input, comgational security implies statisti-
cal security in the case of protocols with logarithmic conmication complexity. This is done
by showing that in this case any adversary’s strategy camd&x@ded into an auxiliary input. The
following lemma formalises this fact.

Lemma 59. Let X and A be ITMs. Assume thaX has communication complexity(log k)
upon input(1¥, z). Then there is a polynomial-time ITM,,,;, and a functionf with | f(k, z)| €
k9 such that for all sequencesand z of strings, the distributiong(A(1%, z,), X (1%, 1))
and ((Apory (1%, £ (K, 21)), X (1%, z1,))) are statistically indistinguishable ih.

msg

Proof. Fork € N, a stringz and a sequenceof inputs and outputs ofl, IetpA,W(c, m) denote
the probability thatd (1%, ) sends message under the condition that its communication up to
that point was.. Similarly, Ietpiff}g’z(c, 0) denote the probability that (1%, z) terminates with
outputo under the condition that its communication up to that poiasw If these probabilities
are undefined (because the communicatioannot occur with (1%, 2)), we setpz“kg’ J(e,m) =
0 or p%% (¢, 0) := 0, respectively. 7

Let Ay, . be the ITM that after communication sendsn with probability p’y’/ (c,m) and
outputso with probabilitypﬁfj,i,z(c, o). (If these probabilities do not add g with the remain-
ing probability A . terminates with a fixed output.) Obviously, (A(1%,z), X (1*, z))) and
(Ag., X (1%, z))) have identical distributions for all strings
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Fora > 0andr € R, let|r], := a| =], i.e.,|r], denotes rounded down to a multiple of

~Msg msg ~out out

Letpy . (c,m) == [py, (c,m)]o—x @ndpl? . (c,0) == [p%" .(c,0)|o-+.

&MSg

Let A, . be defined analogously td, ., except that the probabilitiegy’;’ . (c,m) and
P9k (c,0) are used. Ther( Ay ., X (1%, 2))) and (A ., X (1¥,z))) are statistically indistin-
guishable ink. Since A(1¥, z) has logarithmic communication complexity i and since the
images ofp’y% (c,m) and %"} .(c,0) can be represented usirgbit, there is a representa-
tion of ﬁ;?f,fz’andﬁ%j,iz whose length is polynomial ik. Let f(k, z;) be that representation.
Given f(k, zx), we can simulateflk,z in polynomial time ink. Let then A, be the polyno-
mial time ITM that upon inpu{1*, f(k, z)) simulatesflk,z. Then for all sequences andz of
strings, ((A(1%, z), X (1%, z4)) and (Apory (1%, f (K, 2x)), X (1%, z))) are statistically indistin-
guishable ink. a

Since any adversary can be encoded into the auxiliary infpupolynomially-bounded one,
it is not hard to show the following theorem which states tw@nhputational implies statistical
stand-alone security with nonuniform auxiliary input ittase of logarithmic protocols.

Theorem 60 (Computational Implies Statistical Stand-Alore Security With Nonuniform
Auxiliary Input). Letn andp be polynomial-time ITMs. Assume that the communication- com
plexity and the length of the output efand p on input(1*, 2) is logarithmic ink. If = is as
secure a with respect to computational stand-alone security witkilgary input, thenr is as
secure ap with respect to statistical stand-alone security with #iaxy input.

Proof. Assume thair is not as secure aswith respect to statistical security with auxiliary input.
Then there exist an ITML such that for every ITMS there are sequences andz® of strings
polynomial length such that

(AR, 20), m(1%,20)) # (SAF,20). p(1%,27))) (15)

where~ denotes statistical indistinguishability in Without loss of generality, we can assume
that the communication complexity &f is logarithmic ink (sincer has logarithmic communi-
cation complexity, too) and that the output4fs its view (and thus in particular has logarithmic
length ink, too). Letb(k) be an efficiently computable upper bound on the length of thput
of A.

By [Lemma 59 there exists a polynomial-time ITN},, and a functionf with | f(k, z)| €
k9™ such that for every ITNVS, we have

(AQR, 20), X (15 20)) = (Apaty (17, f (K, 2)), X (1%, 27))).

From Ay, we construct an ITMA? | that upon input(1¥, z) runs A, but truncates the
output to lengthb(k). Sinceb(k) is an upper bound on the length of the outputiofve have for
all ITMs S:

(A%, 20), X (%, 20)) ~ (Apay (17, f(k, 2)), X (1%, 270)). (16)

poly
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To finish the proof, we have to show that for any polynomialdilTM S, there are se-
quencesz® and &° of strings of polynomial length such that the families oftdisitions
realg = {<<Agoly(1k’215)>7T(1k’jk)>>}k721§,;@k andideals := {((S(lk,2,*5),,0(1k,53k)>>}k72]§@k
arenot computationally indistinguishable. Sinaﬁ%Oly has output of logarithmic length i, we
can assume w.l.0.g. thathas output of logarithmic length ik, too.

We define the (not necessarily polynomial-time) IT¥Iwhich upon input(1¥, z) invokes
S(1*, f(k, z)). Then by [I6) and[(15) and witly’ := f(k, 27 ) andiy, := x4, we have

(Abory (1%, 20), m(1F,81)) % (515,20, p(1F i) = (S(UF, 20), (1%, 24)))-

In other words, the families of distributionsals andideals arenot statistically indistinguish-
able. Since4§;oly, S, m andp are polynomial-time ITMs, and have output of logarithmiodéh

in &, by[Theorem 23 the familiegeal and ideal are not computationally indistinguishable, ei-
ther. O

E Advantage-Based Security — Details and Proofs

Definition 61 (Advantage-Based Security)Let B be an ITM andy a function. We say that
B is vy-secure with respect to computational advantage-basedityewith auxiliary inputif for
every polynomial-time ITMA and for all sequences and z of strings of polynomial length,
there is a negligible functiop such thatPr[(A(1%, 2 ), B(1¥, z1)) = 1] < v(k) 4 u(k) for all
k € N.

We speak of statistical advantage-based security if theebolds with unbounded.

We speak of advantage-based security without auxiliantiiipd does not get the additional
input 2 (i.e., the distribution{ A(1%), B(1*, 2;,)) is considered).

Definition 62 (Game of a Protocol).Let B be an ITM. ThegameG,ffn of B, k,n is the follow-
ing one-player game:

— First, player 1 may choose a stringwith |z| < log n.

— Then, the game consists of the interactieh B(1%, x)), where player 1 learns all messages
that A receives, and may choose all message thaends.

— The payoff of the game isif B outputsl, and0 otherwise.

If B(1*, ) has logarithmic communication complexity int- |z, the game—treé‘ﬁn has poly-
nomial size ink + n (note that we do not claim that the representatiotjlﬁtZ and in particular
the probability distributions therein have polynomialesigince these distributions may contain
irrational numbers).

Definition 63 (Distance of games)Let G; and G5 be two games in extensive form of the same
structure (i.e.G; and G5, differ only in their transition probabilities).

For a pathp, by G1 (p) we denote the product of the probabilities associated \kighchance-
edges on the path.

Then the distanc€(G1, G2) is defined asnax,|G1(p) — G2(p)| wherep ranges over all
paths inG; connecting the root and a leaf.
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Lemma 64. Let G; and G, be n-player games in extensive form of the same structure. Let
H;(u,...,u,) denote the expected payoff of player 1 for gakhef the strategieguy, .. ., un
are pIaye#

Assume thatH; takes values in[—1,1]. For mixed strategiesuy,...,y,, it IS
[Hi(ps s pm) — Hao(ps - pn)| < #G1 - d(Gh, Go).

Proof. For pure strategies, ..., o, we haveH;(o1,...,0,) = > s G'(p)H(p). HereS is
the set of all paths that are not ruled out by the strategies. ., 0, and H(p) denotes the
payoff H (v) of the leafv of pathp. SinceG; andG» have the same structuré(p) and.S do
not depend orn. Then

|Hi(01,. ., 00) = Ha(o1,...,00)| < D [H(P)(Gi(p) — G2(p))]
peS

< #S-d(Gy,Go) < #G1 - d(G1,Ga).

For mixed strategieg, . . . , u, We then have

‘Hl(,ul, ce ,Mn) - HQ(Ml,. .. a/‘n)‘ = ‘E,u[Hl(O'lw .o ,O'n) - HQ(O’l, ce ,O'n)H
< E,u“Hl(Ulw . 7O'n) - HQ(O’l, ce ,O'n)” < #G . d(Gl,GQ).

HereE,[X] denotes the expectation value ¥fif o, ..., 0, are chosen independently accord-
ing to the distributionguy, . . . , . O

Lemma 65. There is a deterministic polynomial-time ITM“ such that the following holds:
Letn,k € N. Let B be an ITM and IeG,ffn be the game oB, k,n. LetG be a game with the

same structure a&? . Then

max Pr[(A%(G),B(1*,z)) =1]> max Pr[(4,B(1*,z)) =1]-2#GP .d(G,GB,)
|z|<logn A, |z|<logn ’ ’
where the maxima go over stringsof length|z| < logn and over (possibly unbounded) ITMs
A, andGﬁn is given in extensive form.

Proof. In [KM92] Section 3.3] it is shown that for a one-player gaGiavith perfect recall in
extensive form, one can compute a pure strategydeterministic polynomial time, such that
is optimal in the following sense: For every mixed strategye haveH (o) > H(u). Here H
denotes the payoff function f.

SinceG,ﬁn has perfect recall by construction, the gafhbas perfect recall, too. Then laf
be the ITM that upon inpuff computes an optimal pure strategyor G. Theo then prescribes
the choice of a string,, with |z, | < logn and how to interact witlB. ThenA® simply interacts
with B as prescribed by the strategyand ignores the choice of,). Then, by definition oGﬁ K
we have

Pr[(AG(é),B(lk,mJ» = 1] = H,fn(a)

5 AlthoughG1 andG- have the same payoffs at corresponding leafs, their payofitions may differ anyway since
the payoff functions denote the expected payoff which ckamigen the transition probabilities change.
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whereH is the payoff function of32 .
Let an ITM A and a stringe 4 with |z| 4 < log n be given. Letu be the mixed strategy that
choosest := x 4 as input forB and prescribes to send the messageagould send. Then

Pr[(4, B(1F,24)) = 1] = HP, ().

By using the fact that is an optimal strategy foff and applying Lemma 64 twice, we get

HP,(0) > H(o) — #G7 .- d(G,G},)
> H(p) — #G, - d(G,GR,)
> HE,(n) — 24#GE . - d(G,GP,). (17)

whereH is the payoff function of3. So for all ITMs A and all stringse of length|z 4| < logn,
we have

na Pr[(A%(G), B(1*,2)) = 1] > Pr[(A%(G), B(1", 2,)) = 1]
z|<logn

From this, the lemma follows. 0

Definition 66 (Efficiently playable games).Let {G, , } nen be a family ofm-player games
in extensive form. We ca{lG}, , } nen €fficiently playable if the following two conditions hold:

— There is a deterministic polynomial time algorithm whicloopnput(1*, 1*) computes the
extensive form o7, ,, excluding the probabilities at the chance nodes (i.e., welgegame-
tree without transition probabilities, the informationtsend the value of the payoff function
on the leafs of the game tree).

— There is a probabilistic polynomial time algorithrR with the following property. Let
o1,...,0m,m be pure strategies for playets . .., m. For a pathp from the root ofGy, ,, to a
leaf of Gy, ,,, let P be the probability that this path is played given the strasg, ..., 0y,.
Then upon input1*, 1", o1, . .., 0,,) the algorithmR outputs the patlp with probability P.

Lemma 67 (Estimating game trees)Assume tha{Gy ., } is an efficiently playable family of
games.

Then there is a probabilistic polynomial-time algorithfhsuch that for every superpoly-
nomial functionf there is a negligible functiold such that the following holds: Upon input
(1%,17,17(k), the algorithmT outputs a game tre€' that has the same structure 65, ,,, and
with probability at leastl — §(k), itis d(G, Gy.n) < 8(k).

Proof. Upon input(1*, 17, 17) for somek, n, f € N, the algorithmT” proceeds as follows:

— SinceGy, , is efficiently playable, we can compute the extensive fornizpf, with excep-
tion of the probabilities at the chance nodes. To get a cametensive form, we have to
estimate the probability distributions on the outgoingesdgf each change node
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— For each chance nodg let (o4, ..., 0,,) be pure strategies not ruling out By X, ,, ,, we

denote the following distribution: In a play 6f;, ,, with pure strategieso, ..., 0.,), if vis
reached, leX;, ,, , denote the node reached immediately aftesnd ifv is not reached, let
Xk,”ﬂ) = 1.

— Since Gy, ,, is efficiently playable, there are at most polynomially-marodes ink + n
(otherwise the extensive form 6f;, ,, could not be computed in polynomial time). Therefore
a node ofG}, ,, can be represented using logarithmic length, so we candansi, , , to
be a random variable with logarithmic length%n- n + |v|. Then bylLemma 22, there is
a probabilistic polynomial-time algorithifix such that upon inputl*, 1, v, 1/) it outputs
the description of a probability distributioR such that with probability at leagt— % we
haveA(X; X) < 1.

— For each chance node, we therefore callSx(1%,17,v,1/) to get an estimatef(k,w

of X; ... Then we annotate each edge framto a successor’ with the probability

%. If Pr[Xk,n,v # 1] = 0, we assign an arbitrary probability distribution to
T Ak n,v

the outgoing edges of. .
— Let GG be the resulting game and outpit

Since for each chance nodethe probabilitiesw sum tol, the outputG of algorithm

Pr[X: n#L]
T always is a game.
Let now f be a superpolynomial function ifx|. Assume thatl" is called with inputs
(1%, 17, 17(%)), We will show that the estimaté output bySg(z, 1/(#D) has with overwhelming
probability negligible distance fro,. Letk,n € N be fixed. By Lemm&322, for each chance

nodev, with probability1 — ﬁk) we haveA( Xy o5 Xgnw) < % Therefore, with probability
#G

k,n
at leastl — T we have

- 1 .
A( X s X)) < % for all chance nodes in G. (18)

In the following, we assume thaf (|18) holds.
Fix some pathp in G, from root to leaf. We will show that|G} ,(p)

G(p)| < 4#Gy.n+\/1/f(k), and since this holds for all paths it follows d(Gy.,,G)

4#Gk,n V 1/f(k)
Let [ denote the length of the path(i.e., the number of edges on the path). For ary! let

R Pr[Xk,n,pi:pi‘Fl] i ;. HP o Pr[Xk,n,pi:pi+1]
Q; Pl AL . Herep; is thei-th node on the path. Similarly, letQ; := P 1]

By definition of X}, ,, ,, we havePr[ X}, ,, .., = pi]| = Pr[ Xy p, # L] @andPr[X}, ,, 0 # L] =
1, so thatR; := Q1---Qi—1 = Pr[Xj ., = pi]. In particular,@y - -- Q; = G(p). Further,
Q1 --- Q; = G(p) by construction of7.

We show thatR;|Q; — Q;| < 4/1/f(k). If R; < \/1/f(k), this follows directly from the
fact thatQ;, Q; € [0, 1]. On the other hand, i; > +/1/f(k), by (I8) there arg., v € R with
|p|, |v] < 1/f(k) such that we have wit®; := Pr[ X, ,, ,, = piy1] < 1

<

P P+
Ri RZ‘+I/

vP — pR;
Ri—V

SET RO AW s

71D p.
Q@ = RO O R
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In (x) we used that w.l.o.g. we can assufifé) > 4.
Since Q; < 1 for all 4, from R;|Q; — Qi < 4/1/f(k) it follows that

Q1+ Qim1QiQi1 -+ Q1 — Q1+ Qim1QiQiy1 - -~ Q] < 44/1/f(k) and therefore
|Grn(p) — G(p)| = Q1 Qu— Q1+ Qi <41/ (k) < A#GC /1 — f(k).

Since this holds for alp, we haved(Gj G) < 4#G, n\/1/ f(E) (under the assumption made
above that[(18) holds). Summarizing, for anyn with probability at leasi — #fc(;’“jn we have

d(Grn, G) < 4Gy n\/T/F (). By settingd := 4#G.,/1/](k) < 272 the lemma fol-
lows. a

Lemma 68. Let B be a polynomial-time ITM with logarithmic communicationngalexity in
the length of its input.

There is a polynomial-time ITMI” such that for every superpolynomial functignand
every polynomial function there is a negligible functiop, such that

max Pr[(AT (1% 1"®) 1/®)) B(1*, =1 max  Pr[(A, B(1¥,z)) = 1]—pu(k).
e Pr(AT( L BOR ) =1]> | max  Pr((4, BY2) = 1] -u(k)
Here the maxima go over stringsof length|z| < log n(k) and over (possibly unbounded) ITMs
A.

Proof. Let an be the game o3, k, n. Since there are only a polynomial number fij of
stringsz with Iength|a:| < logn, and sinceB has logarithmic communication complexity, the
game tree oGB has polynomial S|ze¢GB in k£ + n and can be efficiently computed (with
exception of the probabilities occurring in the game trddjus, sinceB runs in polynomial-
time, the family{G¥Z, }\.,. of games can be efficiently played. Therefore[ by Lemma 6&tise
a probabilistic polyhomial-time algorithi such that for any superpolynomial functigrthere
is a negligible functiors; such that upon inputl*, 17, 17(%)), the algorithm” outputs a grame
treeG such that with probability at least— o (k) itis d(G, GE,) < 67 (k).

Let A be the ITM fron Lemma 65. Then defint’ to be the ITM that on inputl”, 17, 1/)
computes’y := T'(1¥,17,17) and then executed® (G).

Let f be a superpolynomial function amda polynomial function. Then by Lemmal65 we
have

Jmax Pr((a”(1%,179,1®), B1%,2)) = 1]
z|<logn

A, lz|<logn ’

HereG), denotes the game computed By1¥, 1"(%), 1)) andE[d(G, GF )] denotes the
expected value of(G,GP ).

Since with probability at least — J;(k) we have d(G, GB ary) S Op(k), it is
E[d(ék,Gﬁn(k))] < 265(k) negligible. Smce#GB ) is polynomlally bounded it + n(k),

which is again polynomial itk, it follows thatu(k) := 2#Gk7n(k) E[d(GY, Gﬁn)] is negligible.
With (19) the lemma follows. O
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Theorem 69. Let B be a polynomial-time ITM that upon inp(t*, ) has logarithmic com-
munication complexity it and reads only a prefix of of logarithmic length ink. Let~ be a
function.

Assume thaB is y-secure with respect to computational advantage-basedriggevithout
auxiliary input. ThenB is y-secure with respect to statistical advantage-based syowithout
auxiliary input

The same holds for advantage-based security with auxiligwyt.

Proof. We first examine the case of security without auxiliary inpfe assume thaB is not
~-secure with respect to statistical advantage-basedigeaithout auxiliary input.

Then there is an efficiently computable polynomially-boesidunctionn and a (possibly
unbounded) ITMA and a sequencesof strings of length at mosbg n such that

Adv(A, k, ) == max{0, Pr[(A, B(1*, z;)) = 1] =~}

is not negligible ink.

Let AT be defined as if_Lemma 68. For an integér € N, let Af(k) :=
MaX| 4| <log (k) Adv(AT (1%, 178) 15) k. z). We extend this to functionf by settingA (k) :=
Ay (k). Then, for any superpolynomial functiofy by Lemma 6B we have thal;(k) >
Adv (A, k,x) — (k) for some negligible functiom. Thus A, is not negligible. LetP be the
set of all positive polynomials with integer coefficientsstiime that for every polynomiale P,
the functionA,, is negligible. We say a function* asymptotically dominates a functignif for
all sufficiently largek, we haveu* (k) > (k). In [Bel02] it is shown that for every countable set
N of negligible functions there is a negligible functigr that asymptotically dominates every
1 € N. SinceP is countable, it follows that there is a negligible functighthat asymptotically
dominates everyl, with p € P.

Let f(k) :== max{f € N: Ag(k) < p*}. ThenA; < u* and therefore negligible. Further-
more, we show thaf is superpolynomial. For contradiction, assume thatas not superpoly-
nomial. Then there exists a polynomjak P such thatf (k) < p(k) for infinitely manyk. By
construction off, we then haved, (k) > p*(k) for infinitely manyk. This is a contradiction
to the fact tha.* asymptotically dominates,, so f is superpolynomial. But we have shown
above that for every superpolynomifj the functionA is not negligible. So our assumption
was wrong and there exists a polynomieaduch that4,, is not negligible. In other words:

max  Adv(AT(1%,17%) 17(R)) k)
|| <log n(k)

is not negligible. For each, let z;, be a stringe for which the maximum is reached. Further, let
A*(1%) be the ITM that executed” (1%, 17(%) 17(k)) Then

max{0, Pr[(A*(1), B(1*, 23)) = 1] — v(k)}

is not negligible, so there is no negligible functiprsuch thatPr[(A*(1¥), B(1*, 2)) = 1] <
v+ . SinceA* runs in polynomial-time, this shows thatis noty-secure with respect to compu-
tational advantage-based security without auxiliary tnphis concludes the case of advantage-
based security without auxiliary input.
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The proof carries over to the case of advantage-based sewitth auxiliary input almost
verbatim. The only change necessary is to supply the AMwith an additional argument
which A* ignores. a
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