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ABSTRACT

The time evolution of mixing in turbulent overturns is investigated using a combination of direct numerical
simulations (DNS) and microstructure profiles obtained during two field experiments. The focus is on the flux
coefficient G, the ratio of the turbulent buoyancy flux to the turbulent kinetic energy dissipation rate e. In
observational oceanography, a constant value G 5 0.2 is often used to infer the buoyancy flux and the turbulent
diffusivity from measured e. In the simulations, the value of G changes by more than an order of magnitude
over the life of a turbulent overturn, suggesting that the use of a constant value for G is an oversimplification.
To account for the time dependence of G in the interpretation of ocean turbulence data, a way to assess the
evolutionary stage at which a given turbulent event was sampled is required. The ratio of the Ozmidov scale
LO to the Thorpe scale LT is found to increase monotonically with time in the simulated flows, and therefore
may provide the needed time indicator. From the DNS results, a simple parameterization of G in terms of LO/
LT is found. Applied to observational data, this parameterization leads to a 50%–60% increase in median estimates
of turbulent diffusivity, suggesting a potential reassessment of turbulent diffusivity in weakly and intermittently
turbulent regimes such as the ocean interior.

1. Introduction

In this paper, we investigate the efficiency of mixing
by turbulent patches in the ocean thermocline. In par-
ticular, we are interested in variations of the flux co-
efficient G in time over the life cycle of a turbulent
event. (The flux coefficient is closely related to mixing
efficiency: it is the ratio of work done against gravity
to energy dissipated via friction.) Our approach employs
a combination of microstructure observations and direct
numerical simulations.

In oceanic applications, G is often treated as a con-
stant, usually with the value 0.2, and used to estimate
heat fluxes from measurements of the kinetic energy
dissipation rate e (e.g., Smyth et al. 1996). However, an
accumulation of observational evidence suggests that G
is, in fact, significantly variable (Gargett and Moum
1995; Moum 1996a; Ruddick et al. 1997). Many factors
have the potential to influence G; examples include the
Prandtl number and the strength of the ambient strati-
fication. Here, we investigate the possibility that G
evolves systematically in time as turbulent overturns
grow, break, and decay.

We consider the particular case of Kelvin–Helmholtz
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(KH) billows, thought to be a common source of tur-
bulence in geophysical flows (e.g., DeSilva et al. 1996).
The steady compressive strain that develops in the
braids separating adjacent vortices generates sharp sca-
lar gradients, and therefore rapid mixing (e.g., Broad-
well and Breidenthal 1982). We find that preturbulent
billows mix at a rate comparable to that occurring after
the onset of turbulence. Because little energy is lost to
viscosity prior to transition, the flux coefficient is ac-
tually larger in the laminar state than in the turbulent
state. The evolution of mixing efficiency in Kelvin–
Helmholtz billows has also been described indepen-
dently by Caulfield and Peltier (2000) and Staquet
(2000), both of which appeared after the present work
was submitted. Our results extend those of Caulfield
and Peltier (2000) and Staquet (2000) in two important
ways: first, we investigate the oceanographically rele-
vant case Pr . 1; second, we provide a physical ex-
planation for the time dependence of the mixing effi-
ciency.

We investigate the time dependence of G using two
very different approaches: direct numerical simulations
(DNS) and field observations of turbulent microstruc-
ture. These two methods were chosen because their re-
spective strengths and weaknesses are complementary.
The time dependence of G is easy to assess in DNS
output. However, the validity of DNS as a model of
ocean turbulence is limited to low Reynolds number and
specified initial and boundary conditions. In contrast,
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microstructure measurements sample real ocean turbu-
lence, but neither G nor stage of evolution can be measured
directly. These limitations of the observational data can
be circumvented by means of two assumptions:

1) There exists an ‘‘observational clock,’’ a measure-
able quantity that varies monotonically as a turbulent
event evolves, and can therefore be used to calibrate
the age of the event.

2) G can be approximated by the Osborn–Cox formula
Gd 5 kCN 2/e, where k is the scalar diffusivity, C is
the Cox number (to be defined later), and N is the
Brunt–Väisälä frequency (Osborn and Cox 1972;
Oakey 1982). Although the underlying assumptions
are seldom valid in geophysical turbulence, the Os-
born–Cox approximation is usually assumed to pro-
vide a useful estimate of G.

Insofar as assumptions (1) and (2) are valid, the time
dependence of G can be assessed using observational
data. Here, DNS results will be used to examine the
time dependence of G directly and also to test assump-
tions (1) and (2) above. Our expression for the obser-
vational clock is a slight variation on the ratio of Oz-
midov scale to Thorpe scale, denoted R̂OT, which has
been suggested previously as an indicator of patch age
(e.g., Wijesekera and Dillon 1997). Having established
the range of validity of these assumptions, we then pro-
ceed to examine the relationship between Gd and R̂OT in
the observational data. The results suggest a parame-
terization for G in terms of R̂OT. We complete the study
by applying this parameterization to the observational
data. This results in a 50%–60% increase in experiment
mean values of turbulent diffusivity.

Our research plan assumes that DNS of breaking KH
billows furnishes a valid model of thermocline patches.
This depends both on the accuracy of our numerical
model and on the validity of the notion that patches are
driven by shear instability. The accuracy of the model
has been established elsewhere (Smyth and Moum
2000a,b; Smyth 1999). The idea that patches are driven
by shear instability has been suggested by many authors
(e.g., Osborn 1980), but has not been tested. Thus, we
begin by comparing various turbulence statistics from
DNS of KH waves with observations of thermocline
patches. Although the Reynolds numbers attained in the
simulations are at the small end of the range of obser-
vations, most statistical indicators of turbulence dynam-
ics compare favorably.

Section 2 describes the DNS model, the microstruc-
ture observations, and the problem of comparing the
two in a meaningful way. An overview of turbulence
evolution in a typical simulation is given in this section.
An important technical issue that arises is the appro-
priate choice for the bulk density gradient for use in
computing the Ozmidov scale, and we propose a new
method for defining that gradient. Section 3 is devoted
to the comparison of turbulence statistics between the
model and the observations. Having established the ap-

plicability of the model, we then proceed to evaluate
the time dependence of R̂OT (i.e., to test assumption 1
above). In section 4, we examine the evolution of flux
coefficient, and show that newly formed, preturbulent
overturns can contribute significantly to the net potential
energy gain. We then compare the flux coefficient to its
approximation Gd in order to test assumption 2 above.
Next, we examine Gd(R̂OT) in observational data, con-
firming that preturbulent billows contribute significantly
to the net potential energy gain. Finally, we discuss the
implications of our results for the estimation of turbulent
diffusivities from observational data. Our conclusions
are summarized in section 5.

2. Methodology

a. DNS of breaking Kelvin–Helmholtz billows

The numerical methods employed to generate the pre-
sent dataset have been described in detail previously
(Smyth 1999; Smyth and Moum 2000a,b); here, we pro-
vide a brief summary. Our mathematical model employs
the Boussinesq equations for velocity, density, and pres-
sure in a nonrotating physical space measured by the
Cartesian coordinates x, y, and z:

2u 5 u 3 (= 3 u) 2 =P 1 guk 1 n¹ u, (1),t

p 1
P 5 1 u · u. (2)

r 2o

Subscripts following commas denote partial differ-
entiation. The variable p represents pressure and ro is
a constant characteristic density. The thermodynamic
variable u represents the fractional specific volume de-
viation, or minus the fractional density deviation, that
is, u 5 2(r 2 ro)/ro. In a fluid where density is con-
trolled only by temperature, u is proportional to the
temperature deviation (with proportionality constant
equal to the thermal expansion coefficient). The grav-
itational acceleration g has the value 9.8 m s22, and k̂
is the vertical unit vector. Viscous effects are represented
by the usual Laplacian operator, with kinematic viscos-
ity n 5 1.0 3 1026 m2 s21.

The augmented pressure field P is specified implicitly
by the incompressibility condition

=·u 5 0, (3)

and the scalar u evolves in accordance with

2u 5 2u·=u 1 k̇¹ u,, t (4)

in which k represents the molecular diffusivity of u. For
thermal stratification in the ocean, a typical value for k
is 1.4 3 1027 m2 s21. In the present simulations, we
vary k in order to gain access to a wider range of Reyn-
olds numbers.

We assume periodicity in the horizontal dimensions:

f (x 1 L , y, z) 5 f (x, y 1 L , z) 5 f (x, y, z),x y (5)
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TABLE 1. Parameter values describing a sequence of six simulations
of breaking Kelvin–Helmholtz billows. Here Nx, Ny, and Nz are the
array dimensions, Lx, Ly, and Lz are the domain dimensions, and Dx
(5 Dy 5 Dz) is the grid interval. Initial conditions are characterized
by the length scale ho, the velocity scale uo, and the temperature scale
uo. The Prandtl number is Pr. The inital bulk Reynolds number is
Reo. Results from simulations 4–6 are displayed only in Figs. 10 and
11.

Simulation

1 2 3 4 5 6

Pr
Reo

7
1354

4
1967

1
4978

7
701

1
1965

2
1354

Nx

Ny

Nz

512
64

256

512
64

256

512
64

256

256
32

128

256
64

128

512
64

256
Lx (m)
Ly (m)
Lz (m)

2.73
0.34
1.36

3.29
0.41
1.63

5.24
0.65
2.62

1.96
0.25
0.98

3.29
0.82
1.63

2.73
0.34
1.36

Dx (1022 m) 0.53 0.64 1.03 0.77 1.29 0.53
ho (m)
uo (1023 m s21)
uo (1026)

0.20
6.38
2.00

0.24
8.34
2.41

0.38
13.27

3.83

0.14
4.98
1.44

0.24
8.34
2.41

0.20
6.38
2.00

Symbol ● * C ● C *

in which f is any solution field and the periodicity in-
tervals Lx and Ly are constants. At the upper and lower
boundaries (z 5 61/2Lz), we impose an impermeability
condition on the vertical velocity:

w | 5 0,z561/2Lz
(6)

and zero-flux conditions on the horizontal velocity com-
ponents u and y and on u:

u | 5 y | 5 u | 5 0.,z z561/2L ,z z561/2L ,z z561/2Lz z z
(7)

These imply a condition on P at the upper and lower
boundaries:

[P 2 gu] 5 0.,z z561/2Lz
(8)

The domain dimensions were chosen based on the
known geometry of the outer scales of KH billows. The
domain length Lx was chosen so as to accommodate two
wavelengths of the primary KH instability. Inclusion of
only a single wavelength would save memory, but the
merging of adjacent vortices, which plays an important
role in the development of turbulence, would then be
suppressed. The wavelength was determined from linear
stability analyses (e.g., Smyth and Peltier 1989). Here
Lz was chosen as Lx/2, sufficient to prevent the upper
and lower boundaries from influencing the turbulence
evolution significantly (Smyth and Peltier 1993). The
domain width Ly was chosen to be Lx/8. This aspect
ratio is justified in light of the small spanwise wave-
length of the dominant secondary instabilities that lead
the flow to a turbulent state (Klaassen and Peltier 1991;
Caulfield and Peltier 2000). Sensitivity experiments in
which Ly was halved and doubled yielded no difference
in the turbulence statistics of interest here. The model
is initialized with a parallel flow in which shear and
stratification are concentrated in the shear layer, a hor-
izontal layer surrounding the plane z 5 0:

u 2z u 2zo oũ(z) 5 tanh ; ũ(z) 5 tanh . (9)
2 h 2 ho o

The constants ho, uo, and uo represent the initial thick-
ness of the shear layer and the changes in velocity and
density across it. These constants can be combined with
the fluid parameters n and k and the geophysical pa-
rameter g to form three dimensionless groups whose
values determine the stability of the flow at t 5 0:

u h gu h no o o oRe [ , Ri [ , Pr [ . (10)o o 2n u ko

The initial macroscale Reynolds number Reo express-
es the relative importance of viscous effects. In the pre-
sent simulations, Reo is of order a few thousand, large
enough that the initial instability is nearly inviscid. The
bulk Richardson number Rio quantifies the relative im-
portance of shear and stratification. If Rio , 0.25, the
initial mean flow possesses unstable normal modes (Ha-
zel 1972). Some authors have defined Reo and Rio based
on uo/2, uo/2, and ho/2 rather than uo, uo, and ho, (e.g.,

Smyth and Peltier 1993; Caulfield and Peltier 2000).
For comparison with such studies, our values of Reo

should be divided by four (Rio is unchanged). In order
to obtain a fully turbulent flow efficiently, we add to
the initial mean profiles a perturbation field designed to
excite the most-unstable primary and secondary insta-
bilities. Details of the initial perturbation are discussed
elsewhere (Smyth and Moum 2000b). Care is taken to
ensure that the initial perturbation is weak enough to
obey linear physics. In that case, the precise form of
the perturbation has little effect on the statistical quan-
tities of interest here.

Spatial discretization is Fourier pseudospectral in
both horizontal direction, second-order centered finite
differences in the vertical. The fields are stepped for-
ward in time using a second-order Adams–Bashforth
method. Spectra confirming the accuracy of the nu-
merics, along with comparisons with laboratory exper-
iments, are provided elsewhere (Smyth and Moum
2000a,b; Smyth 1999).

For the present analyses, we have chosen six simu-
lations using different values of Reo, Rio, and Pr, as
described in Table 1. Molecular diffusivity was varied
so that the Prandtl number ranged from 1 to 7 (the
highest value being most realistic for heat diffusing in
water). The choice of Reo was constrained by the need
to maintain adequate resolution of the small scales; val-
ues ranged from 701 to 4978, with larger values cor-
responding to smaller Pr. The initial bulk Richardson
number, Rio, was set to 0.08 in all cases reported here.
[Some effects of varying Rio are discussed by Caulfield
and Peltier (2000) and Staquet (2000).] As the evolution
progressed, both the bulk Richardson and Reynolds
numbers increased in proportion to the increasing depth
of the shear layer (Smyth and Moum 2000b). For all
runs, the initial maximum shear uo/ho was set to 0.035
s21, and the initial minimum frequency N 5 Ïgu /ho o
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FIG. 1. Cross sections of instantaneous flow fields from simulation 1. Temperature is represented in nondimensional form as u/uo in (a)–
(d): (a) t 5 565 s, (b) t 5 1414 s, (c) t 5 4242 s, and (d) t 5 6222 s. The arrow in (d) corresponds to Fig. 2. The turbulent kinetic energy
dissipation rate e is shown at (e) t 5 4242 s and (f ) t 5 6222 s. The scalar variance dissipation rate x is also shown at (g) t 5 4242 s and
(h) t 5 6222 s.

was set to 0.0099 s21. Most of our conclusions are dem-
onstrated using only the first three simulations shown
in Table 1.

Cross sections of the evolving flow fields in simu-
lation 1 are shown in Fig. 1. Figures 1a–d show scaled
temperature cross sections taken at four instants during

the simulation. Figures 1e and 1f show the kinetic en-
ergy dissipation rate e at the latter two instants, and
Figs. 1g and 1h show the scalar variance dissipation rate
at the same two instants. [The dissipation rates e and x
are defined explicitly in section 2c(3).] At t 5 565 s
(Fig. 1a), a pair of primary KH billows has grown and
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begun to overturn. By t 5 1414 s, the primary billows
are in the process of merging to form a single large
billow (Fig. 1b). Note the extremely sharp gradients
occurring to the right and left of the billow; these are
sites of rapid scalar mixing. At t 5 4242 s, the transition
to turbulence is complete, and the fields exhibit a highly
complex structure (Figs. 1c,e,g). The scalar dissipation
rate varies on much smaller scales than does the kinetic
energy dissipation rate in consequence of the high
Prandtl number. By t 5 6222 s, turbulence has decayed
significantly (Figs. 1d,f,h). Gravity waves propagate on
localized layers of strong stratification. Between the
stratified layers, the gradient Richardson number is
small, and secondary shear instabilities drive small-
scale overturns. This layered structure is commonly ob-
served in the ocean (e.g., Phillips 1972; Posmentier
1977; Ruddick et al. 1989; Balmforth et al. 1998).

b. Microstructure observations

Two observational datasets are used in the present
study. The first was collected during the FLUX STATS
cruise (FLX91) on 1–7 May 1991 approximately 1000
km off the coast of northern California (308N,
1358159W). Measurements made by the free-falling pro-
filer Chameleon included pressure (depth), temperature,
conductivity, temperature–gradient fluctuations using an
FP07 microbead thermistor, horizontal velocity–gradi-
ent fluctuations using airfoil shear probes, and vertical
velocity fluctuations using a Pitot tube (Moum 1990;
Hebert and Moum 1994; Moum 1996a,b). Because the
thermistor did not resolve the entire spectrum of tem-
perature fluctuations at the fall speed used (;1 m s21),
the calculation of temperature variance dissipation rate
required corrections based on the Batchelor form of the
scalar variance spectrum (Peters et al. 1988).

From 400 profiles, patches were selected using prin-
ciples similar to those of Moum (1996b). (a) Using the
density profile, parts of the water column were elimi-
nated that had no Thorpe displacements [see section
2c(1)] across them, leaving patch candidates. (b) Patches
thinner than 0.15 m were rejected and (c) patches sep-
arated by less than 0.15 m were joined. (d) Patches with
excessive noise in the microstructure shear were elim-
inated. (e) Patches in which density and temperature
profiles were very different were removed by requiring
that , the estimate of the Thorpe scale [section 2c(1)]sLT

calculated from the density profile was one to four times
LT, the estimate calculated from the temperature profile.
(Patches for which /LT , 1 represent salinity intru-sLT

sions, while those for which /LT . 4 occur in weaklysL
stratified locations where noise in the conductivity sen-
sor is a factor.) (f ) Patches with mean e , 4 3 1029

m2 s23 were discarded. A total of 3425 patches re-
mained. This selection is considerably larger than the
selection arrived at by Moum (1996b), which was de-
rived from the same dataset using subjective methods.
The increase in selection size is due mainly to the fact

that the selection process has now been automated, but
is also due in part to two differences in the selection
criteria. First, we have dispensed with the requirement
that energy-containing scales not exceed 3 m, partly on
the basis of the DNS results. Second, we have added
the condition e above.

A second set of 1155 patches was selected from the
Tropical Instability Wave Experiment (TIWE), con-
ducted at the equator at 1408W in December 1991 (Lien
et al. 1995). Only data from yeardays 324–327 were
used. The resulting patches were all located in the upper-
equatorial thermocline between 60- and 200-m depth,
and spanned both the upper and lower flanks of the
Pacific Equatorial Undercurrent.

c. Model–data comparisons

In this subsection, we define terms needed for the
model–data comparisons, and also address some tech-
nical subtleties that arise therein.

1) THORPE REORDERING

In order to obtain an estimate of the ‘‘background’’
temperature structure from a patch observation, that is,
using only a single vertical profile, we reorder that pro-
file into a statically stable configuration (Thorpe 1977).
The resulting function, which we denote uT(z), repre-
sents an estimate of the temperature profile that would
be observed if the fluid were allowed to relax adiabat-
ically to its state of minimum potential energy. The
distance each parcel traverses to effect this reordering
is denoted 2dT, where dT is an estimate of the vertical
displacement from equilibrium depth. (In this study, we
employ the convention that the displacement dT is as-
sociated with the observed position of a fluid parcel,
not with its position in the reordered profile.) These
estimates are of limited validity, of course, because they
use only information from a single vertical profile. An
alternative procedure, in which the entire three-dimen-
sional volume is reordered, has been suggested by Win-
ters et al. (1995) (also see Scinocca 1995) and employed
in the present context by Smyth and Moum (2000b),
Caulfield and Peltier (2000), and Staquet (2000). The
one-dimensional version, besides being applicable to
profiler data, has the virtue of registering only temper-
ature deviations associated with overturns. For example,
a field of nonoverturning wave motions is removed by
three-dimensional reordering, but is entirely invisible to
the one-dimensional procedure.

In the analysis of microstructure profiles, the Thorpe
displacement is the basis for defining the boundaries of
a given turbulent patch (e.g., Moum 1996b). Over most
of a typical profile, the local stratification will be stable
and the displacement zero. A ‘‘patch’’ is therefore de-
fined as a region of continuously nonzero dT. In ana-
lyzing the DNS data, we treat the data subsample at
each time t and lateral location (x, y) as if it were a
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FIG. 2. Alternative definitions of the bulk temperature gradient in layered turbulence. Scaled
temperature profiles were taken from the Pr 5 7 case; x 5 Lx/2, y 5 Ly/2, t 5 6222 s (arrow in
Fig. 1d). (a) The thin (thick) solid curve represents the original (Thorpe-reordered)
temperature profile. The dashed line shows the mean gradient ^ ,z& taken over the extent of theû
patch. (b) The Thorpe displacement dT. Horizontal dashed lines identify upper and lower patch
boundaries. (c) Same as (a) except that the dashed line now represents the alter-
native bulk gradient z.û

microstructure profile. We search inward from the upper
and lower boundaries to find the outermost locations at
which dT ± 0. (This procedure is complicated slightly
due to numerical noise in the unstratified fluid outside
the turbulent region, which can lead to large, physically
meaningless Thorpe displacements. We therefore set dT

to zero in any region adjacent to the upper or lower
boundary in which the reordered temperature profile is
uniform, in the sense that its vertical gradient is less
than 0.02uo/ho.) An example is given in Fig. 2. Figure
2a shows the original and reordered temperature pro-
files; Fig. 2b shows the Thorpe displacement and the
patch boundaries. A useful measure of the typical parcel
displacement is provided by the Thorpe scale:

2 1/2L 5 ^d & .T T (11)

Here and elsewhere, angle brackets denote a vertical
average taken over the region between the patch bound-
aries, so that LT represents the root-mean-square (rms)
Thorpe displacement. For the example shown in Fig. 2,
LT 5 0.08 m.

2) BULK STRATIFICATION

A universal problem in the interpretation of patch
observations is the definition of a ‘‘bulk’’ density gra-
dient that quantifies the stratification against which the
turbulence must work (e.g., Hebert et al. 1992). Most

theories of stratified turbulence assume a uniform back-
ground gradient, a circumstance that is never realized
exactly in nature. The usual approach is to simply av-
erage the reordered density gradient between the upper
and lower boundaries of the patch (e.g., Moum 1996b).
This approach works well in most cases, but can give
ambiguous results when the patch contains more than
one distinct overturning region.

The example shown in Fig. 2 is taken from late in a
simulation, at a point where the turbulence is strongly
layered (Fig. 1d). Here, the average gradient (dashed
line in Fig. 2a) represents the stratification only in a
coarse sense. Close inspection reveals that the reordered
density gradient alternates between regions of strong
stability in which there is no overturning, and regions
of weak stability in which overturning occurs (Fig. 2b).
It may be argued that the work required for overturning
is determined by the relatively weak stratification within
the overturning layers. In this sense, the gradient shown
in Fig. 2a overestimates the required bulk gradient. Fig-
ure 2c shows an alternative choice that more closely
represents the gradients in the overturning regions. We
now describe the alternative approach.

A characteristic property of turbulence in uniform
stratification, and one that guides our choice for the
revised bulk gradient, is the equality of the Thorpe scale
and the Ellison scale. The latter is given by
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2 1/2^(u 2 u ) &TL 5 , (12)E
û,z

in which the numerator is the rms fluctuation from the
background temperature and is a measure of theû,z

background gradient, which we leave unspecified for
the moment. Here and elsewhere, the subscript preceded
by a comma indicates differentiation. Traditionally, û,z

is specified as the mean gradient across the turbulent
layer. For the general case in which the background
stratification is not uniform, equality of the Ellison and
Thorpe scales is achieved by choosing

2 1/2^(u 2 u ) &Tû 5 . (13),z LT

This is the gradient shown in Fig. 2c. The associated
Brunt–Väisälä frequency is given by

2ˆ ̂N 5 gu . (14),z

Here and elsewhere, the hat indicates a quantity com-
puted using the alternative bulk gradient .û,z

A more informative derivation of (13) follows from
the fact that

2 2 2 3^(u 2 u ) & 5 ^u d & 2 ^u u d & 1 · · ·,T T,z T T,z T,zz T (15)

which is derived via a Taylor series expansion in dT.
Because the reordered temperature profile tends to be
nearly linear in overturning regions (e.g., Fig. 2), the
first term in the expansion generally dominates. Sub-
stituting (15) and (11) into (13), we have

2 2^u d &2 T,z Tû ø , (16),z 2^d &T

that is, approximates the rms average of the tem-û,z

perature gradient weighted by the squared parcel dis-
placement. Thus, satisfies the intuitive notion thatû,z

the bulk gradient should be most representative of the
overturning regions.

Our alternative bulk gradient has the additional virtue
of being relatively insensitive to the choice of patch
boundaries. If the patch boundaries are chosen carefully
so as to include only the overturns, is nearly identicalû,z

to the mean gradient ^u,z&. However, if the boundaries
also enclose some stable, nonoverturning fluid as in Fig.
2, is unaffected, whereas the mean gradient is un-û,z

desirably increased (e.g., Hebert et al. 1992). If the patch
boundaries enclose more than one overturning layer,

provides an average over those layers while ignoringû,z

the intervening stable fluid. The problem of deciding
whether or not to treat each overturning region as a
separate patch is thus alleviated. Early in each simu-
lation, overturning is found throughout the shear layer
(e.g., Figs. 1b, 1c). In these cases, is indistinguishableû,z

from the mean gradient. Later in the life cycle, though,
when layering is advanced (e.g., Fig. 1d, Fig. 2), û,z

provides an improved estimate of the background gra-
dient in overturning regions.

Ultimately, the best choice of averaging operator de-
pends on the application. Here, our eventual goal is to
identify measurable quantities that can be used to gauge
the evolutionary stage of an observed turbulent event.
We will see that this goal is best achieved when bulk
stratification is computed as .û,z

3) TURBULENT DISSIPATION RATES AND RELATED

QUANTITIES

The turbulent kinetic energy dissipation rate is given
by e 5 2nsijsij, where

1
s 5 (u9 1 u9 ). (17)ij i, j j,i2

Primes indicate deviations from the horizontal mean.
The horizontal mean is removed in order to approximate
the effect of high-pass filtering that is performed on the
observational data.

When motions in the dissipation range (scales less
than roughly 10 times the Kolmogorov scale) are iso-
tropic, e may be approximated as follows (Hinze 1975):

15
2 2e 5 n(u9 1 y9 ). (18)z ,z ,z4

This approximation can be calculated using only the
two components of the strain tensor that are available
from vertical profiles measured with a shear probe.
When the buoyancy Reynolds number, Rb 5 e/nN 2, is
insufficiently large, however, the isotropic approxima-
tion can give misleading results. Gargett et al. (1984)
found that an isotropic inertial subrange becomes clearly
evident only when Rb exceeds 200. Smyth and Moum
(2000a) demonstrated that dissipation range statistics
become isotropic when Rb exceeds O(102). Although Rb

is frequently less than 100 in both model and obser-
vations, isotropy is assumed of necessity in the obser-
vations. For consistency, we do the same in analyzing
the model data. The buoyancy Reynolds number is thus
approximated by

^e &zR̂ 5 . (19)b 2ˆnN

Note that the isotropic approximation to e is needed for
the calculation of R̂b. This can lead to a dangerous sit-
uation wherein isotropy is incorrectly assumed due to
an overestimate of R̂b (Smyth and Moum 2000a).

The dissipation rate for temperature variance is giv-
en by

2x 5 2k^ | =u9 | &, (20)

and the corresponding isotropic approximation is

2x 5 6k^ u9 &z z (21)
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FIG. 3. Evolution in time of (a) the buoyancy Reynolds number, (b) the Cox number, and (c)
the vertical Reynolds number. Symbols indicate the first three DNS runs: Pr 5 1 (open circles),
Pr 5 4 (asterisks), and Pr 5 7 (bullets). Symbol size is proportional to log10R̂b. Bootstrap 95%
confidence limits on each average are smaller than the symbol size. At the right of each figure
is a histogram of the corresponding quantity taken from the observational data. In each case, the
solid (dashed) curve represents the TIWE (FLX91) data. The scalings of the histograms are
arbitrary.

The Cox number is defined using the isotropic formula
Ĉ 5 3^ &/ , where is as defined in (13).2 2 2̂ ̂u9 u uz ,z ,z

3. Quantitative comparisons of turbulence
statistics

This section has two main purposes. First, we assess
the applicability of the DNS model by means of statis-
tical comparison with observational data. We show that,
although the Reynolds numbers attained by the model
lie at the low end of the range of observed values, most
statistical indicators of turbulence dynamics compare
favorably. Our second purpose in this section is to use
the DNS data to validate the first of the two assumptions
needed to extract the time dependence of the flux co-
efficient from the observations (cf. section 1).

The results from the simulations are saved at regular
time intervals. At each such time, the flow is sampled

by taking 512 vertical profiles through the computa-
tional domain (64 in the streamwise direction, 8 in the
spanwise direction). The spatial separation between pro-
files is 8 grid intervals, or about 24 times the minimum
Batchelor scale. Profiles spaced more closely than this
are unlikely to be statistically independent. The results
are then analyzed in a manner consistent with the anal-
ysis of ocean microstructure profiles. Occasional pro-
files contain no overturning and are therefore discarded.
However, nearly every profile contains a patch, for
which we record values of various quantities of interest
such as the mean dissipation rate, the Thorpe scale, etc.
Our main interest will be in the time evolution of the
median values of these quantities for each simulation.

a. Reynolds and Cox numbers
Figure 3a shows the time evolution of the buoyancy

Reynolds number. To compute each of these data points,
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we obtained values of ^ez& and N̂2 for each profile, com-
bined them to yield values (usually 512) of R̂b, then
took the median. The different simulations are distin-
guished by symbols. Open circles represent the Pr 5 1
simulation, asterisks denote the Pr 5 4 case, and bullets
represent the Pr 5 7 case. Symbol size is proportional
to the logarithm of R̂b. (That information is redundant
in the case of Fig. 3a, but will help in the interpretation
of other figures.) The observations provide no infor-
mation about the stage of evolution, and are therefore
represented by histograms positioned for comparison
with the time-dependent DNS results. Thus, we see from
Fig. 3a that the buoyancy Reynolds numbers attained
by the simulated flows lie within the lower half of the
range of the observations.

Values of the buoyancy Reynolds number as large as
O(104) have been observed in the upper-equatorial ther-
mocline (also see Wijesekera et al. 1993; Wijesekera
and Dillon 1997). Our Pr 5 7 simulation attains a max-
imum buoyancy Reynolds number near 70, while the
Pr 5 1 cases reach maxima in the range 200–400. These
maxima are within the range of the observations, and
it may therefore be expected that the simulated patches
will have properties in common with the patches ob-
served in the ocean. A rough criterion for the dissipation
range to be free of buoyancy effects is R̂b . 20. All of
our simulations meet this criterion for a substantial time
interval after the onset of turbulence.

Values of the Cox number attained in the simulations
are confined to the smallest end of the observed range.
Since the Cox number depends on small-scale temper-
ature structure, the artifice of lowering the Prandtl num-
ber makes little difference. In the late stages of the sim-
ulations (and, presumably, in the smallest observed
patches), both Ĉ and R̂b are overestimated due to an-
isotropy effects (Smyth and Moum 2000a).

The limitations of the simulations are most obvious
upon examination of the vertical Reynolds number (Fig.
3c), computed as R̂w 5 /N̂n, where is the mean-2 2w wrms rms

squared vertical velocity. The Pr 5 1 case delivers re-
alistic values of R̂w, but the Pr . 1 runs both start at
the low end of the observed range and decrease from
there. This result indicates caution in interpreting the
late stages of the Pr . 1 runs: they may enter a physical
regime that is not found in the observations. We will
see that the model fares considerably better in the com-
parison of other turbulence characteristics.

b. Measures of patch size

Overall patch thickness, that is, the median vertical
distance between the upper and lower patch boundaries,
is denoted Lp. In all simulations, patch thickness grows
rapidly at first, then much more slowly as turbulence
subsides (Smyth and Moum 2000b). Our interest here
is in the ratio of the patch thickness to other character-
istic length scales. For example, the ratio of Lp to the
Thorpe scale is a measure of the complexity of the large

scales. Lp/LT is near two when only a single overturn
is present, but becomes larger when many large over-
turns are contained within the patch boundaries (Fig.
4a). Our DNS values of Lp/LT all lie within the range
of the observations. There is a general tendency for Lp/
LT to increase with time, which suggests that the smallest
(largest) of the observed values correspond to young
(old) turbulence.

Similar results obtain for the ratio of Lp to the max-
imum Thorpe scale (Fig. 4b). (Note that LTmax is not the
maximum Thorpe displacement in the entire flow; it is
the median of the maxima occurring in individual pro-
files.) The lower limit of unity corresponds to the pres-
ence of a single large overturn. As in the case of Lp/
LT, the ratio tends to increase with time, but remains
within the range of observed values. A third measure
of complexity is the ratio of maximum to rms Thorpe
displacement, LTmax/LT (Fig. 4c). This quantity remains
within a restricted range of values that agrees very well
with the observations.

The ratios Lp/LT and Lp/LTmax do not increase mono-
tonically with time. Large, rapid decreases at t 5 3500
and 6500 s (particularly in the Pr 5 1 case) are produced
by the spontaneous generation of large vortices long
after the initial instability has subsided. This is made
possible, despite the absence of forcing, by the tendency
of temperature to mix more throughly than momentum.
That differential mixing causes the gradient Richardson
number in the interior of the turbulent layer to become
smaller than the critical value for shear instability, even
though the bulk Richardson number is much larger (e.g.,
Scinocca 1995; Werne and Fritts 1999; Smyth and
Moum 2000b; Caulfield and Peltier 2000).

An alternative measure of eddy size is provided by
the buoyancy scale, L̂b 5 wrms/N̂ (Fig. 5). This represents
the vertical displacement that a fluid parcel could attain
if all of its vertical kinetic energy were expended as
work against gravity. For the Pr . 1 cases, L̂b agrees
very well with the Thorpe scale; for the Pr 5 1 case,
L̂b generally exceeds LT by a factor of two. All values
are within the range of observations.

c. The energy-containing scale

In stationary turbulence, the size of the large eddies
that carry most of the kinetic energy may be approxi-
mated as q3/e, in which q2 is two-thirds of the turbulent
kinetic energy per unit mass (e.g., Tennekes and Lumley
1972). In the microstructure observations, only the ver-
tical component wrms of the eddy-scale turbulent velocity
fluctuations is measured. As a result, an assumption of
large-scale isotropy is used to justify the approximation
q ø wrms. For consistency with the observations, we
assume isotropy in the simulated flows and thus ap-
proximate q by wrms, and also e by ez, denoting the
resulting estimate as LEn, namely,
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FIG. 4. Evolution of the ratios (a) Lp/LT, (b) Lp/LTmax, and (c) LTmax/Lp Symbols and histograms
are defined as in Fig. 3.

3wrmsL 5 . (22)En ^e &z

The length scale LEn provides a very poor representation
of the energy-containing scales in the preturbulent phase
of the flow evolution (Fig. 6). Here, the disturbance
carries a great deal of kinetic energy that has not yet
begun to dissipate, so that LEn exceeds the Thorpe scale
(a more direct measure of large eddy size) by 2–3 orders
of magnitude. [This is the reason that we have dispensed
with the patch selection criterion LEn , 3 m employed
in Moum (1996a).] As turbulence develops, the ratio
LEn/LT decreases rapidly to values of order unity. In the
final stages of decay, particularly in the Pr . 1 cases,
the ratio decreases further to values significantly less
than unity.

So far, our policy in analyzing the DNS results has
been to employ only information available in measured
microstructure profiles (except for the time). We now
set that policy aside in order to investigate the effects
of anisotropy on our estimates of the energy-containing
scale. It is likely that the assumption of isotropy is often
invalid, particularly in the large, energy-carrying scales

(Smyth and Moum 2000a). In the late stages of our
simulations, motions are predominantly streamwise, so
that wrms may severely underestimate q. To test this pos-
sibility, we compute LEn using all three components of
the velocity fluctuations. For consistency, we also em-
ploy the full dissipation rate e rather than ez, although
the effect of anisotropy is much less pronounced here
than on the velocity. We denote the result L9En, namely,

2 3/2^q &
L9 5 . (23)En ^e&

The result of these adjustments is that, after the onset
of turbulence, L9En remains remarkably proportional to
LT in all simulations, with proportionality constant
slightly in excess of unity (Fig. 6b).

The results shown in Fig. 6 suggest that observations
of LEn/LT , 1 are due in part to anisotropy. Given that
KH billows extract energy from the background shear
by virtue of anisotropy in the production range, it seems
likely that these scales are significantly anisotropic at
all Reynolds numbers. In contrast, Gargett (1988) pro-
poses that energy-containing scales of stratified turbu-
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FIG. 5. Evolution of the ratio of buoyancy to Thorpe scales. Symbols and histograms are
defined as in Fig. 3.

lence become isotropic at sufficiently high Reynolds
number. However, in Gargett’s scaling it is the horizontal
and vertical velocity perturbations themselves that be-
come equal, and then only in order of magnitude, so
that a significant difference between the cubed velocity
components that appear in LEn is not precluded. We
emphasize that, when the analyses are done in a con-
sistent manner (i.e., when isotropy is assumed, as in
Fig. 6a), there is no discrepancy between the model
results and the observations.

d. The Ozmidov scale

The Ozmidov scale

1/2
^e &zL̂ 5 (24)O 3ˆ1 2N

provides an estimate of the length scale above which
motions are strongly affected by buoyancy. The ratio
LEn/L̂O varies over several orders of magnitude in the
course of each simulation, beginning at values in excess
of 100, decreasing to order unity during the transition
to turbulence, then decreasing further as the turbulence
decays (Fig. 7a). This range of values is consistent with
the observations. Much variability is removed when the
isotropic approximations for q and e are replaced by the
exact values (Fig. 7b). The trend remains monotonically
decreasing, but that decrease covers only 1–2 orders of
magnitude.

e. L̂O/LT as an indicator of event age

We complete this section by testing the first of the
two assumptions needed to extract the time dependence
of the flux coefficient from the observations (cf. section
1). The ratio of the Ozmidov scale to the Thorpe scale
has been suggested by several authors as a convenient
indicator of the age of an observed turbulent event (e.g.,
Dillon 1982; Wijesekera and Dillon 1997). This infor-
mation is crucial to the interpretation of microstructure
data in light of the extreme intermittency of ocean tur-

bulence. It has been suggested (e.g., Gibson 1980) that
interior ocean mixing is dominated by rare, powerful
events that are almost never observed, events of which
the observed turbulent overturns are likely to be mere
remnants. In that case, turbulence statistics derived from
sparse microstructure observations may severely un-
derestimate the level of mixing in the interior ocean.
Other authors (e.g., Caldwell 1983; Gregg 1987) have
contended that this problem is not severe, that micro-
structure observations actually contain a fair sampling
of young, energetic events. In Fig. 8a, we demonstrate
that R̂OT represents an effective clock for these simulated
turbulent events. Young, preturbulent overturns are
characterized by R̂OT , 1/2. Shortly after transition, the
ratio increases to order unity. As turbulence decays, R̂OT

increases further to values substantially greater than 1.
These results are entirely consistent with the conclusions
of Wijesekera and Dillon (1997), which were derived
from observational data by using entropy as a time mea-
sure. The solid curve on Fig. 8a shows a least squares
fitted power law of the form R̂OT 5 (t/to)b, with to 5
3298 s and b 5 1.140.

For comparison, we also examine the ratio LO/LT (Fig.
8b), in which LO is computed using the mean density
gradient across the patch rather than the weighted mean
described in section 2c(2). In other words, LO is com-
puted as

1/2
^e &zL 5 , (25)O 31 2N

in which N 2 5 g^u,z&. The ratio LO/LT tends to grow
monotonically, but that tendency is generally less pro-
nounced than is found with L̂O/LT (Fig. 8a), and is thus
more readily dominated by short-period fluctuations. In
quantitative terms, the coefficients appearing in the
power law are to 5 6833 s and b 5 0.752. Thus, the
mean growth exponent of L̂O/LT over these three sim-
ulations is 52% larger than that of LO/LT. The difference
is partly because the weighted gradient ,z decreases inû
response to the growth of localized, secondary overturns
(Smyth and Moum 2000b), whereas the mean gradient
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FIG. 6. Evolution of the ratio of the energy-containing scale to the Thorpe scale. (a) The
energy-containing scale is approximated as with the observational data, assuming that the large
scales are isotropic, i.e., LEn 5 /^«Z&. Symbols and histograms are defined as in Fig. 3. (b)3wrms

The assumption of isotropy is discarded, resulting in L9En 5 ^q2&3/2/^«&. There is no corresponding
observational data.

FIG. 7. Evolution of the ratio of the energy-containing scale to the Ozmidov scale. (a) The
energy-containing scale is approximated as with the observational data, assuming that all scales
are isotropic, i.e., LEn 5 /^«Z&. The shaded bar at the top of (a) marks the approximate time3wrms

of the transition to turbulence. Symbols and histograms are defined as in Fig. 3. (b) The assumption
of isotropy is discarded, resulting in L9En 5 ^q2&3/2/^«& and L̂9O 5 (^«&/N̂3)1/2. There is no cor-
responding observational data.
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FIG. 8. Evolution of the ratio of the Ozmidov scale to the Thorpe scale. Symbols and his-
tograms are defined as in Fig. 3. The shaded bar at the top of (a) marks the approximate time
of the transition to turbulence. (b) The mean scalar gradient is used to calculate the Ozmidov
scale, i.e., LO 5 (^«z&/N 3)1/2. The solid curves represent power-law growth with exponents (a)
1.140 and (b) 0.752.

^u,z& is unaffected. The result of this is that the ratio of
Ozmidov to Thorpe scale functions best as an age in-
dicator when the former length scale is computed using
the weighted scalar gradient ,z, as in (24). An alter-û
native expression for R̂OT is

LOR̂ 5 . (26)OT 3/4 1/4L LE T

In summary, we have seen that while Reynolds num-
bers achieved by the model are at the small end of the
observed range, most other turbulence statistics tested
are consistent with observations. These include mea-
sures of the large-scale geometry, as well as statistics
relating background stratification, kinetic energy, and
dissipation rates. We conclude that our simulated over-
turns provide an acceptable model for turbulent patches
in the thermocline.

Three quantities, Lp/LT, LEn/L̂O, and R̂OT, look prom-
ising as age indicators. Here Lp/LT can be significantly
nonmonotonic (Fig. 4a) and is also sensitive to the
choice of patch boundaries. The evolution of LEn/L̂O is
largely a consequence of the changing anisotropy of the
energy containing scales, and may thus depend on the
details of the large-scale structure (Fig. 7). In contrast,
the monotonic increase of R̂OT (Fig. 8a) is an expression
of increasing geometric complexity, a fundamental

property of turbulence. We therefore expect that R̂OT will
be generally applicable as a time indicator. The fact that
the observations include the range of values of these
ratios found in our preturbulent patches suggests that
‘‘young’’ patches are present (albeit rare) in the obser-
vations. Further evidence will be given in the following
section.

4. Mixing efficiency

Using the DNS results, we have demonstrated a ro-
bust, monotonic time dependence in the ratio R̂OT 5 L̂O/
LT. This suggests that it may be possible to use R̂OT as
a clock to indicate the phase of the turbulence in the
absence of a real time base, as in typical oceanic ob-
servations. This is significant in determining a mixing
efficiency for the turbulence, which is used to estimate
eddy diffusivity and which has been purported to vary
with the stage of decay of the turbulence. To assess the
significance of time variability of mixing efficiency, we
first examine its time evolution in our DNS results. The
calculation is done both exactly and using the approx-
imation employed in the analysis of observational data.
We then turn to the observations to interpret the vari-
ations of mixing efficiency. In each case, we find that
mixing efficiency evolves distinctly with turbulence
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age; young, preturbulent billows mix very efficiently
and can therefore make a significant contribution to the
total potential energy gain.

a. Assessment of mixing efficiency in DNS and
observational data

We begin with a discussion of the subtleties encoun-
tered in defining the ‘‘efficiency’’ of mixing by stratified
turbulence. Stratified turbulence is a highly complex
phenomenon, and is usually thought of as a combination
of two much simpler phenomena: gravity waves, and
‘‘turbulence’’ as it occurs in nonstratified flow. There
is no way to rigorously disentangle the wavelike and
turbulence-like aspects of stratified turbulence, but since
gravity waves are essentially nondissipative, we con-
ceptually associate mixing with the ‘‘turbulent’’ aspect
of the flow.

The work associated with mixing is best understood
in the context of transfers of kinetic energy to and from
the fluctuating velocity field. In the present model, per-
turbation kinetic energy evolves in accordance with

d 1
u9u9 5 S 2 B 2 ^e & , (27)i i D7 8dt 2 D

in which S 5 2^ ,z&D is the source (or production)u9 w9ui i

term, B 5 2g^ &D is the rate of potential energyw9u9
increase, and the final term represents the loss of per-
turbation kinetic energy to viscous dissipation. Here,
the subscript D on the angle brackets indicates that the
vertical average is taken over the entire domain (not just
the patch). Overbars indicate the horizontal mean,
primes indicate fluctuations about that mean, and re-
peated indices are summed over.

The efficiency of a mechanical system is defined as
the ratio of work done to energy input. In the present
case, that would be B/S, commonly called the flux Rich-
ardson number (denoted Rf ). The difficulty with apply-
ing this concept to stratified turbulence is that both the
production and buoyancy terms are reversible, that is,
they represent two-way transfer of energy. The ratio B/
S is therefore often negative. This complication is symp-
tomatic of the presence of gravity waves, which mediate
the transfer of kinetic energy from the mean flow to the
turbulence. Half of this problem was solved by Winters
et al. (1995), who showed how the buoyancy term can
be separated into reversible and irreversible parts, Br

and Bi. Unfortunately, that procedure does not work on
the production term.

Further progress may be made by shifting attention
from production to dissipation. The reversibility of the
production term is linked to the fact that production
occurs at large scales, and is therefore dominated by
wavelike motions. In contrast, viscous dissipation is
driven by small-scale motions that have much less ten-
dency to be wavelike, and the dissipation term is sign-

definite by definition. One may therefore compute the
positive definite quantity

G 5 B /^«& ,i D (28)

which represents the ratio of irreversible potential en-
ergy increase to energy loss via friction. This quantity
provides a useful definition of the ‘‘efficiency’’ of mix-
ing, and it has been used as such by researchers in
stratified turbulence (e.g., McEwan 1983). Unfortu-
nately, it conflicts with the historical definition of ef-
ficiency, as pointed out by Moum (1996b). In that paper,
G was referred to instead as the ‘‘flux coefficient,’’ a
designation that is also appropriate here since G is the
factor by which the dissipation rate is multiplied to ob-
tain the irreversible buoyancy flux (which is also the
rate of irreversible potential energy gain). Therefore,
the flux coefficient will be our vehicle for understanding
the efficiency with which an evolving stratified turbu-
lence event raises the potential energy of the fluid.

We now describe two definitions of the flux coeffi-
cient, each of which is an approximation to (28). The
first is called the ‘‘instantaneous’’ flux coefficient Gi and
is computable only from the three-dimensional infor-
mation available in simulations. The second quantity is
Gd, an approximation to Gi that can be assessed using
profiler measurements.

The computation of the irreversible potential energy
increase begins with the identification of the minimum
potential energy state of a given density distribution,
that is, the spatial configuration of the density distri-
bution that is in static equilibrium (Winters et al. 1995).
This equilibrium state is easily computed from model
data by sorting the density field in a manner that is the
three-dimensional analog of the Thorpe reordering de-
scribed in section 2c(1). In this state, density varies only
in the vertical, and its vertical gradient is negative sem-
idefinite. The associated (volume-averaged) potential
energy is defined, up to an additive constant, by

Lzg
P 5 2 zu*(z) dz, (29)b ELz 0

in which u* is the profile of scaled temperature defining
the equilibrium state. The total potential energy is

g
P 5 2 zu(x, y, z) dV, (30)t EV

where the integral is over the computational volume.
The available potential energy is just the difference: Pa

5 Pt 2 Pb.
A fluid volume obeying the boundary conditions (5)–

(8), at rest in the equilibrium state, gains potential en-
ergy by molecular diffusion at the (volume-averaged)
rate

gk topF(t) 5 u | (31)bottomLz

in which denotes the difference in horizontallytopu | bottom



AUGUST 2001 1983S M Y T H E T A L .

FIG. 9. Evolution of various quantities describing work done against
gravity for the Pr 5 7 simulation. (a) The upper curve denotes the
total potential energy as given in (30), the lower curve denotes the
background potential energy (29), and the distance between the
curves represents the available potential energy. The shaded bar at
the top of (a) marks the approximate time of the transition to tur-
bulence. (b) Volume-averaged perturbation kinetic energy dissipation
rate (upper curve) and rate of irreversible potential energy increase
(lower curve). The ratio of the lower to the upper abcissa is Gi. (c)
Gi.

averaged u between the upper and lower boundaries
(Winters et al. 1995). The quantity we will compute to
represent the instantaneous flux coefficient is

dP /dt 2 FbG 5 . (32)i ^e &D

The subtraction of F isolates the irreversible work as-
sociated with fluid motion from that which would occur
in the resting state, a distinction that can be significant
in weak turbulence.

Computation of Gi requires more information than is
available in microstructure observations. We now con-
sider an alternative approach first used by Osborn and
Cox (1972). The model equations and boundary con-
ditions given in section 2a imply the following budget
for the volume-averaged temperature variance:

d 1 1
2u9 5 2^w9u9 u & 2 ^x & . (33),z D D7 8dt 2 2D

This may be rearranged to give an expression for the
net scalar flux

1 d
2^w9u9& 5 2 ^x & 1 ^u9 & . (34)D D D1 2dt˜2u,z

The quantity ,z is a measure of the bulk scalar gradient,ũ
given explicitly by

^w9u9 u &,z Dũ 5 . (35),z ^w9u9&D

Unfortunately, ,z cannot be assessed reliably from ob-ũ
servations as it requires prior knowledge of the buoy-
ancy flux. We must therefore approximate ,z using ei-ũ
ther the mean gradient ^ ,z&D or the alternative bulk gra-u
dient In the DNS data, ,z exceeds the mean gradientû ũ,z

by as much as a factor of 3 in preturbulent overturns,
but becomes more nearly equal to the mean gradient as
turbulence develops. The behavior of is the opposite:û,z

it approximates the mean gradient early on, but is small-
er than the mean gradient late in the flow evolution as
turbulence becomes layered (Fig. 2). Thus, the mean
gradient provides a better estimate of ,z than does ̂ũ u,z

Accordingly, we follow the usual practice of using the
mean gradient in the Osborn–Cox approximation.

In addition, stationarity is usually assumed in the
analysis of observational data, so that the time derivative
in (34) may be neglected. Dividing (34) by the volume-
averaged dissipation rate and multiplying by g then
gives:

g^w9u9& g^x &D D[ G 5 . (36)d^e & 2^u & ^e &D ,z D D

Of necessity, the volume averages ^ &D are replaced( )
by vertical averages between the upper and lower patch
boundaries and isotropic approximations are employed
for the dissipation rates:

g^x &zG 5 . (37)d 2^u &^e &,z z

b. Flux coefficient evolution in simulated flows

In Fig. 9 we show various aspects of potential energy
evolution for the case Pr 5 7. Early in the simulation,
most of the work done against gravity is reversible, that
is, it contributes to the available potential energy (Fig.
9a). The latter grows to a maximum near t 5 1600 s,
then decreases rapidly (i.e., the billow breaks). The
background potential energy grows monotonically and,
ultimately, becomes equal to the total potential energy
as vertical motions decay.

In Fig. 9b, we see that the rate of irreversible work
done against gravity peaks quite early in the simulation.
In fact, it peaks as the billow is breaking. Note that
about one-third of the net potential energy gain in this
simulation occurred before the transition to turbulence!
The dissipation of kinetic energy, in contrast, peaks near
t 5 3000 s, after the transition to turbulence is complete.
This offset between maximum irreversible work and
maximum kinetic energy dissipation leads to large val-
ues of Gi early in the simulation (Fig. 9c; Winters et al.
1995; Caulfield and Peltier 2000; Staquet 2000). This
highly efficient mixing occurs primarily in the braids
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FIG. 10. Time evolution of Gi for six simulations. Thin lines indicate
simulations 4, 5, and 6. The shaded bar at the top of the uppermost
frame marks the approximate time of the transition to turbulence.

connecting adjacent KH billows. After the onset of tur-
bulence, Gi decreases and appears to asymptote to the
canonical value 0.2 (Caulfield and Peltier 2000; Smyth
and Moum 2000b; Staquet 2000).

The tendency for Gi to peak during the preturbulent
phase of billow evolution then asymptote to a lower
value is common to all of our simulations. However,
the quantitative evolution differs significantly between
the various cases investigated due to differences in both
Prandtl number and initial Reynolds number. At any
given time, Gi tends to be larger in the low-Pr cases.
This could be a result of increased molecular diffusivity,
or it could be due to the higher Reynolds number
reached in those simulations.

In order to properly assess the relevance of these
results for ocean turbulence, it is important that we un-
derstand the Reynolds and Prandtl number dependence
of Gi more fully. We investigate further using result from
three additional simulations in order to compare cases
in which one parameter was fixed while the other was
varied (Fig. 10). In Fig. 10a, we compare two runs hav-
ing the same initial Reynolds number but different
Prandtl numbers. In the preturbulent and transitional

phases, the high-Pr case displays considerably smaller
values of Gi. As turbulence decays, both simulations
asymptote to G i ø 0.2. In Fig. 10b, we show a similar
comparison. In this case, the (common) Reynolds num-
ber is increased and the Prandtl numbers are corre-
spondingly lower: Pr 5 4 and Pr 5 1. Again, the higher
Pr case displays smaller flux coefficients over most of
the simulations.

We next compare two runs in which Pr was set to 7
while Reo was varied (Fig. 10c). There is no significant
difference in the evolution of G i. Finally, we compare
two cases in which Pr was set to unity and Reo differed
(Fig. 10d). Here, there is a hint that the case with lower
Reynolds number exhibited higher Gi, but the difference
is much less pronounced than was observed as a result
of varying Pr. Note that both cases with Pr 5 1 appeared
to asymptote to states in which Gi was significantly high-
er than 0.2.

We conclude that any dependence of Gi on initial
Reynolds number is too subtle to be captured in the
present dataset. In contrast, the dependence on Prandtl
number is clear. In the preturbulent phase and during
transition, Gi varies inversely with Pr. In the decay
phase, Prandtl number dependence is not evident until
Pr is reduced to unity, at which point the asymptotic
value of G i is closer to 0.3 or 0.4 than to 0.2. For Pr .
1, the late stage value of Gi is indistinguishable from
0.2 in these data.

In Fig. 11, we show the net flux coefficient Gnet, cal-
culated as the ratio of the net work done against gravity
to the net kinetic energy lost to dissipation. The nu-
merator and denominator in (32) are integrated sepa-
rately over the duration of the simulation, then divided.
For the Pr 5 7 case, an additional run with smaller
Reynolds number (small bullet) yielded a slightly re-
duced value of Gnet . For the Pr 5 1 case, an additional
run with smaller Reynolds number (small circle) yielded
a slightly increased value of Gnet.

As in case of Gi (Fig. 10), the dependence of Gnet on
Prandtl number is quite robust, whereas the dependence
on Reynolds number is weak and inconsistent. These
results suggest that Reynolds number is not a dominant
factor determining the flux coefficient. We conclude that
the difference in flux coefficient evolution among the
various cases considered here is due primarily to the
difference in Prandtl number.

To understand the extraordinary efficiency of mixing
in preturbulent overturns, we must consider the under-
lying physics. As noted above, turbulence does not mix
scalars directly; rather, it accelerates molecular fluxes
by amplifying scalar gradients through compressive
strain in the velocity field (Batchelor 1959). The as-
sociation of strong mixing with turbulence is based on
the fact that strain tends to be much stronger in turbulent
flow than in laminar flow.

However, gradient amplification depends not only on
the magnitude of the strain, but also on the orientation
between the strain and the scalar gradient. Amplification
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FIG. 11. Net values of the flux coefficient and Rf for seven DNS runs. Each data point represents
one complete simulation. The large circle, asterisk, and bullet denote the Pr 5 1, Pr 5 4, and
Pr 5 7 cases shown in previous figures (cases 3, 2, and 1, respectively). Smaller symbols
represent cases 4 (bullet), 5 (circle), and 6 (asterisk), as described in Table 1.

FIG. 12. Comparison of the instantaneous flux coefficient Gi and
its approximation Gd for simulations (a) 1, (b) 2, and (c) 3. Solid
curves: Gi. Dashed curves: Gd, computed as in (36). Horizontal lines
indicate the standard value 0.2. The shaded bar at the top of (a) marks
the approximate time of the transition to turbulence.

is most effective when the gradient is aligned parallel
to the compressive principal strain. If the strain field is
steady, scalar gradients will tend toward this alignment.
Early theories of scalar mixing (e.g., Batchelor 1959)
assumed that the turbulent strain field evolves slowly
enough that scalar gradients would remain close to this
ideal state. We have learned, however, that this as-
sumption is incorrect: turbulent strain fields evolve far
too rapidly for the scalar gradient to maintain anything
close to ideal alignment (Smyth 1999). As a result, tur-
bulent mixing is much less efficient than one would
expect based on the magnitude of the strain alone. Con-

versely, the weak but steady strain field in preturbulent
billows can be a surprisingly effective mixing mecha-
nism. The state of maximum Gi is shown in Fig. 1b.
The reader may verify visually that the sharpest scalar
gradients occur at this time (cf. Figs. 1a, 1c, 1d).

c. Gd as an approximation to the flux coefficient

In preparation for evaluating flux coefficient evolu-
tion in the observational data, we now test the second
of the two assumptions described in section 1. This
requires assessing the usefulness of Gd as an approxi-
mation for G i. Here Gd and G i follow similar evolution-
ary patterns, the main differences being Gd . Gi during
the preturbulent phase and the tendency of Gd to increase
during the final stages of turbulence decay (Fig. 12).
The large discrepancy found in the preturbulent phase
is not surprising. The stationarity assumption inherent
in the Osborn–Cox formulation is invalid during this
phase. Also, examination of model results has shown
that the ‘‘correct’’ scalar gradient for the Osborn–Cox
formula, ,z (35), exceeds the mean gradient by a factorũ
2–3 during this phase. Despite this, we use the mean
gradient for consistency with the observational results.
(The erroneous factor decreases to 1.0–1.5 after the tran-
sition to turbulence.) The increase observed late in the
simulation is related to the inaccuracy of the isotropic
approximations in this very weak turbulence. Given
these discrepancies, it is reassuring to find that Gd is
actually a useful predictor of Gi in all simulations. The
correspondence is reasonable while turbulence is strong,
and even prior to transition Gd gives a qualitative in-
dication of the large flux coefficient that characterizes
that early phase.

The simulated values of Gd are within the range of
observed values, though they tend to lie toward the low
end of the range (Fig. 13). Instances of Gd . 1 are
common in the observations, especially those from the
Equatorial Undercurrent, but occur in the simulations
only when Pr , 7. In Fig. 13b, we assess the accuracy
of Gd as a predictor of the true net flux coefficient, Gnet.
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FIG. 13. (a) Evolution of the Osborn–Cox approximation to the flux coefficient Gd for three
DNS runs. Symbols and histograms are as defined in Fig. 3. The horizontal line indicates the
standard value 0.2. (b) Evolution of Gd normalized by the true net flux coefficient (cf. Fig. 12).

In all cases, values of Gd obtained before the onset of
turbulence overpredict Gnet, while values corresponding
to fully-developed turbulence tend to be low. Overes-
timation of Gnet in the preturbulent state is due both to
the intrinsically large mixing efficiency of laminar bil-
lows and to the limitations of Gd as an approximation
to the true flux coefficient. The tendency to underesti-
mate Gnet later in the evolution reflects the low mixing
efficiency of the fully turbulent flow.

d. ‘‘Evolution’’ of Gd in observations

We turn now to an assessment of the evolution of the
flux coefficient derived from observational data. Two
central assumptions needed for this assessment have
now been tested using the DNS data. We have shown
that the length scale ratio R̂OT provides an effective in-
dicator of the ‘‘age’’ of a turbulent event (section 3e).
We have also seen that Gd provides, within limits, a
useful estimate of the flux coefficient that can be com-
puted on the basis of observational data (section 4c).
Although we cannot follow the time evolution of a par-
ticular event as in the DNS analyses, we can examine
the relationship between G (as approximated by Gd) and
event age (as expressed by R̂OT) in samples drawn from
many events. If turbulence age is indeed the dominant
factor determining G, that fact should be evident in these
analyses. Conversely, if the data do not reveal the ex-
pected relationship between Gd and R̂OT, the applicability
of the DNS results to ocean turbulence must be ques-
tioned.

In Fig. 14, we show the individual microstructure
observations from the TIWE and FLX91 datasets. In
each case, the relationship between Gd and R̂OT is very
well-defined and reveals an overall monotonic decrease.
Differences in detail between the observational and
DNS results are not surprising. Very large values of Gd

at small R̂OT may be due to the tendency of Gd to over-
estimate G in young turbulence (Fig. 12). Unlike the
model results, observational values of Gd show no ten-
dency to asymptote to 0.2 at long times. We attribute
this to inability to resolve the finest-scale density fluc-
tuations in the observational data. Because of this, val-
ues of LT smaller than about 10 cm are rarely observed.
Large values of R̂OT are therefore attained only as a result
of large Ozmidov scales, which tend to correlate with
small Gd. In the model results, the mean value of G at
high R̂OT is also influenced by cases with small L̂O and
even smaller LT, which tend to have larger mixing ef-
ficiency. Despite the differences between the numerical
and observational analyses, the main result of this sec-
tion, namely that newly created billows mix more ef-
ficiently than fully developed turbulence, is revealed by
both calculations.

e. Implications for observational estimates of the
turbulent diffusivity

Both numerical and observational data support the
conclusion that the flux coefficient decreases dramati-
cally as a billow grows and breaks down into turbulence.
This has significant implications for observational es-
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FIG. 14. Here Gd as a function of the length scale ratio R̂OT 5 LO/LT, for turbulent patches
observed in (a) TIWE and (b) FLX91. The ordinate is interpreted as a surrogate for time.

FIG. 15. Instantaneous flux coefficient Gi (based on three-dimen-
sional reordering) displayed as a function of R̂OT for simulations 1
(bullets), 2 (asterisks), and 3 (open circles). The horizontal axis is
reversed to facilitate interpretation as a time indicator. Results from
different simulations are displaced vertically for clarity. Also shown
are straight lines illustrating least squares fitted power-law relation-
ships of the form Gi 5 a . Values of the coefficients a and b arebR̂OT

given in Table 2.

TABLE 2. Coefficients for least squares fitted relations between the
instantaneous flux coefficient and the ratio of Ozmidov to Thorpe
scale: Gi 5 The Prandtl number is included for reference.bˆaR .OT

Simulation

1 2 3

a
b
Pr

0.3339
20.6293

7

0.4052
20.6292

4

0.5725
20.5859

1

timates of turbulent heat fluxes and diffusivities. Ob-
servational estimates of turbulent mass diffusivity are
often made using

2K 5 G«/N ,r (38)

which is derived by writing Bi 5 KrN 2 in (28). The
usual assumption is that G 5 0.2 (e.g., Smyth et al.
1996). This assumption is based primarily on laboratory
results (e.g., Ivey and Imberger 1991) and observed
mean values (e.g., Moum 1996b). What has been ne-

glected to date is the possible correspondence with the
state of the turbulence. The time dependence of the flux
coefficient in the present results suggests that diffusivity
estimates based on G 5 0.2 may be significantly in error.
The same applies to estimates of vertical heat and mass
fluxes made using the same method (Gregg 1987). The
assumption G 5 Gd represents a viable alternative, but
we have seen that this estimate is of limited validity,
particularly for young events.

As a step toward improved flux estimates, we look
now at the relationship between Gi and R̂OT from the
numerical data (Fig. 15). Since R̂OT is measurable, this
relation suggests a way to estimate the appropriate value
of Gi for a given observed turbulent event. The result
may then be substituted for G in (38) to obtain the tur-
bulent diffusivity. In all three simulations, the results
are well approximated by a power-law relation of the
form

bˆG 5 aR .i OT (39)

Least squares fitted values for the constants a and b
given in Table 2. The exponent b varies remarkably little
between the three cases, whereas the multiplier a varies
systematically, with larger values corresponding to
smaller Pr. We concluded in section 4b that Prandtl
number is the main determinant of the flux coefficient,
and therefore that simulation #1 best approximates
ocean turbulence in this respect. Accordingly, we sug-
gest that instantaneous flux coefficients be estimated
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FIG. 16. Estimated turbulent diffusivities Gi«/N 2 vs 0.2«N 2 for the (a) FLX91 and (b) TIWE
datasets. Here Gi is approximated using (40). Probability density functions for the diffusivity
estimates for (c) FLX91 and (d) TIWE. Bracketed quantities represent the median of each dis-
tribution.

using (39), with the parameter values derived from sim-
ulation 1, namely,

20.63ˆG ø 0.33R .i OT (40)

We now compute turbulent diffusivity estimates from
the observational datasets using (38), with G 5 Gi pro-
vided by (39), and compare the results with those ob-
tained assuming G 5 0.2 and G 5 Gd. In Fig. 16, we
show the relationship between diffusivities calculated
using Kr 5 0.2«/N 2 and those calculated using Kr 5
Gi«/N 2. In the latter case, Gi is estimated from the ob-
servational data using (40).

Figures 16a and 16c show the results for the FLX91
observations. When e/N 2 is large, there is no significant
difference in the two estimates. For small e/N 2, however,
use of the revised flux coefficient increases the diffu-
sivity estimate substantially. The result is a 50% in-
crease in the median of Kr. (The geometric mean be-
haves similarly.) In the TIWE observations (Figs. 16b
and 16d), turbulence levels are generally higher due to
the strong mean shear found in the equatorial under-
current. Nevertheless, the results of using (40) to pa-

rameterize the flux coefficient are similar to the mid-
latitude case. The median of Kr now increases by 60%.

Figure 17 shows the corresponding comparison with
the results obtained when Gd is used to estimate the
turbulent diffusivity. For the FLX91 data, the two meth-
ods give similar results. For the TIWE data, diffusivities
obtained using the Osborn–Cox method are larger than
those obtained using the parameterization (40). The pre-
sent results suggest that these estimates are exaggerated
due to the tendency of the Osborn–Cox approximation
to overestimate the flux coefficient for young overturns.
The difference is not evident in the FLX91 data, in
which young overturns are somewhat less prevalent (cf.
Fig. 8a).

5. Conclusions

We have employed a combination of numerical and
observational methods to investigate mixing as it
evolves over the lifetime of a turbulent overturn. Our
main focus has been the evolution of the instantaneous
flux coefficient Gi, which is closely related to the effi-
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FIG. 17. Scatterplots of the estimated turbulent diffusivities Gi«/N 2 vs Gd«/N 2 for the (a) FLX91
and (b) TIWE datasets. Here Gi is approximated using (40). Probability density functions for the
diffusivity estimates for (c) FLX91 and (d) TIWE. Bracketed quantities represent the median of
each distribution.

ciency of mixing. Because numerical and observational
technologies are each immune to problems that beset
the other, the combination reveals a picture that is much
more robust and comprehensive than would be possible
using either approach alone. The DNS data enable us
to test assumptions that are needed for the interpretation
of the observations, while the observational data allow
access to realistic parameter regimes that present-day
computers cannot simulate.

These analyses have clearly illustrated the difficulty
of defining an appropriate bulk stratification for realistic
stratified turbulence. This complication arises because
theories of stratified turbulence invariably assume a uni-
form background stratification, an idealization that is
never realized exactly in nature. The usual practice is
to use some average of the background density gradient
in the region of interest to represent the bulk stratifi-
cation. Here, we have described three separate defini-
tions: ^u,z&, , and ,z, all of which are equivalent inû ũ,z

uniform stratification but differ when stratification
varies with depth. The appropriate choice of averaging
operation depends upon the application. The most com-

mon choice is the simplest: the arithmetic mean, ^u,z&.
In section 4a, we described the alternative gradient

,z, in which the average is weighted by the local buoy-ũ
ancy flux. Use of this average, were it practical, would
improve the accuracy of the Osborn–Cox formulation.
Unfortunately, the averaging operation requires knowl-
edge of the buoyancy flux, which is usually what one
is trying to estimate. A more useful alternative gradient
was described in section 2c(2): an rms average weighted
by the local overturning scale. This yields an average
gradient that is weighted to favor overturning regions,
and an approximate expression for it, , (13), is easilyû,z

calculated from profiler data. Use of this bulk gradient
in the computation of the Ozmidov scale improves the
effectiveness of LO/LT as a gauge of turbulence evolu-
tion (section 3e). Also, , is conveniently insensitiveû,z

to the choice of patch boundaries. In summary, , wasû,z

used in the computation of L̂O and of the other turbu-
lence statistics compared in section 3. The simple arith-
metic mean was used in section 4 to calculate the Os-
born–Cox approximation to the flux coefficient Gd.
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Our first task in these analyses has been to test the
validity of the KH model for turbulent patches via com-
parison of various turbulence statistics. The results are
consistent with the hypothesis that KH billows represent
a valid model for the observed patches, both in the
Equatorial Undercurrent and in the midlatitude ther-
mocline. The length scale ratios we have computed and
compared with observations are all geometrical expres-
sions of the underlying dynamics of turbulence in a
stratified environment. Although Reynolds numbers are
limited by computer capacity, the length scale ratios
have proven to be entirely consistent with observations.
The only exception to this occurs late in the decay phase,
when the simulated flows enter a layered state that is
not captured in the present observational data, although
such states are often observed in sheared, stratified tur-
bulence (Ruddick et al. 1989). These states are excluded
from the present observations due to the difficulty of
measuring salinity (and thus density) on sufficiently
small scales. Statistics related to background shear are
missing from the comparisons due to the absence of
finescale shear information in the observational data.
Both this and the sparseness of the observational data
make it difficult to design a test that discriminates rig-
orously among different types of turbulence. It could
be that turbulence from other sources, for example, con-
vective or advective instability, would fare equally well
in some of the tests we have applied here.

The most serious discrepancy between model results
and observations is in the Reynolds number. DNS values
lie near or below the lowest observed values. This is
the main limitation of DNS as a tool for studying tur-
bulence. The implicit assumption in the interpretation
of these results is that the Reynolds number is high
enough to approximate a high Reynolds number limit,
so that further increases would make no significant dif-
ference to the results. We are confident that this as-
sumption is valid when the results of interest concern
only the physics of the dissipation range (e.g., Smyth
1999; Smyth and Moum 2000a). Once the dissipation
range is independent of the large scales, further increas-
es in Reynolds number have little effect. In contrast,
mixing efficiency is not purely a property of the dis-
sipation range. The flux coefficient of interest to us here
relates dissipation to the buoyancy flux, which is driven
by large eddies. It would therefore not be surprising if
G turned out to depend strongly on the Reynolds num-
ber. However, present indications are that this is not so.
Experiments in which the Reynolds number was varied
revealed no significant variation of Gi.

In summary, there is nothing here to disprove the
hypothesis that the relationships among the four vari-
ables Gi, Gd, R̂OT, and time are the same in the observed
flows as in the modeled flows, at least up until the final
stages of turbulence decay. Acceptance of this hypoth-
esis justifies using the DNS results as a guide to the
interpretation of the observational data. Accordingly, we
have proceeded as follows:

1) The dependence of Gi on time has been assessed for
the simulated flows.

2) The usefulness of R̂OT as a surrogate for time and of
Gd as a surrogate for Gi (assumptions 1 and 2 of the
Introduction) has been tested, again using the sim-
ulated flows.

3) The dependence of Gd on R̂OT, has been assessed
using the observational data, and compared with the
results of step 1 above.

We have shown that Gi is of order unity or greater for
preturbulent overturns, but then decreases dramatically
with the onset of turbulence (Figs. 9 and 10), asymp-
toting to a value not far from 0.2.

We have confirmed that, in a turbulence event driven
by shear instability, the ratio R̂OT increases monotoni-
cally with time (Fig. 8a; Wijesekera and Dillon 1997).
A convenient alternative expression of the time depen-
dence shown in Fig. 8a is given by

t N(t9) ˆt [ dt9 5 0.2 1 3.2 log R 6 0.5, (41)N E 10 OT2pto

which produces an estimate of the time, in buoyancy
periods, since the maximum R̂b was reached (at to, short-
ly after the transition to turbulence). The estimate is
also valid when tN , 0, that is, for preturbulent over-
turns. This result pertains to breaking KH billows with
Pr 5 7 and moderate Reynolds number, and may require
adjustment as a broader range of flows is investigated.
The error estimate 0.5 was derived using DNS case #1,
which is most closely representative of turbulent patches
in the thermocline.

We have also seen that Gd provides a reliable estimate
of the flux coefficient during much of the flow evolution
(Fig. 12). However, this estimate is severely affected by
nonstationarity during the initial overturning phase. The
observational data reveal that Gd is a well-defined, de-
creasing function of R̂OT.

The result of these analyses is a self-consistent pic-
ture, supported by both model and observations, in
which the flux coefficient decreases dramatically over
the lifetime of a turbulent overturn. Our description of
this evolution extends the previous results of Winters
et al. (1995), Caulfield and Peltier (2000), Smyth and
Moum (2000b), and Staquet (2000). The evolution of
Gi is determined more by the Prandtl number than by
the initial Reynolds number in these experiments. Early
in the evolution, peak mixing efficiency shows a con-
sistent increase with decreasing Prandtl number. In the
decay phase, the asymptotic value of G is near 0.2 for
Pr 5 7, 4, and 2, but is considerably larger (0.3–0.4)
for Pr 5 1.

We have explained mixing efficiency evolution in
terms of the alignment between the scalar gradient and
the strain field. In preturbulent flow, the strain field
evolves slowly, so that scalar gradients are able to main-
tain the optimal orientation for compression and mixing.
After transition, the strain field is greatly amplified, but
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it also fluctuates rapidly, so that the relative orientation
of the scalar gradient is generally far from optimal
(Smyth 1999). As a result, the mixing efficiency of fully
developed turbulence is smaller than would be expected
based on the magnitude of the strain alone.

The evolution of the flux coefficient in the present
experiments may be summarized by the parameteriza-
tion Gi 5 0.33 . Using this quantity as an alternative20.63R̂OT

to the traditional G 5 0.2 in the definition Kr 5 G«/N 2,
we have evaluated the turbulent diffusivity Kr in both
observational datasets. In each case, the result was a
50%–60% increase in the estimated median diffusivity.
Further development of this parameterization will re-
quire extension of the DNS database to higher Reynolds
numbers and more general flow geometries, as well as
consideration of the effects of parameters other than
R̂OT.

The preturbulent phase may be of secondary impor-
tance in circumstances where turbulence-driving shear
persists over long times, such as in the Equatorial Un-
dercurrent. In other cases, however, forcing is likely to
be more intermittent, with the result that the initial stage
of billow development contributes a more significant
fraction of the net mixing. Possible examples of this
include transient depression of the Richardson number
due to interference of gravity waves, the passage of an
internal soliton, and the approach of a gravity wave
packet to a critical layer. The present results suggest that
such events may exhibit mixing efficiency significantly
in excess of 0.2.
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