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ABSTRACT

Using the QG approximation, the stability of two-layer zonal flows on the beta plane over bottom topography
is examined. The topography is assumed to be one-dimensional, with the isobaths being directed at a fixed angle
to the streamlines of the flow. The horizontal spatial scale of bottom irregularities is assumed to be much shorter
than the deformation radius. The dispersion relation for the growth rate of baroclinic instability is determined,
the analysis of which demonstrated the following:

1) The effect of topography is the strongest when the isobaths are parallel to the wavevector of the disturbance.
If the isobaths are perpendicular to the wavevector, the topography does not affect the disturbance at all.

2) Topography weakens baroclinic instability and shifts the range of unstable disturbances toward the short-
wave end of the spectrum.

3) The effect of bottom topography on flows localized in a thin upper layer is relatively weak. Flows with a
‘‘thick’’ active layer are affected to a greater extent: for the Antarctic Circumpolar Current, for example,
bottom irregularities of mean height 200 m may diminish the growth rate of baroclinic instability by a factor
of 4.

1. Introduction

Most, if not all, oceanic currents are unstable. In most,
if not all, places in the ocean the bottom is uneven. The
important question, to which the present paper is de-
voted, is how bottom topography affects baroclinic in-
stability.

It should be noted that this issue has been discussed
in the literature before, with the conclusion that topog-
raphy is, mostly, a destabilizing influence upon oceanic
mesoscale motion. It has been demonstrated that to-
pography can ‘‘link’’ two disturbances propagating in
a parallel flow, which makes them grow and leads to
instability. In the simplest case of sinusoidal topogra-
phy, the frequencies v1,2 and wavevectors k1,2 of the
disturbances ‘‘linked’’ must satisfy the following res-
onance conditions:

v 5 v , k 5 k 1 k ,1 2 1 2 topo (1)

where ktopo is the ‘‘wavevector’’ of the (sinusoidal) to-
pography. This type of instability has been examined in
detail for the case where disturbances are barotropic
Rossby waves (Charney and Flierl 1981; Benilov 1985),
for baroclinic Rossby waves (De Szoeke 1983, 1986;
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Kroll 1999), and for surface/internal waves (Benilov
1987).

It should be emphasized, however, that in many in-
stances the horizontal spatial scale of oceanic topog-
raphy is small: | ktopo | k | k1,2 | , and (1) does not hold.
Thus, short-scale topography cannot cause instability;
its effect, as we shall see later, is quite the opposite—
short-scale bottom irregularities can stabilize the cur-
rent!

Short-scale bottom topography was first examined by
Rhines and Bretherton (1973) (barotropic case), and
McWilliams (1974) (baroclinic case), who demonstrated
that it can strongly change the dynamics of waves in
the ocean. These results have been later extended to
disturbances in a zonal jet by Benilov (2000a), who has
shown that even relatively small short-scale irregular-
ities (30–70 m in height, 5–10 km in horizontal scale)
can stabilize an otherwise unstable jet on the beta plane.
However, the setting in which this conclusion has been
obtained was too idealized to apply it to the ‘‘real’’
ocean. First, the topography was assumed to be one-
dimensional, with the isobaths being parallel to the
streamlines of the mean flow. Second, the flow was
assumed to be barotropic.

In the present paper, we mainly deal with the latter
shortcoming. The former shortcoming will be dealt with
only partially: we shall still consider one-dimensional
topography; however, the isobaths can be at an angle
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with the streamlines (this assumption will allow us, at
least, to find out which ‘‘orientation’’ of the topography
has the greatest impact on the stability of the flow).1

Our main assumption will be that the horizontal scale
of bottom irregularities is much smaller than the wave-
length of the disturbances, and we shall also impose a
certain restriction on the amplitude of topography.

In sections 2 and 3 of this paper, we shall derive the
dispersion relation for disturbances in a two-layer flow
without horizontal shear over one-dimensional topog-
raphy (for the sake of simplicity, we shall look at un-
bounded, horizontally homogeneous flows, not jets). In
section 4, we shall consider examples.

2. Governing equations

In this section, we shall introduce and scale the gov-
erning equations.

a. Quasigeostrophic flows over topography on the
beta plane

Consider a two-layer quasigeostrophic (QG) flow on
the beta plane. The streamfunctions c1,2 of the layers
(the subscript 1 marks the top layer) are governed by
the standard QG equations:

]
2[¹ c 2 h (c 2 c )]1 1 1 2]t

]c121 J[c , ¹ c 2 h (c 2 c )] 1 b 5 0,1 1 1 1 2 ]x

]
2[¹ c 2 h (c 2 c )]2 2 2 1]t

]c221 J[c , ¹ c 2 h (c 2 c ) 2 D] 1 b 5 0,2 2 2 2 1 ]x

where

2f 0h 5 ,1,2 g9H1,2

f 0 and b are the Coriolis parameter and its meridional
gradient, g9 is the acceleration due to gravity, H1,2 are
the mean depths of the layers, and

f0D 5 (H 2 H ) (2)0H2

1 The full two-dimensional problem turned out to be much more
complicated then its one-dimensional counterpart; as a result, very
limited progress has been achieved so far. Rhines and Bretherton
(1973) examined the case of quasi-two-dimensional topography (with
one of the two spatial scales being much larger than the other); and
Samelson (1992) examined (a particular case of ) topography with
horizontal scale comparable to the wavelength of the disturbance,
which is easier to treat numerically than short-scale topography. Fi-
nally, Vanneste (2000) and Benilov (2000b) examined the case of
sparse topography, consisting of well-separated isolated features.

describes the bottom topography [H(x, y) is the depth
of the ocean, and H0 is the mean value of H(x, y)]. First
we shall consider the simplest case of sinusoidal to-
pography:

D 5 D sinj, j 5 px 1 qy,0 (3)

where D0 and (p, q) are the amplitude and wavevector
of the topography (the latter is perpendicular to the di-
rection of the isobaths). The results obtained will then
be extended to a more general, but still one-dimensional,
case:

N

D 5 D sin(t j), j 5 px 1 qy, (4)O n n
n51

where tn are constants determining the length (but not
the direction) of the nth wavenumber of topography.
Observe that we do not require tn be commensurate;
thus (4) represents a quasiperiodic function.

We are interested in the stability of a vertically
sheared flow (which will be assumed to be homogeneous
in the horizontal). We shall exclude from consideration
near-bottom flows by assuming that the mean velocity
in the lower layer is zero. Following the usual procedure,
we put

c 5 2Uy 1 c9, c 5 c9 ,1 1 2 2

where U is the mean velocity in the upper layer, and
, describe the disturbance. Linearizing the gov-c9 c91 2

erning equations, we obtain

] ] ]c9121 U [¹ c9 2 h (c9 2 c9)] 1 (h U 1 b)1 1 1 2 11 2]t ]x ]x

5 0, (5)

] ]c9 ]D22[¹ c9 2 h (c9 2 c9)] 1 2h U 2 1 b2 2 2 1 21 2]t ]x ]y

]c9 ]D21 5 0. (6)
]y ]x

In stability studies, it is customary to consider harmonic
solutions. However, as the topography makes the prob-
lem at hand spatially nonhomogeneous, we cannot as-
sume harmonic dependence in the spatial variables. Still,
as a matter of convenience, we shall formally separate
the harmonic dependence on x and y from the depen-
dence on j (the latter is ‘‘induced’’ by topography).
Together with the harmonic dependence on time, this
yields

i(kx1ly2vt)c9 (x, y, t) 5 c̃ (j) e ,1,2 1,2 (7)

where v is frequency of the disturbance, (k, l) is the
wavevector, and 1,2 describes the horizontal structurec̃
of the disturbance (if there was no topography, 1,2c̃
would be constant). Equations (5)–(6) become (tildes
omitted)
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2] c ]c1 12 2(v 2 kU ) (p 1 q ) 1 2i(kp 1 lq)
2[ dj ]j

2 22 (k 1 l 1 h )c 1 h c1 1 1 2]
2] ] c ]c1 12 21 iUp (p 1 q ) 1 2i(kp 1 lq)

2[]j dj dj

2 22 (k 1 l 1 h )c 1 h c1 1 1 2]
]c11 (h U 1 b) ip 2 kc 5 0, (8)1 11 2dj

2] c ]c2 22 2v (p 1 q ) 1 2i(kp 1 lq)
2[ dj dj

]D
2 22 (k 1 l 1 h )c 1 h c 1 (qk 2 pl) c2 2 2 1 2] dj

]c22 (h U 2 b) ip 2 kc 5 0. (9)2 21 2dj

b. Scaling

The scaling of Eqs. (8)–(9) will be performed in two
steps. First, we shall estimate the terms in the governing
equations and identify the physical small parameters
involved. Second, we shall introduce a formal small
parameter and insert it in the equations.

Our main physical assumption is that the horizontal
spatial scale of topography LD is much smaller than the
wavelength of the disturbance:

LD
K 1,

l

where

2 2 21/2l 5 (k 1 l )

is the wavelength of the disturbance. We shall also need
to restrict the height of bottom irregularities; otherwise
their effect will dominate all other influences, and the
particles will move along isobaths (according to the Tay-
lor–Proudman theorem).

It should also be noted that our case (of flows without
horizontal shear) is simpler than the case of jets con-
sidered by Benilov (2000a), as the latter requires intro-
duction of a slow spatial variable associated with the
width of the jet. There is no such requirement in the
problem at hand, as we have eliminated the harmonic
dependence on the slow spatial variables by ‘‘splitting’’
the harmonic factor ei(kx1ly) from c1,2 [see (7)]. The re-
maining dependence is fast (determined by topography),
which leads to the following estimate:

] 1
; . (10)

dj LD

With regards to the depths of the layers, we shall
consider the case H1 ; H2 5 H0 (if H1 K H2, the
influence of bottom topography is weak anyway—see
section 4). We shall also assume that the wavelength of
the maximum-growth disturbance (which we are inter-
ested in) is comparable to the deformation radius

Ïg9H0
R 5 .d f0

The two assumptions lead to the following estimates:

22l ; R , h ; h ; R .d 1 2 d (11)

We also assume the following estimate for the frequency
of unstable disturbances,

U0v ; kU ; , (12)0 l

which always holds for all types of hydrodynamic in-
stability (U0 is the characteristic velocity scale). Finally,
we shall introduce

dH
D 5 f , (13)0 0 H0

where dH is the characteristic height of topography [see
definition (2) of D(x, y)].

In order to justify an asymptotic expansion similar to
the one used by Rhines and Bretherton (1973) and Ben-
ilov (2000a), we shall make the following assumption
regarding the terms in the lower-layer equation (8) [the
upper-layer equation (9) does not include topography;
hence it is less important]:

2] c ]D22 2v(p 1 q ) k (pl 2 qk) c22) ) ) )dj dj

2 2k max{|(k 1 l 1 h )c |, |bkc |}.2 2 2

(14)

Using estimates (10)–(13), we obtain

2 2f L dH L bL0 D D D1 k k max , . (15)
25 6U H l U0 0 0

To determine how well this condition holds for the real
ocean, we shall consider the example of the middle jet
of the Antarctic Circumpolar Current (ACC). Estimating
the parameters of the flow according to the paper of
Nowlin and Klinck (1986),

H 5 2000 m, H 5 2000 m, latitude 5 5981 2

Dr
24 215 5 3 10 , U 5 0.18 m s .

r0

Unfortunately, very little is known about the structure
of the short-scale component of oceanic bottom topog-
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raphy, and one can only assume, on a more or less ad
hoc basis, that

dH 5 200 m, L 5 5000 m.D

This leads to the following values of the small param-
eters involved into (15):

1 k 0.17 k max{0.029, 0.0014},

which indicates that our assumptions hold reasonably
well.

Now we are ready to develop an asymptotic expan-
sion corresponding to (15). We shall introduce a ‘‘for-
mal’’ small parameter « and scale the spatial variable
as follows:

j
j* 5 . (16)

«

Physically, « is the nondimensional equivalent of LD

and its smallness indicates that LD is smaller than the
other parameters associated with horizontal distance
(such as Rd, l, etc.). It should also be observed that, if
one substitutes LD ; « into (14) and takes the limit «
→ 0, (14) holds.

Substitution of (16) into (8)–(9) yields (asterisks
omitted)

2] c ]c1 12 2«(v 2 kU ) (p 1 q ) 1 2i«(kp 1 lq)
2[ dj ]j

2 2 2 22 « (k 1 l 1 h )c 1 « h c1 1 1 2]
2] ] c ]c1 12 21 iUp (p 1 q ) 1 2i«(kp 1 lq)

2[]j dj dj

2 2 2 22 « (k 1 l 1 h )c 1 « h c1 1 1 2]
]c121 « (h U 1 b) ip 2 «kc 5 0, (17)1 11 2dj

2] c ]c2 22 2v (p 1 q ) 1 2i«(kp 1 lq)
2[ dj dj

]D
2 2 2 22 « (k 1 l 1 h )c 1 « h c 1 «(qk 2 pl) c2 2 2 1 2] dj

]c22 «(h U 2 b) ip 2 «kc 5 0.2 21 2dj
(18)

In the next section, Eqs. (17)–(18) will be examined
asymptotically. The analysis is similar to that of the one-
layer case (Benilov 2000a), which is in turn similar to
that for waves in still water over topography (Rhines
and Bretherton 1973). However, the problem at hand
involves more cumbersome calculations than its pre-

decessors, and nonmathematically minded readers are
advised to skip the next section.

3. Asymptotic analysis

We shall expand the solution in a series in «:
(0) (1) (0) (1)c 5 c 1 «c 1 · · · , v 5 v 1 «v 1 · · · .1,2 1,2 1,2

In the zeroth-order, Eqs. (17)–(18) yield
3 (0) 2 (0)] c ] c1 25 0, 5 0.

3 2dj dj

Given the obvious requirement that is bounded as(0)c1,2

j → 6`, the solution of these equations is
(0)c (j) 5 A ,1,2 1,2 (19)

where A1 and A2 are constants. Equation (19) describes
an unperturbed (to the leading order) harmonic distur-
bance; a topography-induced, short-scale component
will appear in the next order.

In the next order, we obtain
3 (1)] c1 5 0, (20)

3dj

2 (1)] c ]D2(0) 2 2v (p 1 q ) 1 (qk 2 pl) A 5 0. (21)22dj dj

The (bounded as j → 6`) solution to Eq. (20) is (1)c1

5 const, but without loss of generality we can put
(1)c 5 01

(a constant can be ‘‘incorporated’’ into ). The(1) (0)c c1 1

solution to Eq. (21), in turn, will be first presented for
the sinusoidal case (3), for which we have

D (qk 2 pl)A0 2(1)c 5 cosj.2 (0) 2 2v (p 1 q )

In the second order, we obtain
3 (2)] c1 5 0,

3dj

2 (2) (1)] c ]c2 2(0) 2 2v (p 1 q ) 1 2i(pk 1 ql)
2[ dj dj

2 2 (0) (0)2 (l 1 k 1 h )c 1 h c2 2 2 1 ]
2 (1)] c ]D2(1) 2 2 (1)1 v (p 1 q ) 1 (qk 2 pl) c22dj dj

(1)]c2 (0)2 (h U 2 b) ip 2 kc 5 0. (22)2 21 2dj

Again, we can put
(2)c 5 0.1

Next, we rewrite (22) in the form
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FIG. 1. Examples of topography that (a) does and (b) does not
affect the stability of a disturbance. The arrow shows the direction
in which the disturbance is propagating.

2 (2)] c2(0) 2 2v (p 1 q ) 5 const 1 const 3 sin2j1 22dj

1 const 3 cos2j, (23)3

where
(0) 2 2const 5 v [2(l 1 k 1 h )A 1 h A ]1 2 2 2 1

2 2D (lp 2 kq) A0 21 1 k(h U 2 b)A2 2(0) 2 22v (p 1 q )

(we do not need the expressions for const2,3). Clearly,
(23) has a bounded solution if, and only if, const1 5 0;
that is,

(0) 2 2v [2(l 1 k 1 h )A 1 h A ]2 2 2 1

2 2D (lp 2 kq) A0 21 1 k(h U 2 b)A 5 0. (24)2 2(0) 2 22v (p 1 q )

Similarly, in the third order, we obtain one more equa-
tion involving A1,2 [unlike (24), it will result from the
upper-layer equation]:

(0) 2 2(v 2 kU )[2(l 1 k 1 h )A 1 h A ]1 1 1 2

2 (h U 1 b)kA 5 0. (25)1 1

Equations (24)–(25) form a set of linear homogeneous
equations for A1,2, which has a nontrivial solution only
if its determinant vanishes. Omitting the superscript (0),
we obtain

2 2[v(K 1 h ) 1 k(b 2 UK )]1

2 2(lp 2 kq) s
2 23 v (K 1 h ) 1 vk(b 2 Uh ) 22 2 2 2[ ]p 1 q

22 v (v 2 kU )h h 5 0,1 2 (26)

where
2D02 2 2 2K 5 k 1 l , s 5

2

(the latter can be interpreted as the mean-square
‘‘strength’’ of bottom irregularities).

This cubic equation is the desired dispersion relation
for disturbances in a two-layer flow over topography.
If Imv . 0, the flow is unstable.

4. Discussion

1) The three roots of the dispersion relation (26) cor-
respond to the barotropic, baroclinic, and topograph-
ic modes.

2) One can rewrite the topographic term of the disper-
sion relation (26) as follows:

2 2(lp 2 kq) s
2 25 |k 3 e| s , (27)

2 2p 1 q

where k 5 (k, l) and e is the unit vector in the

direction of (p, q). Thus, the effect of topography
(at least, to the leading order) does not depend on
the horizontal spatial scale of topography [which can
be defined as, say, (p2 1 l2)21/2]. This agrees with
the one-layer findings of Rhines and Bretherton
(1973) and Benilov (2000a).

The independence of the leading-order results on
the scale of topography indicates that our conclu-
sions may be more robust than what was originally
assumed. A definitive answer to this question can be
obtained through calculation of the next-order cor-
rections and comparison of those to the leading order.

3) It is also worth observing that the topographic term
(27) reaches its maximum when the wavevector of
the disturbance is parallel to the isobaths [or, equiv-
alently, perpendicular to the topographic wavevector
(p, q)]. On the other hand, when (l, k) is parallel to
(p, q), the topographic term vanishes. These conclu-
sions are illustrated in Fig. 1.

In order to understand the physical meaning of
this result, observe that QG disturbances induce
transverse displacement of fluid particles. Naturally,
the particles are not sensitive to those bottom irreg-
ularities that are parallel to the direction of their
motion. On the other hand, if the isobaths are parallel
to (l, k), the bottom irregularities are perpendicular
to the direction of the particles’ motion and thus
constrain the latter.

4) The case of the quasiperiodic topography (4) is very
similar to the sinusoidal case. It results in exactly
the same dispersion relation (26), with the expected
modification in the expression for the mean-square
‘‘strength’’ of topography:

N1
2 2s 5 D .O n2 n51
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TABLE 1. The parameters of the Antarctic Circumpolar Current: u
is the latitude, H1,2 are the depth of the layers, Dr/r0 is the relative
density difference, U is the mean velocity averaged over the depth
of the upper layer.

u H1 (m) H2 (m)
Dr/r0

3 104 U (m s21)

Northern jet
Middle jet
Southern jet

578
598
618

1600
2000
1800

2400
2000
1700

6
5
4

0.13
0.18
0.12

TABLE 3. The wavelength of maximum growth for baroclinic in-
stability with and without topography. The mean-square height of
bottom irregularities is 200 m.

Flat bottom Topography

Northern jet
Middle jet
Southern jet

190
175
140

65
70
45

FIG. 2. The nondimensional growth rate of baroclinic instability
vs nondimensional zonal wavenumber, for the southern jet of the
ACC (Rd is the deformation radius associated with the total depth of
the ocean; U is mean velocity in the upper layer): (1) flow over flat
bottom and (2) flow over topography (the mean height of irregularities
is 200 m). The text labels show the e-folding times and wavelengths
corresponding to the maximum growth rates.

TABLE 2. The e-folding times (days) for baroclinic instability with
and without topography. The mean-square height of bottom irregu-
larities is 200 m.

Flat bottom Topography

Northern jet
Middle jet
Southern jet

9
6
7

28
15
28

Observe that in both (sinusoidal and quasi-periodic)
cases we can put

2f 02 2s 5 (H 2 H ) ,02H2

where is the mean-square height of bot-2(H 2 H )0

tom irregularities.
5) Finally, we note that the problem at hand cannot be

analyzed using the usual criteria based on the mono-
tonicity of potential vorticity (PV). It can be shown
that the PV change ‘‘contributed’’ by short-scale to-
pography is much faster than the ‘‘contribution’’ of
the flow. As a result, the total PV field (taking into
account both flow and topography) always oscillates
and is never monotonic, which renders the usual sta-
bility criteria useless [see Benilov (2000a), who dis-
cussed this question in detail for the barotropic case].

5. Examples

In order to estimate how strongly bottom topography
affects baroclinic instability, we solved the dispersion
relation (26) numerically for the parameter values cor-
responding to the three jets of the Antarctic Circumpolar
Current [see Table 1 and Nowlin and Klinck (1986)].
The mean-square height of bottom irregularities was
assumed to be 200 m. The results are shown in Tables
2 and 3.

It can be seen that bottom topography

R weakens baroclinic instability by a factor of 2.5–4,
and

R shifts the range of unstable disturbances towards the
short-wave end of the spectrum by a factor of 2–3.5.

These conclusions are illustrated in Fig. 2, which de-
picts the growth rate of baroclinic instability with and
without topography for the southern jet of the ACC.
Note that, for simplicity, we put l 5 0 (l is the meridional

wavenumber of the disturbance) and assumed that the
isobaths are parallel to the flow.

In order to place our results in a broader context of
the literature on the ACC, we shall qualitatively com-
pare our results to the findings of Treguier and Mc-
Williams (1990), who concluded that the short-scale
component of topography affects baroclinic instability
by modifying the dynamics of the large-scale flow. This
coincides exactly with the conclusions of this work (re-
call that, in our model, short-scale topography generates
a short-scale disturbance, which in turn influences the
zero-order large-scale solution). It should be noted,
however, that the term ‘‘short-scale’’ of Treguier and
McWilliams (1990) meant ‘‘smaller than 208 km’’ (and
‘‘large-scale’’ meant ‘‘between 208 km and 400 km’’).
In addition to this, the numerical model used in their
work, unfortunately, did not resolve the scales that
would be of interest to us (5–10 km).

It would be natural to expect that the influence of
bottom topography on baroclinic instability becomes
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FIG. 3. The nondimensional growth rate of baroclinic instability
vs nondimensional wavenumber, for the southern jet of the ACC with
the depths of the layer changed to (28) (Rd is the deformation radius
associated with the total depth of the ocean; U is mean velocity in
the upper layer): (1) flow over flat bottom and (2) flow over topog-
raphy (the mean height of irregularities is 200 m). The text labels
show the e-folding times and wavelengths corresponding to the max-
imum growth rates.

weaker if the upper (active) layer of the ocean becomes
thinner than the passive layer (due to ‘‘shielding’’ of
the flow by the latter). To examine this effect, the growth
rate of the instability has been computed for the param-
eters of the southern jet of the ACC, but with the depths
of the layers changed to

H 5 500 m, H 5 3000 m.1 2 (28)

The results are shown in Fig. 3, which demonstrates that
the effect of topography is still noticeable, although
weaker.

6. Conclusions

We have examined the effect of short-scale bottom
topography on baroclinic instability and obtained the
following conclusions.

1) To the leading order, the effect of topography does
not depend on its horizontal spatial scale, but rather
on its ‘‘orientation’’ with respect to the flow (it is
the strongest when the isobaths are parallel to the
wavevector of the disturbance). If the isobaths are
perpendicular to the wavevector, the topography
does not affect the disturbance at all.

2) Topography weakens baroclinic instability and shifts
the range of unstable disturbances towards the short-
wave end of the spectrum.

3) The effect of bottom topography on flows localized
in a thin upper layer is relatively weak. Flows with
a ‘‘thick’’ active layer are affected to a greater extent:
for the ACC, for example, bottom irregularities of
mean height 200 m may diminish the growth rate of
baroclinic instability by a factor of 4.

REFERENCES

Benilov, E. S., 1985: Instability of large-scale zonal flow over an
uneven bottom. Dokl. Akad. Nauk SSSR, 285, 281–285.

——, 1987: Dynamics of ideal fluid flows over an uneven bottom.
J. Fluid Mech., 185, 551–568.

——, 2000a: The stability of zonal jets in a rough-bottomed ocean
on the barotropic beta plane. J. Phys. Oceanogr., 30, 733–740.

——, 2000b: Waves on the beta-plane over sparse topography. J.
Fluid Mech., 423, 263–273.

Charney, J. G., and G. R. Flierl, 1981: Oceanic analogues of large-
scale atmospheric motions. Evolution of Physical Oceanography,
C. Wunsch and B. Warren, Eds., The MIT Press, 504–548.

De Szoeke, R. A., 1983: Baroclinic instability over wavy topography.
J. Fluid Mech., 130, 279–208.

——, 1986: On the nonlinear evolution of baroclinic instability over
topography. Dyn. Atmos. Oceans, 10, 221–241.

Kroll, J., 1999: On the chaotic evolution of baroclinic instability of
wave–wave interactions with topography. J. Mar. Res., 57, 47–
88.

McWilliams, J. C., 1974: Forced transient flows and small-scale to-
pography. Geophys. Fluid Dyn., 6, 49–79.

Nowlin, W. D., and J. M. Klinck, 1986: The physics of the Antarctic
Circumpolar Current. Rev. Geophys., 24, 469–491.

Rhines, P. B., and F. Bretherton, 1973: Topographic Rossby waves
in a rough-bottomed ocean. J. Fluid Mech., 61, 583–607.

Samelson, R. M., 1992: Surface-intensified Rossby waves over rough
topography. J. Mar. Res., 50, 367–384.

Treguier, A. M., and J. C. McWilliams, 1990: Topographic influences
on wind-driven, stratified flow in a b-plane channel: An idealized
model for the Antarctic Circumpolar Current. J. Phys. Ocean-
ogr., 20, 321–343.

Vanneste, J., 2000: Rossby-wave frequency change induced by small-
scale topography. J. Phys. Oceanogr., 30, 427–431.


