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Abstract

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have
played a significant role in the theory of cryptography. However, lack of efficiency has prevented them
from being used in practice. One of the roots of this inefficiency is that non-interactive zero-knowledge
proofs have been constructed for general NP-complete languages such as Circuit Satisfiability, causing
an expensive blowup in the size of the statement when reducing it to a circuit. The contribution of this
paper is a general methodology for constructing very simple and efficient non-interactive zero-knowledge
proofs and non-interactive witness-indistinguishable proofs that work directly for groups with a bilinear
map, without needing a reduction to Circuit Satisfiability.

Groups with bilinear maps have enjoyed tremendous success in the field of cryptography in recent
years and have been used to construct a plethora of protocols. This paper provides non-interactive witness-
indistinguishable proofs and non-interactive zero-knowledge proofs that can be used in connection with
these protocols. Our goal is to spread the use of non-interactive cryptographic proofs from mainly theo-
retical purposes to the large class of practical cryptographic protocols based on bilinear groups.
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1 Introduction

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have played a
significant role in the theory of cryptography. However, lack of efficiency has prevented them from being
used in practice. Our goal is to construct efficient and practical non-interactive zero-knowledge (NIZK)
proofs and non-interactive witness-indistinguishable (NIWI) proofs.

Blum, Feldman and Micali [BFM88] introduced NIZK proofs. Their paper and subsequent work, e.g.
[FLS99, Dam92, KP98, DDP02], demonstrates that NIZK proofs exist for all of NP. Unfortunately, these
NIZK proofs are all very inefficient. While leading to interesting theoretical results, such as the construction
of public-key encryption secure against chosen ciphertext attack by Dolev, Dwork and Naor [DDNQQ], they
have therefore not had any impact in practice.

Since we want to construct NIZK proofs that can be used in practice, it is worthwhile to identify the roots
of the inefficiency in the above mentioned NIZK proofs. One drawback is that they were designed with a
general NP-complete language in mind, e.g. Circuit Satisfiability. In practice, we want to prove statements
such as “the ciphertextencrypts a signature on the messageor “the three commitments,, ¢;, c. contain
messages, b, ¢ soc = ab”. An NP-reduction of even very simple statements like these gives us big circuits
containing thousands of gates and the corresponding NIZK proofs become very large.

While we want to avoid an expensive NP-reduction, it is still desirable to have a general way to express
statements that arise in practice instead of having to construct non-interactive proofs on an ad hoc basis. A
useful observation in this context is that many public-key cryptography protocols are based on finite abelian
groups. If we can capture statements that express relations between group elements, then we can express
statements that come up in practice such as “the commitnagnts, c. contain messages $0= ab” or
“the plaintext ofc is a signature omn”, as long as those commitment, encryption, and signature schemes
work over the same finite group. In the paper, we will therefore construct NIWI and NIZK proofsdop-
dependentanguages.

The next issue to address is where to find suitable group-dependent languages. We will look at state-
ments related to groups with a bilinear map, which have become widely used in the design of cryptographic
protocols. Not only have bilinear groups been used to give new constructions of such cryptographic staples
as public-key encryption, digital signatures, and key agreement (see [DBS04] and the references therein),
but bilinear groups have enabled the first constructions achieving goals that had never been attained be-
fore. The most notable of these is the Identity-Based Encryption scheme of Boneh and Franklin [BF03]
(see also [Wat05]), and there are many others, such as Attribute-Based Encryption [SW05, GPSWO06],
Searchable Public-Key Encryption [BCOP04, BSW06, BW06], and One-time Double-Homomorphic En-
cryption [BGNO5]. For an incomplete list of papers (currently over 200) on the application of bilinear groups
in cryptography, see [Bar06].

1.1 Our Contribution

For completeness, let us recap the definition of a bilinear grBlgase note that for notational convenience
we will follow the tradition of mathematics and use additive notdtifam the binary operations ir;; and

G2. We have a probabilistic polynomial time algorithgrthat takes a security parameter as input and outputs
(Il7 G1,Go,Gp,e, P, PQ) where

e (G1,G9, G are descriptions of cyclic groups of order

e The element$;, P, generatdz, andGy respectively.

We remark that in the cryptographic literature it is more common to use multiplicative notation for these groups, since the
“discrete log problem” is believed to be hard in these groups, which is also important to us. In our setting, however, it will be much
more convenient to use multiplicative notation to refer to the action of the bilinear map (see below).



e ¢ : (G1 X Gy is anon-degenerate bilinear mapes®; , P,) generates: and for alla, b € Z,, we have
e(aPy,bPs2) = 6(771,732)ab.

e We can efficiently compute group operations, compute the bilinear map and decide membership.

In this work, we develop a general set of highly efficient techniques for proving statements involving
bilinear groups. The generality of our work extends in two directions. First, we formulate our constructions
in terms of modules over commutative rings with an associated bilinear map. This framework captures all
known bilinear groups with cryptographic significance — for both supersingular and ordinary elliptic curves,
for groups of both prime and composite order. Second, we consider all mathematical operations that can
take place in the context of a bilinear group - additiozinandG,, scalar point-multiplication, addition or
multiplication of scalars, and use of the bilinear map. We also allow both group elements and exponents to
be “unknowns” in the statements to be proven.

With our level of generality, for example it would be easy to write down a short statement, using the
operations above, that encodesis an encryption of the value committed todrunder the product of the
two keys committed to im andb” where the encryptions and commitments being referred to are existing
cryptographic constructions based on bilinear groups. Logical operations like AND and OR are also easy to
encode into our framework using standard techniques in arithmetization.

The proof systems we build an@n-interactive This allows them to be used in contexts where interaction
is undesirable or impossible. We first build highly efficient witness-indistinguishable proof systems, which
are of independent interest. We then show how to transform these into zero-knowledge proof systems. We
also provide a detailed examination of the efficiency of our constructions in various settings (depending on
what type of bilinear group is used).

The security of constructions arising from our framework can be baseahpaof a variety of computa-
tional assumptions about bilinear groups (3 of which we discuss in detail here). Thus, our techniques do not
rely on any one assumption in particular.

Informal statement of our results. We consider equations over variables frém G» andZ,, as described
in Figure 1. We construct efficient witness-indistinguishable proofs for the simultaneous satisfiability of a
set of such equations. The witness-indistinguishable proofs have perfect completeness and there are two
computationally indistinguishable types of common reference strings giving respectively perfect soundness
and perfect witness indistinguishability. We refer to Section 2 for precise definitions.

We also consider the question of non-interactive zero-knowledge. We show that we can give zero-
knowledge proofs for multi-scalar multiplication @&; or G5 and for quadratic equations if,. We can
also give zero-knowledge proofs for pairing product equations wyith- 1. Whenty # 1 we can still give
zero-knowledge proofs if we can fifé, Q1, ..., Py, Q, such thatr =[], e(P;, Q;).

Instantiation 1: Subgroup decision. Throughout the paper, we will give a general description of our tech-
niques. We will also offer three instantiations that illustrate the use of our techniques. The first instantiation
is based on the composite order groups introduced by Boneh, Goh and Nissim [BGNO5]. Here we generate a
composite order bilinear groum, G, G, e, P) wheren = pq. We can writeG' = G, x G4, whereGp, Gq

are the subgroups of orderandq respectively. Boneh, Goh and Nissim introduce the subgroup decision
assumption, which says that it is hard to distinguish a random elementdriyom a random element from

Gq. In this paper, we will demonstrate that assuming the hardness of the subgroup decision problem there
exists a witness-indistinguishable proof for satisfiability of a set of equations from Figure 1 in the subgroup
Gp and the ordep subgroup ofG'r.

Instantiation 2: SXDH. Let (p,G1,G2,Gr,e,P1,P2) be a prime order bilinear group. The external
Diffie-Hellman (XDH) assumption is that the decisional Diffie-Hellman (DDH) problem is hard in one of the
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Variables: Xy,..., X, €G1, Vi,...,. V0 €Ga, T1,..., T/, Y1,--.,Yn € Ly. FOOLNOLE.

Pairing product equation:

He(Aia yz) . He(X'L?BZ) . H H e(Xi7yj)’Yij — tT ,
=1 i=1 i=1 j=1
for constants4; € G1,B; € Ga,tr € Gr,%ij € Zn.

Multi-scalar multiplication equation in G:

Zyz-A ‘|‘be +ZZ'71JyJX —,Tla

=1 j=1
for constantsd;, 7; € G andb;, v;j € Zn. Footnoté.

Multi-scalar multiplication equation in G5:

Zaz% Z%B +ZZ%$JJ = Ty,

=1 j=1
for constants3;, 7o € G2 anda;, vij € Zn.

Quadratic equation in Z,:

Zazyz + szb + Z Z’V@jxly] =1,

=1 j=1

for constantsi;, v;j,t € Zn.

#We list variables irZ, in two separate groups because we will treat them differently in the NIWI proofs. If we wish to
deal with only one group of variables i, we can add equations #, of the formz, = y1, 2 = y2, etc.
with multiplicative notation, these equations would be multi-exponentiation equations. We use additive notafign|for
and(s, since this will be notationally convenient in the paper, but stress that the discrete logarithm problem will typically be
hard in these groups.

Figure 1: Equations over groups with bilinear map.

groupsG; or G [Sco02, BBS04, BGAMMO5, GRO04, Ver04]. The Symmetric XDH assumption is that the
DDH problem is hard in both’; andG». We will construct a witness-indistinguishable proof for satisfiability
of a set of equations of the form given in Figure 1 under the SXDH assumption.

Instantiation 3: DLIN. The decisional linear assumption (DLIN) for a prime order bilin-
ear group (p,G,Gr,e,P) introduced by Boneh, Boyen and Shacham [BBSO04] states that given
(aP, BP,raP,spP,tP) for randome, 8,7, s € Zp it is hard to tell whethet = r + s or ¢ is random.
Assuming the hardness of the DLIN problem, we will suggest a witness-indistinguishable proof for satisfia-
bility of a set of equations from Figure 1.

The instantiations illustrate the variety of ways bilinear groups can be constructed. We can choose prime
order groups or composite order groups, we can l@ave= Go andG; # G4, and we can make various
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cryptographic assumptions. All three security assumptions have been used in the cryptographic literature to
build interesting protocols.

For all three instantiations, the techniques presented here yield very efficient witness-indistinguishable
proofs. In particular, the cost in proof size of each extra equation is constant and independent of the number
of variables in the equation. The size of the proofs, can be computed by adding the cost, measured in group
elements from7; or G5, of each variable and each equation listed in Figure 2. We refer to Section 7 for
more detailed tables.

Subgroup decision SXDH DLIN
Variable inG; or Gy 1 2 3
Variable inZy, or Zy 1 2 3
Paring product equation 1 8 9
Multi-scalar multiplication inG; or G» 1 6 9
Quadratic equation ifi,, or Zj, 1 4 6

Figure 2: Number of group elements each variable or equation adds to the size of a NIWI proof.

1.2 Related Work

As we mentioned before, early work on NIZK proofs demonstrated that all NP-languages have non-
interactive proofs, however, did not yield efficient proofs. One cause for these proofs being inefficient in
practice was the need for an expensive NP-reduction to e.g. Circuit Satisfiability. Another cause of ineffi-
ciency was the reliance on the so-called hidden bits model, which even for small circuits is inefficient.

Groth, Ostrovsky, and Sahai [GOS06b, GOS06a] investigated NIZK proofs for Circuit Satisfiability using
bilinear groups. This addressed the second cause of inefficiency since their techniques give efficient proofs for
Circuit Satisfiability, but to use their proofs one must still make an NP-reduction to Circuit Satisfiability thus
limiting the applications. We stress that while [GOS06b, GOS06a] used bilinear groups, their application
was to build proof systems for circuit satisfiability. Here, we devise entirely new techniques to deal with
general statemengoutbilinear groups, without having to reduce to an NP-complete language.

Addressing the issue of avoiding an expensive NP-reduction we have works by Boyen and Waters [BWO06,
BWO7] that suggest efficient NIWI proofs for statements related to group signatures. These proofs are based
on bilinear groups of composite order and rely on the subgroup decision assumption.

Groth [Gro06] was the first to suggest a general group-dependent language and NIZK proofs for state-
ments in this language. He investigated satisfiability of pairing product equations and only allowed group
elements to be variables. He also looked only at the special case of prime order@raupsvith a bilinear
mape : G x G — Gp and, based on the decisional linear assumption [BBS04], constructed NIZK proofs
for such pairing product equations. However, even for very small statements, the very different and much
more complicated techniques of Groth yield proofs consisting of thousands of group elements (whereas ours
would be in the tens). Our techniques are much easier to understand, significantly more general, and vastly
more efficient.

We summarize our comparison with other works on NIZK proofs in Figure 3.

Inefficient Efficient
Circuit Satisfiability E.g. [KP98] [GOS06b, GOS064]
Group-dependent languagdGro06] (restricted case)) This work

Figure 3: Classification of NIZK proofs according to usefulness.



We note that there have been many earlier works (starting with [GMR89]) dealing with effitierstc-
tive zero-knowledge protocols for a number of algebraic relations. Here, we focusmsimteractiveproofs.
We also note that even for interactive zero-knowledge proofs, no set of techniques was known for dealing
with general algebraic assertions arising in bilinear groups, as we do here.

1.3 New Techniques

[GOS06b, GOS06a, Gro06] start by constructing non-interactive proofs for simple statements and then com-
bine many of them to get more powerful proofs. The main building block in [GOS06b], for instance, is a
proof that a given commitment contains either 0 or 1, which has little expressive power on its own. Our
approach is the opposite: we directly construct proofs for very expressive languages; as such, our techniques
are very different from previous work.

The way we achieve our generality is by viewing the groGgsGz, G as modules over the ring,.
The ringZ,, itself can also be viewed as7g,-module. We therefore look at the more general question of sat-
isfiability of quadratic equations ové&h,-modulesA;, As, Ar with a bilinear map, see Section 3 for details.
Since many bilinear groups with various cryptographic assumptions and various mathematical properties can
be viewed as modules we are not bound to any particular bilinear group or any particular assumption.

Given modulesA, As, A7 with a bilinear map, we construct new modulBs, B>, By, also equipped
with a bilinear map, and we map the elementslin As, A into By, Bs, Br. These modules will typically
be larger modules, which give us space to hide the elements ofl;, A7. More precisely, we devise
commitment schemes that map variables frdm A,, A to the modulesB;, Bs, By. The commitment
schemes are homomorphic with respect to the module operations but also with respect to the bilinear map.

Our techniques for constructing witness-indistinguishable proofs are fairly involved mathematically, but
we will try to present some high level intuition here. (We give more detailed intuition later in Section 6, where
we present our main proof system). The main idea is the following: because our commitment schemes are
homomorphicandwe equip them with a bilinear map, we can take the equation that we are trying to prove,
and just replace the variables in the equation with commitments to those variables. Of course, because the
commitment schemes are hiding, the equations will no longer be valid. Intuitively, however, we can extract
out the additional terms introduced by the randomness of the commitments: if we give away these terms in the
proof, then this would be eonvincingproof of the equation’s validity (again, because of the homomorphic
properties). But, giving away these terms might destroy witness indistinguishability. Suppose, however, that
there is only one “additional term” introduced by substituting the commitments. Then, because it would be
the unique value which makes the equation true, giving it away would preserve witness indistinguishability!
In general, we are not so lucky. But if there are many terms, that means that these terms are not unique, and
because of the nice algebraic environment that we work in, we can randomize these terms so that the equation
is still true, but so that we effectively reduce to the case of there being a single term being given away with a
unigue value.

1.4 Applications

Building on our work, Chandran, Groth and Sahai [CGS07] have constructed ring-signatures of sub-linear
size using the NIWI proofs in the first instantiation, which is based on the subgroup decision problem. Groth
and Lu [GLO7] have used the NIWI and NIZK proofs from instantiation 3 to construct a NIZK proof for the
correctness of a shuffle. Groth [Gro07] has used the NIWI and NIZK proofs from instantiation 3 to construct

a fully anonymous group signature scheme. Independently of our work Boyen and Waters [BW06, BW07]
constructed non-interactive proofs that they used for group signatures. These proofs can be seen as examples
of the NIWI proofs in instantiation 1. Also, by attaching NIZK proofs to semantically secure public-key
encryption in any instantiation we get an efficient non-interactive verifiable cryptosystem. Boneh [Bon06]



has suggested using this for optimistic fair exchange [Mic03], where two parties use a trusted but lazy third
party to guarantee fairness.

2 Non-interactive Witness-Indistinguishable Proofs

Let R be an efficiently computable ternary relation. For triplgts, x, w) € R we call gk the setupy the
statement ana the witness. Given somgk we let L be the language consisting of statement&inFor

a relation that ignoregk this is of course the standard definition of an NP-language. We will, however, be
more interested in the case whefedescribes a bilinear group.

A non-interactive proof system for a relatidtiwith setup consists of four probabilistic polynomial time
algorithms: a setup algorithi@i, a CRS generation algorithifi, a proverP and a verifierl. The setup
algorithm outputs a setufyk, sk). In our papergk will be a description of a bilinear group. The setup
algorithm may output some related informatieh, for instance the factorization of the group order. A
cleaner case, however, is whehis just the empty string, meaning the protocol is built on top of the group
without knowledge of any trapdoors. The CRS generation algorithm taiesk) as input and produces
a common reference string The prover takes as inplyk, o, z, w) and produces a proaf. The verifier
takes as inputgk, o, xz, ) and outputs 1 if the proof is acceptable and 0 if rejecting the proof. We call
(G, K, P,V) a non-interactive proof system fdt with setupg if it has the completeness and soundness
properties described below.

PERFECT COMPLETENESSFor all adversariegl we have
Pr [(gk,sk) — G(1%); 0 — K (gh, sh); (v, w) — A(gh, 0);m — P(gk,,,w) :

Vgk,o,z,m) =11if (gk,z,w) € R] =1.

PERFECT SOUNDNESSFor all adversariegl we have
Pr {(gk:,sk) — G(1%);0 — K(gk, sk); (z,7) — A(gk,0) : V(gk,0,z,7) =0if x ¢ L| = 1.

In the standard definition of soundness defined above, the adversary is successful if creating a valid
proof forx ¢ L. We will generalize this notion to what we will call co-soundness, where the adversary is
successful if creating a valid proof far € L, for some languagé..,, which may depend opk ando.
Standard soundness is a special case of co-soundneskwibkeing the complement df.

PERFECTL.,-SOUNDNESS For all adversaries! we have

Pr [(gk,sk) — G(1%); 0 — K(gk, sk); (z,7) — A(gk,0) : V(gk,o,2,m) = 0if z € LCO] =1.

COMPOSABLE WITNESS INDISTINGUISHABILITY. In this paper, we will use a strong definition of witness
indistinguishability. We introduce a reference string simul&tohat generates a simulated CRS. We require
that the adversary cannot distinguish a real CRS from a simulated CRS. We also require that on a simulated
CRS it isperfectlyindistinguishable which witness the prover used.

In other words, for all non-uniform polynomial time adversaties/e have

Pr [(gk, sk) — G(1%); 0 — K(gk, sk) : A(gk,o) = 1}

~ Pr [(gk,sk) — G(1%);0 «— S(gk, sk) : A(gk,0) = 1]



and
Pr [(gh, 5k) — G(1); 0 — S(gh, sk); (3, wo, w1) — A(gh, 0);m — P(gh, 0,3, wo) : Alr) = 1]

= Pr|(gh.sk) — G(1");0  S(gk, sk); (w,wo,w1) — Algh, o) 7  Plgh,o,,w1) : Ar) = 1],
where we requirégk, =, wy), (gk, x,w1) € R.
COMPOSABLE ZERGKNOWLEDGE. Composable zero-knowledge [Gro06] is a strengthening of the usual
notion of non-interactive zero-knowledge. First, we require that an adversary cannot distinguish a real CRS
from a simulated CRS. Second, we require that the adveeag,when it gets access to the secret simulation
keyr, cannot distinguish real proofs on a simulated CRS from simulated proofs.

In other words, there exists a polynomial time simuldt®y, S2) so for all non-uniform polynomial time
adversariesAd we have

Pr [(gk, sk) — G(1F): 0 — K(gk, sk) : A(gk, o) = 1]
~ Pr [(gk, sk) — G(1¥); (0, 7) — Sy(gk, sk) : A(gk, o) = 1},
and
Pr [(gh, sk) < G(1%): (0,7)  Su(gh, sk); (z,w) — Algk, 0, 7); 7  Plgk,o,2,w) : A(m) =1]
= Pr[(gh,sk) — G(1%); (0,7) — S1(gk, sk); (z,w) — Algh, 0, 7);m — Sa(gh,o,7,2) : Alr) = 1],

where we required outputs(gk, z, w) € R.

3 Modules with Bilinear Maps

Let (R,+,-,0,1) be a finite commutative ring. Recall that &module A is an abelian groupA, +,0)
where the ring acts on the group such that

Vr,s€ RVz,y€ A : (r+s)x=rx+sx ANr(z+y)=rz+ry A r(sz)=(rs)z A lz =z.

A cyclic groupG of ordern can in a natural way be viewed a¥Zg-module. We will observe that all
the equations in Figure 1 can be viewed as equations@yanodules with a bilinear map. To generalize
completely, letR be a finite commutative ring and let;, A2, Ar be finite R-modules with a bilinear map

f: Ay x A — Ap. We will consider quadratic equations over variabtes. .., z,, € A1,y1,...,yn € Ag
of the form
n m m n
Z flaj,y;) + Z f(@i, bi) + Z Z%‘jf(ivz‘,yj) =t
7j=1 =1 =1 j=1
In order to simplify notation, let us fary, ..., z, € A1, y1,...,y, € Ay define

n
Fg= flaiy).
=1

The equations can now be written as
a-j+Z-b+z-Tj=t.

We note for future use that due to the bilinear propertieg, afe have for any matriX’ € Mat,, «,,(R) and
foranyzi,...,zm,y1,...,y, thatz - Ty =T"2-7.

Let us now return to the equations in Figure 1 and see how they can be recast as quadratic equations over
Zn-modules with a bilinear map.



Pairing product equations: DefineR = Zy,, A1 = G1, A2 = Go, Ar = G, f(z,y) = e(z,y) and we
can rewrite the pairing product equation(as- Y)(X - B)(X - T'Y) = tr. Footnoté

Multi-scalar multiplication in Gi: DefineR = Zyn, A1 = G1,As = Zn, Ar = Gy, f(X,y) = yX and
we can rewrite the scalar multiplication equationdsy + X - b+ X - I'yy = 7.

Multi-scalar multiplication in Go: DefineR = Zy, A1 = Zn, Ay = Go, Ap = Ga, f(z,Y) = Y and we
can rewrite the multi-scalar multiplication equation@asy + - B+ Z - T'Y = 1s.

Quadratic equation in Z,: DefineR = Zy, A1 = Zn, Az = Zn, Ar = Zn, f(x,y) = zy mod n and we
can rewrite the quadratic equationZp asd -y +Z-b+ 2 -T'y = t.

From now on, we will therefore focus on the more general problem of constructing non-interactive compos-
able witness-indistinguishable proofs for satisfiability of quadratic equations/vweodulesA;, Ay, Ar
(using additive notation for all modules) with a bilinear mgap

4 Commitment from Modules

In our NIWI proofs we will commit to the variables,, ..., z,, € A1,y1,...,yn € Aa. We do this by
mapping them into otheR-modulesB;, By and making the commitments in those modules.

Let us for now just consider how to commit to elements from ®module A. The public key for the
commitment scheme will describe anotlférmodule B andR-linear maps : A — Bandp: B — A. It
will also contain elements,,...,u, € B. To commit tox € A we pickry,...,r, «— R at random and
compute the commitment

n
c:=u(x)+ Znul
=1
Our commitment scheme will have two types of commitment keys.

Hiding key: A hiding key containg B, ¢, p, u1, ..., u,) such that(G) C (uq,...,u,). The commitment
c:=(zx) + Y =, riu, is therefore perfectly hiding when, . .., r,, are chosen at random froR.

Binding key: A binding key containgB, ¢, p, u1, . . ., u,) such thatvi : p(u;) = 0 and. o p is non-trivial.
The commitment := () + > ; r;u; therefore contains the non-trivial informatiptr) = p(:(x))
aboutz. In particular, if. o p is the identity map om, then the commitment is perfectly bindifg.

Computational indistinguishability: The main assumption that we will be making throughout this paper is
that the distribution of hiding keys and the distribution of binding keys are computationally indistin-
guishable. Witness-indistinguishability of our NIWI proofs and later the zero-knowledge property of
our ZK proofs will rely on this property.

Since we will often be committing to many elements at a time let us define some convenient notation.
Given elements;y, . .., x,, we will write ¢ := «(Z) + Ru with R € Mat,,, (R ) for making commitments
c1, ..., Cm cOMputed as; := ¢(x;) + Y5 riju;.

2\We use multiplicative notation here, because, usu@llyis written multiplicatively in the literature. When we work with the
abstract modules, however, we will use additive notation.

3The mapp is not efficiently computable. However, one can imagine scenarios where a secret key wilpreffl@ently
computable and o p is the identity map. In this case the commitment scheme is a cryptosystenp wi¢ing the decryption
operation.



4.1 Instantiations

The treatment of commitments using the language of modules generalizes several previous works dealing
with commitments over bilinear groups, including [BGN05, GOS06b, GOS06a, Gro06, Wat06].

Instantiation 1: Subgroup decision. In this setting, we have a composite order grétipf ordern := pq.

The group can in a natural way be viewed &@,amodule; using the notation above we defitie= G and

B = G. The commitment key will contain an elemént We can choose it 98 generates; or sol{ has order

g. The subgroup decision assumption tells us that the two types of commitment keys are computationally
indistinguishable.

Let: : G — G be the identity map. Defing € Z, soA = 1 mod p and\ = 0 mod q. The map
p: G — Gisp(X):= A\X; in other wordsp maps elements onto the ordesubgroup of. If U/ generates
G, thenC := (X') + rlU4 is perfectly hiding. On the other hand iff has orde, then\C = A\X" definesX¥
uniquely inGp.

We can also commit to exponents. The modules4ire- Z,, andB = G. Let/ : Z, — G be given
by /(x) = 2P andp’ : G — Zy be given byp'(zP) = Az. When/ generates?, the commitment scheme
C := xP + rU is perfectly hiding. On the other hand,lf has ordelg, then the commitment determines
P(C) = A& € Zn.

Instantiation 2: SXDH. Consider a cyclic group! := G of prime orderp. By entry-wise addition we
get an abelian group := G2, which is a module oveZ,. The commitment key will contain an element
u; = (P, Q), whereQ = oP for a randomly chosen € Z;,. It will also contain an element; = (U, V)
which can be chosen in one of two ways; := tu; or ug := tu; — (O, P) for a randomly choseh € Ly
The former will give a perfectly binding commitment key, whereas the latter will give a perfectly hiding
commitment key. The DDH assumption tells us that the two types of commitment keys are computationally
indistinguishable.

Let us now describe how to commit to an elemé&ht G. We define (X)) := (O, X'). Using randomness
r1,72 € Zp We get a commitment of the form := «(X) + ru; + roug. If up = tu; we havec =
((r + st)P, (r + st)Q) which is an EIGamal encryption . We definep : (C1,C2) — C2 — aC; and see
that the commitment is perfectly binding sincep is the identity map oidx andp(u;) = p(ug) = O. If u;
andus are linearly independent we have that u, is a basis forB = G? and therefore(G) C (u1, us).
Whenu; andus are linearly independent we therefore have a perfectly hiding commitment.

To commit to an exponent € A’ := Z;, we use the following approach. We define= u; + (O, P)
and/(z) := zu andp/'(c1P, c2P) := ¢2 — acy. To commit toz using randomness € Z, we compute
¢ := ! (z) 4 rt4. On a hiding key we have = tu; sou € (u1), which implies/(Zp) C (u1). A hiding key
therefore gives us a perfectly hiding commitment scheme. On a binding key we kavér + «t)P, (r +
xt)Q + zP), which is an EIGamal encryption afP. We have that’ o p’ is the identity map ang'(u;) =0
so the commitment scheme is perfectly binding.

Instantiation 3: DLIN. In a DLIN group letid := oP,V := BP be given for randomy, 8 € Z,.
The DLIN assumption states that it is hard to tell whether three eleméfts), tP have the property that
t = r+s. We will use theZ,-modules4d = G andB = G formed by entry-wise addition. The commitment
key will contain three elements,, ug, u3 € B. We useu; := (U, O, P),us := (O,V,P) andus can be
chosen as either; := ru; + sug oruz := ruy + suz — (O, O, P), which will give respectively a binding key
and a hiding key. The DLIN assumption implies that the two types of commitment keys are computationally
indistinguishable.

We will now describe how to commit t& € G. The map is defined by.(X) := (0,0, X). A com-
mitment is formed by choosing, 72,73 € Zp and computing: := «(X) + Zle r;u;. On a hiding key



u1,ug,u3 are linearly independent so they form a basisBor= G* and therefore(G) C (u1, us, u3) so the
commitment scheme is perfectly hiding. On a binding key we have ((r1 + rrs)U, (ro + sr3)V, (r1 +
ro + (r + s)rs)P + &), which is a BBS encryption [BBS04] ot’. Defining the decryption function
p(C1,C2,C3) == C3 — 1€y — %Cg we see thap(u1) = p(u2) = p(uz) = O and. o p is the identity
map so the commitment is perfectly bindifhg.

To commit to a messagec A’ := Zp we first defineu := uz + (O, O, P) and!/(z) := zu. We commit
to x using randomness, r, by settinge := zu + ryuy + r2us. On a hiding key, we have that= ru; + sus
so!/(Zp) C (u1,u2) and the commitment scheme is perfectly hiding. On a binding key, the commitment is
c=((r +rz)U, (ra + sx)V, (r1 + r2 + z(r + s))P + 2P). This corresponds to a BBS encryptiond?.
We definey/(C1,C2,C3) := C5 — 1€y — %Cg). We havey/(u1) = p/(uz) = 0 and:/ o p’ is the identity orZp,
so the commitment scheme is perfectly binding.

5 Setup

In our NIWI proofs the common reference string will contain commitment keys to commit to elements in
respectivelyd; andA,. These commitment keys speciyt, t1, p1, U1, ..., Uy @NA By, 1o, pa, U1, .. ., Up'.

In addition, the common reference string will also specify a tirthodule B together withR-linear maps

vy : Ap — Bp andpy : By — Ap. There will be a bilinear map’ : B; x B, — Bp as well. We require

that the maps are commutative. We refer to Figure 4 for an overview of the modules and the maps. For

Al X AQ — AT
f
1 1T m 12 1T p2 vr L1 pr

Bl X BQ BT

F
Vo e Ay Vy € Ay F(u(x),2(y)) = tr(f(z,y))
Vo € ByVy € By: f(pi1(x),p2(2)) = pr(F(z,y))

Figure 4: Modules and maps between them.

notational convenience, let us define #oe B,y € Bj that

n

fog‘:ZF(:c,y).

=1
The final part of the common reference string is a set of matites. . , H,, € Mat,,/ .,/ (R) that all satisfy
ue H;v=0.
There will be two different types of settings of interest to us.

Soundness setting:In the soundness setting, we require that the commitment keys are binding so we have
p1(i) = 0 andp2(¥) = 0 and the maps, o p; andes o py are non-trivial.

Witness-indistinguishability setting: In the witness-indistinguishability setting we have hiding commit-
ment keys, s01(G1) C (u1,. .., Uy ) andw(Ga) C (vq,...,v,y). We also require thatdy, ..., H,

“This commitment scheme coincides with the scheme of [Wat06]. We note that the different, and less efficient, commitment
scheme of [Gro06] can be similarly described in our language of modules, as well.
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generate the?-module of all matriced? sou e Hv = 0. As we will see in the next section, these
matrices play a role as randomizers in the witness-indistinguishability proof.

Computational indistinguishability: The (only) computational assumption this paper is based on is that
the two settings can be set up in a computationally indistinguishable way. The instantiations show
that there are many ways to get such computationally indistinguishable soundness and witness-
indistinguishability setups.

5.1 Instantiations

Instantiation 1: Subgroup Decision. The common reference string specifigs G, Gr, e, P,U), which
is sufficient to describe the entire setup given in this section. WeBuseB; = B, = G andByr = Gy and
the bilinear mapF'(X,)) := e(X,)). In the witness-indistinguishability setup we use a hiding 4ethat
generate€; and consequently(i/,i/) generategs. The only solution tee(U, HU) = 1 is therefore the
trivial H = 0, so we do not need to include af#; in the common reference string.

There are three scenarios to look at: pairing product equations, multi-scalar multiplication and quadratic
equations irZ,. In the pairing product equation scenario, we haMe= A, = G and Ay = G and a
bilinear mapf := e. We define the mapr : Ay — Br to be the identity map, whereas:(z) := 2.
Observe, sinceé. = 1 mod p,A = 0 mod q that \?> = X\ mod n so we have the commutative property
e(p1(X),p2(Y)) = e(AX, \Y) = pr(e(X,))) and the other commutative property is trivial.

In the multi-scalar multiplication scenario, we hade = Z,, As = G, Ay = G. The bilinear mapf
is the scalar multiplication functiofi(x, ) := z). We definel;(2) := e(P, Z) andpr(e(P, 2)) = \Z.
This gives us the required commutative propertig$(z),(Y)) = e(xP,Y) = e(P,zY) = ir(zY) and
pr(e(zP,Y)) = MY = (Az)(AY) = p/(aP)p(Y).

In the quadratic equation 8, we haved, = As = A = Z,. The bilinear magy is the multiplication
function f(z,y) := zy mod n. We defineJ/.(z) := e(P,P)* andp/.(e(P,P)?) := Az. We have the
commutative properties(i/(z), /' (y)) = e(zP,yP) = e(P,P)™ = /r(zy) andp/p(e(zP,yP)) = Aoy =
(Az)(Ay) = p'(=P)p' (yP).

Instantiation 2: SXDH. The common reference string specifigs G1, G2, G, ¢, P1, P2, u1, ug, v1, v2),
where(uq, usz) is a commitment key for the grou@; and (v, v2) is @ commitment key fo€s as described
in Section 4.1. We havB, = G2, By = G% and defineBr := G4 with respectively entry-wise addition and
entry-wise multiplication. The map' is defined as follows:

prateaiear () () (RS ).

In the pairing product equation scenario, we halle = G1, 4y = G, Ap = Gpr and f(z,y) =
e(z,y). The commitment keys are;,us and vy, v, for committing to respectively elements @&, and
G-. In the witness-indistinguishability scenario, the commitment keys are hiding, which means they are
chosen sa:; andusy are linearly independent and andwv» are linearly independent. The four elements
F(ui,v1), F(u1,v2), F(u2,v1), F(uz2,v2) are linearly independent in this scenario. This implies thek v
only has the trivial solution wherH is the2 x 2 matrix with 0-entries. As for the mapg, pr we define

1 1 Z11  *12 a
. —aq —Qa1)—a2
lp 2 — ( 1 =z ) pr( %01 223 ) 220219 (2212071 ) T

The mappr corresponds to first EIGamal decrypting down the columns usinghereu; = (P, a1P1)
and then ElGamal decrypting the resulting row by usiagvherev; = (P, asP2). We note thair o pr is
the identity map. One can check that the maps satisfy the commutative properties in Figure 4.
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We will now look at the case of multi-scalar multiplicationdfy. The case of multi-scalar multiplication
in G is treated similarly. We havé; = Zy, Ay = G2, A7 = G and the bilinear map ig(z,)) = z). We
will use/, u; for commitments to scalars i, ande, vy, v, for commitments to elements . We define
ir(Z) = vr(e(P, 2)). Letel(e(P, Z)) := Z and definepr(z) := e (pr(z)). We note thatr o pr
is the identity map oriz2. We see that in the witness-indistinguishability setting, whete, are linearly
independent, the equatien ¢ Hv = 0 only has the trivial solution wher# is thel x 2 matrix containing
0-entries.

Finally, we have the case of quadratic equation&jn We haved; = A, = Ay = Zp and the bilinear
map f(z,y) := xy mod p. We useu,u; for commitments inG? andv, v; for commitments inG3. We
define.(z) := vr(e(P,P)?) andp/r(z) := logp(pr(z)). The maps satisfy the commutative properties
from Figure 4 and we havé. o p/;. is the identity map ofZ. SinceF'(u;, Hv;) has no non-trivial solution
we do not need to specify a set of generatidis. . ., H,,.

Instantiation 3: DLIN. The common reference string specifies, G, Gr,e, P, ui,uz,us), where
(u1,ug,us) is @ commitment key for the grou@, andu;, us is used for committing to exponents. We
haveB = G°.

We will use the moduleBy = G2 defining the addition of two elements to correspond to entry-wise
multiplication of the 9 group elements. We will use two different bilinear mﬁpé The mapﬁ is defined
as follows:

N X NG| e(X1, V1) e(X1,d) e(X1,)s)
F:GxG®— GY ([ X |, Y2 |)—= | e(X2, V1) e(Xo,)n) e(Xo,)s)
X3 Vs e(X3, V1) e(A3,)) e(A3,)s)

The symmetric mag is defined byF (z,y) := 1 F(z,y) + 1 F(y, z).

In the pairing product equation scenario, we halle = G1, 4y = Go, Ay = Gr and f(z,y) =
e(x,y). The commitment key i, us, us. In the witness-indistinguishability scenario, the commitment
key is hiding, which means that it is chosen #gu u3 are linearly independent and hence span all of
B = G3. Some computation shows that the nine eleméttts;, u;) are linearly independent in the witness-
indistinguishability setting. This implies thate H only has the trivial solution wherH is the3 x 3 matrix
with O-entries.

On the other hand, the map has non-trivial solutions tai e Hiu corresponding to the identities
F(u;,uj) = F(uj,u;). Some computation shows that the matrices

0 10
H=| -100 Hy =
0 00

form a basis for the matriced soi e Hii = 0.
As for the mapsr, pr we define

111 Z11 %212 %13
a1 —1/a_—1/8\—
wE)=| 1 1 1 |, pr(| 221 222 223 |):= (233'313&223/[3)(231211 /azzl /ﬂ) e
1 1 2

231 <32 233

1/ —1/8\—
2327212 /aZ22 /6) 18,

The mappr corresponds to first BBS decrypting down the columns using the decryption,keand then
after that BBS decrypting along the row. We note thab pr is the identity map. One can check that the
maps satisfy the commutative properties with bbtAnd F in Figure 4.

We will now look at the case of multi-scalar multiplication® We haveAd, = Zy, Ay = G, Ar =
G and the bilinear map ig(z,Y) = z). We will use/,u;,us for commitments to scalars if, and
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L, u1,uz2, ug for commitments to elements i@. We defineiz(Z) = ivr(e(P, Z)). Lete L(e(P, 2)) = Z
and defingr(z) := e ! (pr(2)). We note thatr opr is the identity map oi;. We see thatuy, us) @ Hi =
0 only has the trivial solution wheré& is the2 x 3 matrix containing 0-entries. We also have tlfat =
0 1
-1 0 0
Finally, we have the case of quadratic equationZjn We haveA; = Ay = Ay = Zp and the
bilinear mapf(z,y) := xy mod p. We useu;, up for commitments to the exponents. We defifiéz) :=
vr(e(P, P)? andplr(z) := logp(pr(z)). The maps satisfy the commutative properties from Figure 4 and we
have:/, o p/;, is the identity map off.,. Again we have foi only trivial matricesH , whereas foi” we have

the non-trivial basidd; = < _01 (1) )

generates the matricés so (uq, ug) @ Hi = 0.

6 Proving that Committed Values Satisfy a Quadratic Equation
Recall that in our setting, a quadratic equation looks like the following:
a-j+Z-b+z-Tj=t,

with constantsi € A7, be AT € Maty,«n(R),t € Ar. The prover’s task is to convince the verifier that
the commitments contaifi € A", y € AY that satisfy the quadratic equation.

We will first consider the case of a single quadratic equation of the above form. The first step in our
NIWI proof will be to commit to all the variablesg, 7. The commitments are of the form

C=u(@)+Ri , d=uw(j)+57.

(Note that for all equations we will use these same commitments.)

Intuition.  Before giving the proof let us give some intuition. In the previous sections, we have carefully
set up our commitments so that the commitments themselves also “behave” like the values being committed
to: they also belong to modules (tli2 modules) equipped with a bilinear map (the mfapalso implicitly

used in thes operation). Given that we have done this, a natural idea is to take the quadratic equation we are
trying to prove, and “plug in” the commitments in place of the variables; let us evaluate:

-,

11(@) @ d+ o 1y(b) + Co I'd.

After some computations, where we expand the commitments, make use of the bilineeraydfrearrange
terms (the details can be found in the proof of Theorem 1 below) we get

(11(@) @ 12@) + 02(3) @ 12(6) + 02(@) o Tua())

+11(d) @ ST+ R @ 13(b) + 11(Z) @ ST+ Rii ® 15(%) + Rl e .

By the commutativity properties of the maps, the first group of three terms are equ#t Yof the equation

is true. Looking at the remaining terms, note that the verifier kn@wad . Using the fact that bilinearity
implies that for anyZ, iy we haver e I'ij/ = I'T 7 e i/, we can sort the remaining terms so that they match either
i or v to get (again see the proof of Theorem 1 for details)

-,

v(t) + @ e (RTia(B) + R Toa()) + (ST1a(@) + ST T0r(2)) @ 0.
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Now, for sake of intuition, let us make some simplifying assumptions: Let's assume that we’re working in
a symmetric case wheré; = A5, andB; = B, and therefore/ = ¢ and, so, the above equation can be
simplified further to get:

-,

vr(t) + e (RTLQ( )+ R'Tuwa() + ST (@) + STFTbl(:f:')).

Assume further,; o p1, 12 o po anduy o pr are the identity maps oA, A, andAr.
Now, suppose the prover gives to the verifier as his proet (RTLQ(E) + R'Tuw(§) + ST (a@) +

STFTbl(f)>. The verifier would then check that the followingrification equatiorholds:

-,

1 (@) ed+ Ceug(b) +Cold = up(t) + e 7.

It is easy to see that this proof would be convincing in the soundness setting, because we have that
p1(@) = 0. Then the verifier would know (but not be able to compute) that by applying the maps pr
we get B -
i o pa(d) + p1(¢) @ b+ p1(€)  Tpa(d) =t + p1 (i) @ pa(7) = t.

This gives us soundness, sinée= p,(¢) andy := pQ(J) satisfy the equations.

The remaining problem is to get witness-indistinguishability. Recall that in the witness-
indistinguishability setting, the commitments are perfectly hiding. Therefore, in the verification equation,
nothing except forr has any information about andi except for the information that can be inferred from
the quadratic equation itself. So, let’s consider two cases:

1. Suppose that is the unique value so that the verification equation is valid. In this case, we trivially
have witness indistinguishability, since this means that all withesses would lead to the same value for

—

.

2. The simple case above might seem too good to be true, but let's see what it means if itisn’t true. If two
values® and 7’ both satisfy the verification equation, then just subtracting the equations shows that
ue (7 —7') = 0. On the other hand, recall that in the witness indistinguishability setting; #eetors
generate the entire space whérer 7’ live, and furthermore we know that the matricHs, . .. , H,
generate allf such thati e Hu = 0. Therefore, let's choose,, .. ., r, at random, and consider the
distribution®’ = 7 + >__, r;H;u. We thus obtain the same distribution 8t regardless of what
we started from, and such thét always satisfies the verification equation.

Thus, for the symmetric case we obtain a witness indistinguishable proof system. For the general non-
symmetric case, instead of having jusffor the & part of the equation, we would also haﬁefor the v

part. In this case, we would also have to make sure that this split does not reveal any information about the
witness. What we will do is to randomize the proofs such that they get a uniform distributionﬁnﬁaihat

satisfy the verification equation. If we pi&k — Mat,,,(R) at random we have that + T'@ completely
randomlzes/; The part we add nzb can be “subtracted” fron¥ by observing that

() +de T+ ) eT=up(t) +ae (ﬁ—TT17> + (1/7+T1I) o7
This leads to a unique distribution of proofs for the general non-symmetric case as well.

Having now explained the intuition behind the following proof system, we proceed to a formal description
and proof of security properties.
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Proof: PickT < Mat,/ s (R),71, ..., < R atrandom. Compute

n
@ = R'us(b)+ R Tua(f) + R'TST—T 5+ riH;v
=1

-

Y = STu(@) + ST (7)+Ta

—

and return the proafi, 7).

Verification: Return 1 if and only if

-,

L1(6)OJ+50L2( )+EQFJ:LT(t)+ﬁoﬁ+1EoU.

Perfect completeness of our NIWI proof will follow from the following theorem no matter whether we
are in the soundness setting or the witness-indistinguishability setting.

Theorem 1 GivenZ, ¢, R, S satisfying

=u(@+Ri , d=w@+S7 , a-J+Z-b+z-Tj=t,

we have for all choices df, ry, ..., r, that the proofst, J constructed as above will be accepted.

=,

Proof. The commutative property of the linear and bilinear maps gives @ e c2(y) + ¢1(Z) o 2(b) +
11(Z) @ I'ta(y) = v(t). For any choice of ', ry, ..., r, we have

(@) ed+Ceuy(b)+celd
— (@) (Lz(g) + 517) + (Ll(a::) + Rﬁ) o 1o(b) + (Ll(a::) + Rﬁ) . r(ég(g) + 517))

-,

= 11(a) e 12(y) + L1(f)_’o t2(b) + 11(%) @ T1a(7)

+Ri e 13(b) + RieTiy(y) + Rie'ST+ 11(d) @ ST+ 11(F) e T'ST

= ur(®) + e (R a(®) + R Tua(g) + R'TSE) + (ST (@) + ST (@) o 7

= up(t)+de (RTLQ(*) + R Tuw(7) + RTF517> + ri(ie Hit) —ieT' ¥
=1

+Tie i+ (ST1(@) + ST (@) o
= LT(t)—I—ﬁofr'—l—lEoff
O

Theorem 2 In the soundness setting, where we hauei) = 0, p2(7) = 0 a valid proof implieg; (¢1(@)) -

p2(d) + p1(2) - p2(e2(8)) + p1(2) - Tpa(d) = pr(er(t)).

-,

Proof. An acceptable proat, ¢ satisfies (a) ed+ e wa(b) +ceT'd = vy (t) +iie 7+ 1) o 7. The commutative
property of the linear and bilinear maps gives us
p1(21(@)) - pa(d) +p1(8) - p2(12(b)) +p1(8) - Tp2(d) = pr(er(t)) +p1(@) - p2(7) +p1(¥) - p2(V) = pr(er(t)).
]

Observe as a particularly interesting case that whep;, t2 o ps, v7 o pp are the identity maps oA, A
and A respectively, then this meas= p; (¢) andy := p2(d) give us a satisfying solution to the equation
a-y+ - -y+ & -I'y =t Inthis case, the theorem says that the proof is perfectly sound in the soundness
setting. It is still possible though that interesting co-soundness properties emerge also in the case where these
maps are not the identity-maps dn, A, andAr.
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Theorem 3 In the witness-indistinguishable setting wheréG1) C (u1, ..., un), t2(G2) C (vi, ..., vy)
and Hy, ..., H, generate all matriced? sou ¢ Hv' = 0, all satisfying witnesses, i/, R, S yield proofs
7T € (vg,... ,vn/>m/ andz/? € (ug,... ,um/>”/ that are uniformly distributed conditioned on the verification

—

equation:, (@) e d+ e 1y(b) + e I'd = vp(t) + e T+ 1) e 0.

Proof. Sincebl(Gl) C <’U,1, R ,um/> and LQ(GQ)

-,

C
11(¥) = Xd andiy(b) = B, 12(y) = Y. We have?

—

7,1 given by

(v1,...,v,) there exists4, B, X,Y sou(a) = Ad,
=0+ (X + R)@andd = 0+ (Y + S)@. The proof is

b =ST0(@) + ST () + Tit = (STA +STrTX + T)U
n
#=R15(b) + R'Tua(§) + R'TST)) =T 5+ > riH;v
=1

n
= (RTB +R'TY + R'TS - TT>17+ (ZrH) v.
=1

We choosél™ at random, so we can think aﬁ being a uniformly random variable given bEy: U for a
randomly chosen matri¥. We can think oft as being writtert = 11, wherell is a random variable that
depends orp.

By perfect completeness all satisfying witnesses yield proofs whéige d+Ce LQ(E) +cel'd— vp(t) —
J e = ie7 = i e II¢. Conditioned on the random variablewe therefore have that any two possible
solutions7, 7y satisfy« e (II; — Ilz)v = 0. SinceHy, ..., H, generate all matrice§ so« e Hv = 0

we can write this al; = IIy + >, 7, H;. In constructingr we form it as<RTB +R'TY+R'TS —
TT)UJF (Z?Zl r,-Hi>z7for randomly choseny, ..., r,. We therefore get a uniform distribution over 4l

that satisfy the equation conditioned i&hSincezE is uniformly chosen, we conclude that for any witness we
get a uniform distribution ovep, 7 conditioned on them constituting an acceptable proof. 0

6.1 Linear Equations

As a special case, we will consider the proof system wiea 0 andI” = 0. In this case the equation is
simply

Z-b=t.
The scheme can be simplified in this case by choo%ing 0 in the proof, which giveaﬂ = 0and7 :=

RTuy(b) + S, rH;5. Theorem 1 still applies with” = 0. Theorem 2 gives ug; (¢) - pa(12(b)) =
pr(er(t)), which will give us soundness. Finally, we have the following theorem.

Theorem 4 In the witness-indistinguishable setting wheyéG1) C (ui, ..., un), t2(G2) C (v1, ..., v5)
andHy, ..., H, generate all matriced/ sou e Hv = 0, all satisfying witnesses, ¢/, R, S yield the uniform
distribution of the proof? € (vy, ..., v,/)"™ conditioned on the verification equatia® iy (b) = 17 (t) + e 7

being satisfied.

Proof. As in the proof of Theorem 3 we can write= TI¥. Any witness gives a proof that satisfies

Cou(b) —up(t) =Ge7 =1 eIl
SinceHy, ..., H, generate all matriced sou e Hv = 0 we have thall has a uniform distribution over all
matricedlI satisfying the verification equation. O
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6.2 The Symmetric Case

An interesting special case is whéh:= By = By, m’ < n’ with u; = vy,...,u, = v, and for all

x,y € B we haveF(z,y) = F(y, ) We call this the symmetric case. In the symmetric case, we can
simplify the scheme by just paddmgwrrh zeroes in the end to extend the lengttocall this vector”,

and revealing the prO@f =7+ W In the verification, we check that

1(@) e d+ o ub)+CeTd=1p(t)+dei.
Theorem 1 and Theorem 3 still hold in this setting. With respect to soundness we have the following theorem.

Theorem 5 In the soundness setting, where we haye) = 0 a valid proof implies

p1(e1(a)) - p2(d) + p1(@) - p2(u(b)) + p1() - Tpa(d) = pr(er(t)).

Proof. An acceptable proof satisfies.; (@) e d + Z e 15(b) + e I'd = v1(t) + ¢ e &. The commutative
property of the linear and bilinear maps gives us

-,

pr(11(@)) - pa(d) + p1(€) - p2(e(B)) + p1(@) - Tpa(d) = pr(er (1)) + p1(d) - pa(¥) = pr(er(t)).

O
We can simplify the computation of the proof in the symmetric case. We have
7
# = Rlup(b)+ R Twa()) + R'TST—T 5+ rHio
=1
¢ = 8Tu(@)+ ST u(E) + T4,

and extend) to ¢/’ by padding it withm' — n’ 0’s. Another way to accomplish this padding is by paddihg
with m’ — n’ 0-rows andS with m’ — n’ 0-columns and{; with m’ — n’ 0-columns. We then have

-,

¢:= R 15(b) + R Tua(§) + R'TS"it — (T") Tt + Z ri ) (@) + (8") T () + T'a.

Since the map is symmetric we have (7 — (T") )i = 0, so if we have a self}, . . ., H}, that generates
all matricesH’ sou e H'w = 0, then we can rewrite the proof as

-,

5:: RTLQ( )+RTFL2(g) + (S/)TL1(5) + (S’)TI‘T 1(Z) —|—RTF +ZT1HI

7 NIWI Proof for Satisfiability of a Set of Quadratic Equations

We will now give the full composable NIWI proof for satisfiability of a set of quadratic equations in a module
with a bilinear map. The proof will havé.,-soundness, where

Leo = {{@'a bi Doy t) Y1 V2, 730 2 pr(11(@) - §+ 7 - pa(ea(by)) + T - Ti§ # pT(LT(ti))} :

Observe thaf..,-soundness and soundness are the same notions in the common casg where, o po
and; o pr are the identity maps on respectively, A> and Ar.

The cryptographic assumption we make is that the common reference string is created by one of two
algorithm K or S and that their outputs are computationally indistinguishable. The first algorithm outputs a
common reference string that specifies a soundness setting, whereas the second algorithm outputs a common
reference string that specifies a witness-indistinguishability setting.
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Setup: (gk, sk) := (R, Ay, Az, Az, f), sk) — G(1¥).
Soundness string: o := (B, Be, By, F, 11, p1, L2, p2, L1, o1, U, U) — K(gk, sk).
Witness-indistinguishability string: o := (B, Be, Br, F, 11, p1, L2, 02, L1, 1, U, V) < S(gk, sk).

Proof: The input consists ofk, o, a list of quadratic equationga;, b;, T;, t;)} , and a satisfying witness
Z, 7.
Pick at randomR «— Mat,,, .,y (R) @andS «— Mat,, ., (R) and commit to all the variables &s:=
Z + Rt andd := i + S7.

For each equatiofy;, Ei,Fi,ti) make a proof as described in Section 6. In other words, Pjck-

Mat, xm/(R) andry, . .., 7y < R compute
. n
% = Rup(bi)+ R Twu()) + R'TST—T, 6+ riH;v
j=1
i = STu(d;) + ST 0 (2) + T

Output the proof, d, { (7, %) }YV.,).

Verification: The input isgk, o, {(d@, b;, Ts, ;) Y., and the proofé, d, { (i, v)}).
For each equation check

Ll(ai) OJ+ ce Lg(l_);') +Ce FZJ: LT(ti) + U e +7J); 7.
Output 1 if all the checks pass, else output 0.

Theorem 6 The protocol given above is a NIWI proof for satisfiability of a set of quadratic equations with
perfect completeness, perfdgt,-soundness and composable witness-indistinguishability.

Proof. Perfect completeness follows from Theorem 1.
Consider a proofc, d, {(7;, 1;) }) on a soundness string. Defifie= p;(¢), ¥ := p2(d). It follows from
Theorem 2 that for each equation we have

-

p1(01(@:)) -G+ 7 paea(by)) + 3 T3 = p1(11(@y)) - p2(d) +p1 (&) - p2(e2(5:)) +p1() - Tipa(d) = pr(er(t;)).

This means we have perfeEt,-soundness.

Our computational assumption is that soundness strings and witness-indistinguishability strings are com-
putationally indistinguishable. Consider now a witness-indistinguishability strinbhe commitments are
perfectly hiding, so they do not reveal the witn&sg that the prover uses in the commitmeditd. Theorem
3 says that in either equation each of two possible witnesses yield the same distribution on the proof for that
equation. A straightforward hybrid argument then shows that we have perfect witness-indistinguishability.
O

Proof of knowledge. We observe that if{ outputs an additional secret piece of informatfothat makes
it possible to efficiently computg; andps, then it is straightforward to compute the witness- p;(¢) and

-

¥ = pa(d), so the proof is a perfect proof of knowledge.
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Proof size. The size of the common reference stringiSelements inB; andn’ elements inB; in addition
to the description of the modules and the maps. The size of the precfidn’ elements inB; andn+Nm/
elements inBs.

Typically, m" andn’ will be small, giving us a proof size that @(m + n + N) elements inB; and
Bs. The proof size may thus be smaller than the description of the statement, which can be of si2é&wup to
elements ind;, Nm elements ind;, Nmn elements ifR and N elements inAr.

7.1 NIWI Proofs for Bilinear Groups

We will now outline the strategy for making NIWI proofs for satisfiability of a set of quadratic equations over
bilinear groups. As we described in Section 3, there are four different types of equations, corresponding to
the following four combinations df.,,-modules:

Pairing product equations: Ay = Gy, Ay = Go, Ap = Gp, f(X, ) = e(X,)).

Multi-scalar multiplication in Gi: Ay = G1, A = Zn, Ar = Gy, f(X,y) = yX.
Multi-scalar multiplication in Ga: Ay = Zn, A2 = G2, Ar = Grp, f(x,)) = 2.
Quadratic equations inZy: A; = Zy, Ay = Zn, Ar = Zn, f(2,y) = zy mod n.

The common reference string will specify commitment schemes to respectively scalars and group elements.
We first commit to all the variables and then make the NIWI proofs that correspond to the types of equations
that we are looking at. It is important that we use the same commitment schemes and commitments for
all equations, i.e., for instance we only commit to a scalance and we use the same commitment in the
proof whether the equatian is involved in is a multi-scalar multiplication ity or a quadratic equations

in Z,. The use of the same commitment in all the equations is necessary to ensure a consistent ghoice of
throughout the proof. As a consequence of this we use the same m@dtdecommit tox in both multi-

scalar multiplication inGs and quadratic equations #,. We therefore end up with at most four different
modulesB;, B}, Bs, B), to commit to respectivelyt’, z, ), y variables.

Instantiation 1: Subgroup decision.

Setup: (gk, sk) := ((n,G,Gr,e,P), (p,q)) «+ G(1¥), wheren = pq.

Soundness string: On input(gk, sk) returno := U whereU := rpP for randomr € Z.
Witness-indistinguishability string: On input(gk, sk) returno := U whereU := P for randomr € Z;.
Proof: Oninput(n,G,Gr, e, P,U), a set of equations and a WitneZSs)7 do:

1. Commit to each exponemnt, ..., z,, and each elementy, ..., ), as respectivelg; := x;P +
r;U andD; := Y; + s;U for randomly chosenm, 3.

2. For each pairing product equati()uzr- 37)(37 : Fﬁ) = t7 make a proof as described in section
6.2. Writing it out and doing calculations, we get

¢ = _’TA‘F (F +FT) TFgu ZSZA + ZZ Yij + Vi Sly] + ZZ’Y@]SZSJ

=1 j=1 =1 j=1
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3. For each multi-scalar multiplication equati@n)y + # - B+ - T'Y = T the proof is

p: = *T1§+ FTD? + FTF§L{ + §’Ta77 + S

= ZTZB + ZZTZ%]% + Z Z’ywmsﬂ/{ + Zsl a; + Z%J%

i=17=1 i=1 j=1

4. For each quadratic equati@n b + 7 - I'Z = ¢ in Zy, we have

¢ = FT5P+F(F+FT)5P+WW Zrzb +ZZ Yij +'7jz TiZj ’P"‘ZZ%}T@TJ

i=1 j=1 1=1 j=1
Verification: On input(n, G, G, e, P,U), a set of equations and a pra@fD, {¢;} Y, do:

1. For each pairing product equatidpd - J)() - TY) = tr check that[[", e(A;, D) -
[Iio: [T e(Ds, Dj)Yis = treU, ¢).
2. For each multi-scalar multiplication- Y + # - B 4+ # - TV = T check thaf [, e(a;P, D;) -
121 e(Ci, Bi) - TIZ [Tj— (Ci, Dj) = e(P, T)e(U, ¢).
3. For each quadratic equatiaf - b+ -T# = tin Z, check that] [, e(Ci, bP) -
[T T2, e(Ciy C) e = e(P, P)'e(U, ¢).
Define L., to be the sets of quadratic equations o¥grthat are unsatisfiable in the ordeisubgroups of
Zyn, G andGr.

Theorem 7 The NIWI proof given above has perfect completeness, pdrfgetoundness and composable
witness-indistinguishability.

Proof. Perfect completeness follows from Theorem 1. Perfggtsoundness follows from Theorem 2 since
the. o p maps all go to the ordersubgroups of.,,, G andG. The subgroup decision problem gives us that
we cannot distinguish whethéf has ordelg or ordern so the two types of common reference strings are
computationally indistinguishable. On a witness-indistinguishability string, the commitments are perfectly
hiding and we get perfect witness-indistinguishability from Theorem 3. O

The size of the proof is» + n + N group elements id7, wherem is the number of variables if, n is
the number of variables i and N is the number of equations.

Instantiation 2: SXDH.

Setup: gk := (p,G1,G2,Gr, e, P1,P2) — G(1F).

Soundness string: On inputgk returno := (uy, ug, v1, v2) from the soundness setup described in Section 5.
This gives usi; = tu; andvy = tyv, for randomty, to «— Zy, so the elements are linearly dependent.

Witness-indistinguishability string: On input gk return ¢ := (uj,u2,v1,v2) from the witness-
indistinguishability setup described in Sectidn This gives usuy = tju; — (O, P1) andvy =
tovr — (O, Po) for randomty, ty — Zp.

Proof: On inputgk, o, a set of equations and a witneksY, 7, i do:

1. Commit to group element asé:= 1;(X) + Ri for R «— Mat,,x2(Zp) and group elements
asd := 15())) + ST for S — Mat,,x2(Zp). Commit to exponents asé := ¢} (x) + 7u; and
exponentg asd’ := i4(y) + Svy for 77 «— Zm , 8 — Zg :
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2. For each pairing product equati¢d - Y)(X - B)() - ")) = t; make a proof as described in
section 6. Writing it out we have f&F «— Matay2(Zp) the following proof.

7 = R'u(B)+ R Tw())+

(RTFS o
P o= STLl(.A)-l-STFTLl( )+

For each linear equatlon YV =trweuseyp =S (A).
For each linear equatlo?fr B= t7 we usew := R' q)
Py T

ta(B
3. For each multi-scalar multiplication equatlgln y+ + X X - Ty =7y in Gy the proof is for

randomT" < Mat; x2(Zp)
7 = RI4(D)+ R Th{H) +(R'T5—T o
¢ = § i (A) 4+ 5T

For each linear equatlon y = 7, the proof isyy := 5711 (A).

For each linear equatiofi - b = 7; the proof is7 := R i(b).

—

4. For each multi-scalar multiplication equatiénﬁ +Z-B+2-TY =T5in G, the proof is for
random?" «— Matox1(Zp)

o= 7B+ 7 Twd)+ F' TS -TN7
¢ = STA@ + ST + Tw
For each linear equatianh- Y = T the proof is7 := STL’l(c‘i).
For each linear equatioh- B = 75 the proof ist := 7" 15(B).
5. For each quadratic equatian b+&-I'Z=tin Zy, the proof is for randonl” «— Zj,

T o= Tl /2(6)+TTFL2() (F'T5 - T)uy
Y o= F@)+ 3T + Tu

For each linear equatian- § = t we usey := 57/} ().
For each linear equatiof- b = ¢ we user := FTL’Q(b)

Verification: On input(gk, o), a set of equations and a pradfl, @, &', {7;, ¢¥; }Y., do:

—.

1. For each pairing product equatiod - 37)(2? )(YV - TY) = ¢ check that

=,

n(A)ed+cewy(B)+ceTd=1p(ty) + Te7+1) e

—.

2. For each multi-scalar equati¢a - 7)(X - b)(X - T'j) = T; in G check that
+

=,

n(A)ed +Zeiy(b)+ceTd = ip(T7) + G o7+ F(t),v1).

3. For each multi-scalar multiplicatioh- Y + 7 - B+ # - I'Y = T in G» check that
(@) ed+ euy(B) +7 eTd = ip(Tz) + F(ui,7) + 1 e 7.
4. For each quadratic equatian y + & - b+ Z- I'yj = t in Zy check that

-,

(@) od + e ih(b)+ 7 eTd = ip(t) + Fur,m) + F(, v1).

21



Theorem 8 The protocol is a NIWI proof with perfect completeness, perfect soundness and composable
witness-indistinguishability for satisfiability of a set of equations over a bilinear group where the SXDH
problem is hard.

Perfect completeness follows from Theorem 1. Perfect soundness follows from Theorem 2 since the
p maps are identity maps df,, G1, G2 andGr. The SXDH assumption gives us that the two types of
common reference strings are computationally indistinguishable. On a witness-indistinguishability string,
the commitments are perfectly hiding and we get perfect witness-indistinguishability from Theorernl 3.

The modules we work in arB; = G? and By = G3, so each element in a module consists of two group
elements from respectivety; andG,. Table 5 list the cost of all the different types of equations.

Assumption: SXDH
Variablesx € Zy, X € Gy

Variablesy € Zp,Y € G

Pairing product equations

- Linear equation:A - Y = ¢

- Linear equationX - B = tr
Multi-scalar multiplication equations i¥';
- Linear equation:A - 7 = T;

- Linear equation:¥ - b = 7;

Multi-scalar multiplication equations i,
- Linear equation@ - Y = 75

- Linear equations - B = 75

Quadratic equations i,

- Linear equationa - i/

- Linear equations - b

t
=1

onvNMOBMABDONNOADONS
NONNONAMOAMDROSMNOR

Figure 5: Cost of each variable and equation measured in element&fr@mdGs.

Instantiation 3: DLIN.
Setup: gk := (p, G, Gr, e, P) «— G(1F).

Soundness string: On inputgk returno := (uq, uz, ug) from the soundness setup described in Section 5.
This gives usuz = t1u; + taus for randomty, to < Z, so the elements are linearly dependent.

Witness-indistinguishability string: On input gk return ¢ := (uj,u2,u3) from the witness-
indistinguishability setup described in SectiGn This gives usu; = (aP,0,P),uzs =
(O0,8P,P),uz = (O — P) + tiur + tauz) for randoma, 3 « Zj andty,ta « Zp. Define for
notational convenience := (u, usg).

Proof: On inputgk, o, a set of equations and a witnegs) do:

1. Commit to exponentg asc := ¢/(Z) + Rv for R «— Mat,, x2(Zp). Commit to group elements
Yasd:=u(Y) + Sii for S — Matyx3(Zp).
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2. For each pairing product equati¢d - J)(Y - I')) = t; make a proof as described in section 6
using the symmetric map.

3
&= RTu(B) + R'Tu(d) + STu(A) + STTTu(F) + RIS+ Y riHsi
=1

For each linear equatioﬁ . B = t; we use the asymmetric mafi)to get the proof
¢ :=STu(B).

We remark that the reason we use the asymm@tris that there are no matrices non-trividl
soi e Hii = 0, which simplifies the proof. Observe that= «(ST5B) = ST.(B) and vice
versap(¢) = ST B is easily computable in this special setting, sindg) = (O, O, B;). We can
therefore just reveal the proof := p(¢) = ST B, which is three group elements.

3. For each multi-scalar multiplication equatiény + z - B + @ - ') = T we use the symmetric
mapF. The proof is for random; «— Z

—

¢:=R"(B)+R'Tu(Y)+ (8N (@) + (S T/ (&) + RIS +r Hi.

For each linear equatioﬁ b =T we use the asymmetric mefbto get the proof

=,

¢ :=ST/(b).

It suffices to reveal the valué'( = S7h. Since¢ determinesy’ uniquely, this does not compro-
mise the perfect witness-indistinguishability we have on witness-indistinguishability strings. The
verifier can compute = ./(¢’). The proof now consists of only 3 element<g.

For each linear equatioti- B =T we useF again to get the proof
¢:=R"u(B).

We can use’ = R' B as the proof, since it allows the verifier to compute- ¢(¢/). The proof
therefore consists of only 2 group elements.

4. For each quadratic equati@n b+ -TZ=tin Zp wWe use the symmetric map. There is one
matrix H; that generates allf sov e Hv. The proof is for random; «— Z,

-,

¢:=R"/O)+R (T +T")/(x) + R"/(@) + R'"TR + r  H .

For each linear equatiafi- b =  we use the asymmetric mapto get the proofs := R/ (b).
It suffices to reveal jusk " b, from which the verifier can compute= /(R "b).
Verification: On input(gk, o), a set of equations and a pradfl, {¢; }., do:

1. For each pairing product equatied - Y)(Y - I'Y) = ¢ check that

-,

W(A)ed+deTd=ur(ty) + e .

For each linear equatiq)i - B = ¢;- check

- —,

deuB) = ur(tr) + i ¢
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2. For each multi-scalar multiplicatiah- ) + 7 - B+ # - T'Y = T check that
V(@) ed+ceuB)+celd=up(T)+iedg.

For each linear equatia)i - b = 7 check

For each linear equatiofi- B = 7 check

—

couB) =ip(T)+7e o

3. For each quadratic equatian b+& -I'Z=tin Zy, check that

—.

Col(b)+ColC=p(t)+Teg.

For each linear equation- b = ¢ check

-,

gel(b) =p(t)+ T g.

Theorem 9 The protocol is a NIWI proof with perfect completeness, perfect soundness and composable
witness-indistinguishability for satisfiability of a set of equations over a bilinear group where the DLIN
problem is hard.

Perfect completeness follows from Theorem 1. Perfect soundness follows from Theorem 2 sinperthps
are identity maps ofi,, G andGr. The DLIN assumption gives us that the two types of common reference
strings are computationally indistinguishable. On a witness-indistinguishability string, the commitments are
perfectly hiding and we get perfect withess-indistinguishability from Theorem 5. O

The module we work in i8 = G, so each element in the module consists of three group elements from
G. In some of the linear equations, we can compftg) efficiently and we have(p(¢)) = ¢ which gives
us a shorter proof. Table 6 list the cost of all the different types of equations.

Assumption: DLIN

Variablesr € Zy,) € G

Pairing product equations

- Linear equation - B = tr
Multi-scalar multiplication equation
- Linear equationy - b = T

- Linear equationZ - B = T
Quadratic equations i,

- Linear equationZ - b = ¢

U
O ON O © W © WY
mooc.ooooo_uN

Figure 6: Cost of each variable and equation measured in elementg;from

8 Zero-Knowledge

We will show that in many cases it is possible to make zero-knowledge proofs for satisfiability of quadratic
equations. An obvious strategy would of course be to use our NIWI proofs directly, however, such proofs
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may not be zero-knowledge because the zero-knowledge simulator may not be able to compute any withess
for satisfiability of the equations. It turns out that the strategy is better than it seems at first sight, because we
will often be able to modify the set of quadratic equations into an equivalent set of quadratic equations where
a witness can be found.

We consider first the case whefe = R, A, = Ap, f(r,y) = ry and whereS outputs an extra piece of
informationr that makes it possible to trapdoor open the commitmenis; inMore preciselyy permits the
computation of € R™ so;(1) = 11(0) + 5" @. We remark that this is a common case; in bilinear groups
both multi-scalar multiplication equations ¥, G5 and quadratic equations #, have this structure.

Definec = ¢1(1) to be a commitment tgp = 1. Let us rewrite the equations in the statement as

@y + f(—¢yti) + @b +7-TF=0.

We have introduced a new varialgteand if we choose all of our variables in these modified equations to be 0
then we have a satisfying witness. In the simulation, we give the simulator trapdoor information that permits
it to openc to 0 and we can now use the NIWI proof from Section 7.

Setup: (gk, sk) := (R, Ay, Az, Az, f), sk) — G(1¥).
Soundness string: o := (B, Be, By, F, 11, p1, L2, p2, L1, o1, U, U) — K(gk, sk).

Proof: This protocol is exactly the same as in the NIWI proof. The input consists af, a list of quadratic
equations{(a;, b;, T;, ;) } Y., and a satisfying witnesg, i/.

Pick at random@ — Mat,,xm (R) andS — Mat,,«,v(R) and commit to all the variables &s:=
11 (Z) + Ru andd := va(¥) + S7.

For each equatiofy;, l;i,l“i,t@-) make a proof as described in Section 6. In other words, Pjck-

Mat,/ s (R) @ndr;q, . .., 74y < R and compute
. n
# = Rlu(b)+R'Tua(f) + R'TST—T, 5+ > ryH;i
j=1
i = STu(@) + ST 0(Z) + Tha.

Output the proofé, d, { (i, ¥;) }Y.,).
Verification: The input isgk, o, { (@, b;, Ts, ;) Y., and the proofé, d, {(7;, ¥)}).
For each equation check

11(a@;) o d + o uo(b;) + CoTyd = ur(t;) + W e i + 1) 7.

Output 1 if all the checks pass, else output 0.

Simulation string: (O’, T) = ((Bl, Bs, B, F,11,p1,t2,p2, LT, PT, i, 77), §) — Sl(gk, Ski), WhereLl(l) =
L1 (0) + Z:’il S;Ujg.

Simulated proof: The input consists ofk, o, a list of quadratic equationga;, b;, I's, t;)}Y , and a satisfy-
ing witnesst, /.
Rewrite the equations @& - 7+ 7 - b; + f(¢, —t;) + - Iy = 0. Definez := 0,7 := 0 and¢ = 0 to
get a witness that satisfies all equations.
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Pick at randomR «— Mat,,x,/(R) andS «— Mat,,.,»(R) and commit to all the variables @s:=
0+ Ri andd := 0 + 5. We haver := 11 (1) = 11(0) + 37, siu.

For each modified equatiom,l?i, —t;,';,0) make a proof as described in Section 6. Return the
simulated proof (¢, d, i, ;) Y,

Theorem 10 The protocol described above is a composable NIZK proof for satisfiability of pairing product
equations with perfect completeness, perfegtsoundness and composable zero-knowledge.

Proof. Perfect completeness on a soundness string follows from the perfect completeness of the NIWI proof.
The simulator knows an opening of:= ¢;(1) to ¢ = ¢1(0) + Z;Zl siu;. It therefore knows a witness

0,0, ¢ = 0 for satisfiability of all the modified equations. It therefore outputs a p{()ﬁfaf, T Ji) N | such

that for alli we have

11 (@) @ d+ o 1o(b;) + F(c,—ta(t;)) + G Tid = 17(0) + @ © 7 + 1; ® 0.

The commutative properties of the maps givesFus,; (1), c2(t;)) = tr(f(1,t;)) = uvr(t;), so the proof
satisfies the equation the verifier checks. Perfect completeness on a simulation string now follows from the
perfect completeness of the NIWI proof as well.

PerfectL.,-soundness follows from the perfett,-soundness of the NIWI proof.

We will now show that on a simulation string we have perfect zero-knowledge. The commitinéatsd
c= Ll(l) are perfectly hiding and therefore have the same distribution whether we use vm’nye$s_ 1
or0,0,¢ = 0. Theorem 3 now tells us that the prodﬂ',s ; made with either type of openlng ofd, care
unlformly distributed over all possible choices{diy;, 7;)}Y | that satisfy the equations(a;) e ed+Ceb;+
ZeT'd = up(t). We therefore have perfect zero- knowledge on a simulation string. O

8.1 NIZK Proofs for Bilinear Groups

Let us return to the four types of quadratic equations given in Figure 1. If we set up the common reference
string such that we can trapdoor open respectivgly) and:} (1) to 0 then multi-scalar multiplication equa-

tions and quadratic equations #, are of the form for which we can give zero-knowledge proofs (at no
additional cost).

In the case of pairing product equations we do not know how to get zero-knowledge, since even with
the trapdoors we may not be able to compute a satlsflablllty withess. We do observe though that in the
spemal case, where alf = 1 the choice oft = G, = Ois a satisfactory witness. Since we also use
X = (’) Y = O in the other zero- knowledge proofs, the simulator can use this witness and give a NIWI
proof. In the special case where &l = 1 we can therefore make NIZK proofs for satisfiability of the set of
pairing product equations.

Next, let us look at the case where we have a pairing product equatiortwith [ [, e(P;, Q;) for
some knowrP;, Q;. Inthis case, we can add linear equatiéhs= P; to the set of multi-scalar multiplication
equations in;. We already know that such equations have zero-knowledge proofs. We can now rewrite the
pairing product equation &s4 - ))(X - B)(Z - Q)(X - T'))) = 1. This is a pairing product equation of the
type where we can make a zero-knowledge proof. We can therefore also make zero-knowledge proofs for
a set of quadratic equations over a bilinear group if all the pairing product equationg;hat¢he form
tr =17, e(Ps, Q;) for some knowrP;, Q;.

The case of pairing product equations points to a couple of differences between witness-indistinguishable
proofs and zero-knowledge proofs using our techniques. NIWI proofs can handle anytawge¢reas zero-
knowledge proofs can only handle special types of tatget~urthermore, it # 1 the size of the NIWI
proof for this equation is constant, whereas the NIZK proof for the same equation may be larger.
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9 Conclusion and an Open Problem

Our main contribution in this paper is the construction of efficient non-interactive cryptographic proofs for
use in bilinear groups. Our proofs can be instantiated with many different types of bilinear groups and
the security of our proofs can be based on many different types of intractability assumptions, of which we
have given three instantiations: the subgroup decision assumption, the SXDH assumption and the DLIN
assumption.

Since we have been interested in bilinear groups we have in our instantiations based the modules on
bilinear groups. Our technigues generalize beyond bilinear groups though; we do for instance not require
the modules to be cyclic as is the case for bilinear groups. It is possible that other types of modules with
a bilinear map exist, which are not constructed from bilinear groups. The existence of such modules might
lead to efficient NIWI and NIZK proofs based on entirely different intractability assumptions. We leave the
construction of such modules with a bilinear map as an interesting open problem.
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A Quick Reference to Notation

Bilinear groups.
G1, Ga, Gp: cyclic groups with bilinear map : G1 x Gy — Gr.
P1, P2: generators of respectively; andGs.
Group order: prime ordgs or composite orden.

Modules with bilinear map.
R: finite commutative rind R, +, -, 0, 1).
Al, AQ, AT, B, Bs, Br: R-modules.
f, F: bilinear mapsd; x A; — Ar andF : By x By — Bp.

n n
Foyi=Y flwny) ,  Fey:=)Y Flwi,u).
i=1 i=1
Properties that follows from bilinearity:
- Mi=M'%-7 ToeMj=M'Ze7y.

Commutative diagram of maps in setup.

A1 X AQ - AT

!
SRR 2 LT p2 vr LT pr
B X By — Br
F
Commutative properties:
Flu(@),0) =u(f@y) . fpi@),pe(2) = pr(Fl,y)).
Equations.
(Secret) variablest € A",y € A7
(Public) constantsi € A7,b € A7, T' € Mat,,,xn(R),t € Ar.
Equationsa -y +Z-b+ 2 - Ty =+t.
Commitments.
Commitment keysti € BJ"' , 7 € BY .
Commitments:
¢:= (%) + Ru € BY" ) d:=1(y) + SV € By.
NIWI proofs.
Additional setup informationfly, ..., H, sou e H;7 = 0.
Randomness in proofd’ « Mat,,, s,/ (R), 71,...,15 — R.
Proofs: . n
# = RUup(b)+ R Twu()) + R'TST-T 0+ riHd
=1
¢ = 8@+ ST u(E) +Ta
Verification: 11 (@) e d + Ce 13(b) + Ce T'd = vp(t) + e T+ 1h e ¥



