
Efficient Non-interactive Proof Systems for Bilinear Groups∗

Jens Groth† Amit Sahai‡

November 22, 2007

Abstract

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have
played a significant role in the theory of cryptography. However, lack of efficiency has prevented them
from being used in practice. One of the roots of this inefficiency is that non-interactive zero-knowledge
proofs have been constructed for general NP-complete languages such as Circuit Satisfiability, causing
an expensive blowup in the size of the statement when reducing it to a circuit. The contribution of this
paper is a general methodology for constructing very simple and efficient non-interactive zero-knowledge
proofs and non-interactive witness-indistinguishable proofs that work directly for groups with a bilinear
map, without needing a reduction to Circuit Satisfiability.

Groups with bilinear maps have enjoyed tremendous success in the field of cryptography in recent
years and have been used to construct a plethora of protocols. This paper provides non-interactive witness-
indistinguishable proofs and non-interactive zero-knowledge proofs that can be used in connection with
these protocols. Our goal is to spread the use of non-interactive cryptographic proofs from mainly theo-
retical purposes to the large class of practical cryptographic protocols based on bilinear groups.
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1 Introduction

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have played a
significant role in the theory of cryptography. However, lack of efficiency has prevented them from being
used in practice. Our goal is to construct efficient and practical non-interactive zero-knowledge (NIZK)
proofs and non-interactive witness-indistinguishable (NIWI) proofs.

Blum, Feldman and Micali [BFM88] introduced NIZK proofs. Their paper and subsequent work, e.g.
[FLS99, Dam92, KP98, DDP02], demonstrates that NIZK proofs exist for all of NP. Unfortunately, these
NIZK proofs are all very inefficient. While leading to interesting theoretical results, such as the construction
of public-key encryption secure against chosen ciphertext attack by Dolev, Dwork and Naor [DDN00], they
have therefore not had any impact in practice.

Since we want to construct NIZK proofs that can be used in practice, it is worthwhile to identify the roots
of the inefficiency in the above mentioned NIZK proofs. One drawback is that they were designed with a
general NP-complete language in mind, e.g. Circuit Satisfiability. In practice, we want to prove statements
such as “the ciphertextc encrypts a signature on the messagem” or “the three commitmentsca, cb, cc contain
messagesa, b, c soc = ab”. An NP-reduction of even very simple statements like these gives us big circuits
containing thousands of gates and the corresponding NIZK proofs become very large.

While we want to avoid an expensive NP-reduction, it is still desirable to have a general way to express
statements that arise in practice instead of having to construct non-interactive proofs on an ad hoc basis. A
useful observation in this context is that many public-key cryptography protocols are based on finite abelian
groups. If we can capture statements that express relations between group elements, then we can express
statements that come up in practice such as “the commitmentsca, cb, cc contain messages soc = ab” or
“the plaintext ofc is a signature onm”, as long as those commitment, encryption, and signature schemes
work over the same finite group. In the paper, we will therefore construct NIWI and NIZK proofs forgroup-
dependentlanguages.

The next issue to address is where to find suitable group-dependent languages. We will look at state-
ments related to groups with a bilinear map, which have become widely used in the design of cryptographic
protocols. Not only have bilinear groups been used to give new constructions of such cryptographic staples
as public-key encryption, digital signatures, and key agreement (see [DBS04] and the references therein),
but bilinear groups have enabled the first constructions achieving goals that had never been attained be-
fore. The most notable of these is the Identity-Based Encryption scheme of Boneh and Franklin [BF03]
(see also [Wat05]), and there are many others, such as Attribute-Based Encryption [SW05, GPSW06],
Searchable Public-Key Encryption [BCOP04, BSW06, BW06], and One-time Double-Homomorphic En-
cryption [BGN05]. For an incomplete list of papers (currently over 200) on the application of bilinear groups
in cryptography, see [Bar06].

1.1 Our Contribution

For completeness, let us recap the definition of a bilinear group.Please note that for notational convenience
we will follow the tradition of mathematics and use additive notation1 for the binary operations inG1 and
G2. We have a probabilistic polynomial time algorithmG that takes a security parameter as input and outputs
(n, G1, G2, GT , e,P1,P2) where

• G1, G2, GT are descriptions of cyclic groups of ordern.

• The elementsP1,P2 generateG1 andG2 respectively.

1We remark that in the cryptographic literature it is more common to use multiplicative notation for these groups, since the
“discrete log problem” is believed to be hard in these groups, which is also important to us. In our setting, however, it will be much
more convenient to use multiplicative notation to refer to the action of the bilinear map (see below).
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• e : G1×G2 is a non-degenerate bilinear map soe(P1,P2) generatesGT and for alla, b ∈ Zn we have
e(aP1, bP2) = e(P1,P2)ab.

• We can efficiently compute group operations, compute the bilinear map and decide membership.

In this work, we develop a general set of highly efficient techniques for proving statements involving
bilinear groups. The generality of our work extends in two directions. First, we formulate our constructions
in terms of modules over commutative rings with an associated bilinear map. This framework captures all
known bilinear groups with cryptographic significance – for both supersingular and ordinary elliptic curves,
for groups of both prime and composite order. Second, we consider all mathematical operations that can
take place in the context of a bilinear group - addition inG1 andG2, scalar point-multiplication, addition or
multiplication of scalars, and use of the bilinear map. We also allow both group elements and exponents to
be “unknowns” in the statements to be proven.

With our level of generality, for example it would be easy to write down a short statement, using the
operations above, that encodes “c is an encryption of the value committed to ind under the product of the
two keys committed to ina andb” where the encryptions and commitments being referred to are existing
cryptographic constructions based on bilinear groups. Logical operations like AND and OR are also easy to
encode into our framework using standard techniques in arithmetization.

The proof systems we build arenon-interactive. This allows them to be used in contexts where interaction
is undesirable or impossible. We first build highly efficient witness-indistinguishable proof systems, which
are of independent interest. We then show how to transform these into zero-knowledge proof systems. We
also provide a detailed examination of the efficiency of our constructions in various settings (depending on
what type of bilinear group is used).

The security of constructions arising from our framework can be based onanyof a variety of computa-
tional assumptions about bilinear groups (3 of which we discuss in detail here). Thus, our techniques do not
rely on any one assumption in particular.

Informal statement of our results. We consider equations over variables fromG1, G2 andZn as described
in Figure 1. We construct efficient witness-indistinguishable proofs for the simultaneous satisfiability of a
set of such equations. The witness-indistinguishable proofs have perfect completeness and there are two
computationally indistinguishable types of common reference strings giving respectively perfect soundness
and perfect witness indistinguishability. We refer to Section 2 for precise definitions.

We also consider the question of non-interactive zero-knowledge. We show that we can give zero-
knowledge proofs for multi-scalar multiplication inG1 or G2 and for quadratic equations inZn. We can
also give zero-knowledge proofs for pairing product equations withtT = 1. WhentT 6= 1 we can still give
zero-knowledge proofs if we can findP1,Q1, . . . ,Pn,Qn such thattT =

∏n
i=1 e(Pi, Qi).

Instantiation 1: Subgroup decision. Throughout the paper, we will give a general description of our tech-
niques. We will also offer three instantiations that illustrate the use of our techniques. The first instantiation
is based on the composite order groups introduced by Boneh, Goh and Nissim [BGN05]. Here we generate a
composite order bilinear group(n, G,GT , e,P) wheren = pq. We can writeG = Gp×Gq, whereGp, Gq

are the subgroups of orderp andq respectively. Boneh, Goh and Nissim introduce the subgroup decision
assumption, which says that it is hard to distinguish a random element fromG from a random element from
Gq. In this paper, we will demonstrate that assuming the hardness of the subgroup decision problem there
exists a witness-indistinguishable proof for satisfiability of a set of equations from Figure 1 in the subgroup
Gp and the orderp subgroup ofGT .

Instantiation 2: SXDH. Let (p, G1, G2, GT , e,P1,P2) be a prime order bilinear group. The external
Diffie-Hellman (XDH) assumption is that the decisional Diffie-Hellman (DDH) problem is hard in one of the
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Variables: X1, . . . ,Xm ∈ G1 , Y1, . . . ,Yn ∈ G2 , x1, . . . , xm′ , y1, . . . , yn′ ∈ Zn. Footnotea.

Pairing product equation:

n∏
i=1

e(Ai,Yi) ·
m∏

i=1

e(Xi,Bi) ·
m∏

i=1

n∏
j=1

e(Xi,Yj)γij = tT ,

for constantsAi ∈ G1,Bi ∈ G2, tT ∈ GT , γij ∈ Zn.

Multi-scalar multiplication equation in G1:

n′∑
i=1

yiAi +
m∑

i=1

biXi +
m∑

i=1

n′∑
j=1

γijyjXi = T1,

for constantsAi, T1 ∈ G1 andbi, γij ∈ Zn. Footnoteb.

Multi-scalar multiplication equation in G2:

n∑
i=1

aiYi +
m′∑
i=1

xiBi +
m′∑
i=1

n∑
j=1

γijxiYj = T2,

for constantsBi, T2 ∈ G2 andai, γij ∈ Zn.

Quadratic equation in Zn:

n′∑
i=1

aiyi +
m′∑
i=1

xibi +
m′∑
i=1

n′∑
j=1

γijxiyj = t,

for constantsai, γij , t ∈ Zn.

aWe list variables inZn in two separate groups because we will treat them differently in the NIWI proofs. If we wish to
deal with only one group of variables inZn we can add equations inZn of the formx1 = y1, x2 = y2, etc.

bWith multiplicative notation, these equations would be multi-exponentiation equations. We use additive notation forG1

andG2, since this will be notationally convenient in the paper, but stress that the discrete logarithm problem will typically be
hard in these groups.

Figure 1: Equations over groups with bilinear map.

groupsG1 or G2 [Sco02, BBS04, BGdMM05, GR04, Ver04]. The Symmetric XDH assumption is that the
DDH problem is hard in bothG1 andG2. We will construct a witness-indistinguishable proof for satisfiability
of a set of equations of the form given in Figure 1 under the SXDH assumption.

Instantiation 3: DLIN. The decisional linear assumption (DLIN) for a prime order bilin-
ear group (p, G,GT , e,P) introduced by Boneh, Boyen and Shacham [BBS04] states that given
(αP, βP, rαP, sβP, tP) for randomα, β, r, s ∈ Zp it is hard to tell whethert = r + s or t is random.
Assuming the hardness of the DLIN problem, we will suggest a witness-indistinguishable proof for satisfia-
bility of a set of equations from Figure 1.

The instantiations illustrate the variety of ways bilinear groups can be constructed. We can choose prime
order groups or composite order groups, we can haveG1 = G2 andG1 6= G2, and we can make various
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cryptographic assumptions. All three security assumptions have been used in the cryptographic literature to
build interesting protocols.

For all three instantiations, the techniques presented here yield very efficient witness-indistinguishable
proofs. In particular, the cost in proof size of each extra equation is constant and independent of the number
of variables in the equation. The size of the proofs, can be computed by adding the cost, measured in group
elements fromG1 or G2, of each variable and each equation listed in Figure 2. We refer to Section 7 for
more detailed tables.

Subgroup decision SXDH DLIN
Variable inG1 orG2 1 2 3
Variable inZn or Zp 1 2 3
Paring product equation 1 8 9
Multi-scalar multiplication inG1 orG2 1 6 9
Quadratic equation inZn or Zp 1 4 6

Figure 2: Number of group elements each variable or equation adds to the size of a NIWI proof.

1.2 Related Work

As we mentioned before, early work on NIZK proofs demonstrated that all NP-languages have non-
interactive proofs, however, did not yield efficient proofs. One cause for these proofs being inefficient in
practice was the need for an expensive NP-reduction to e.g. Circuit Satisfiability. Another cause of ineffi-
ciency was the reliance on the so-called hidden bits model, which even for small circuits is inefficient.

Groth, Ostrovsky, and Sahai [GOS06b, GOS06a] investigated NIZK proofs for Circuit Satisfiability using
bilinear groups. This addressed the second cause of inefficiency since their techniques give efficient proofs for
Circuit Satisfiability, but to use their proofs one must still make an NP-reduction to Circuit Satisfiability thus
limiting the applications. We stress that while [GOS06b, GOS06a] used bilinear groups, their application
was to build proof systems for circuit satisfiability. Here, we devise entirely new techniques to deal with
general statementsaboutbilinear groups, without having to reduce to an NP-complete language.

Addressing the issue of avoiding an expensive NP-reduction we have works by Boyen and Waters [BW06,
BW07] that suggest efficient NIWI proofs for statements related to group signatures. These proofs are based
on bilinear groups of composite order and rely on the subgroup decision assumption.

Groth [Gro06] was the first to suggest a general group-dependent language and NIZK proofs for state-
ments in this language. He investigated satisfiability of pairing product equations and only allowed group
elements to be variables. He also looked only at the special case of prime order groupsG,GT with a bilinear
mape : G × G → GT and, based on the decisional linear assumption [BBS04], constructed NIZK proofs
for such pairing product equations. However, even for very small statements, the very different and much
more complicated techniques of Groth yield proofs consisting of thousands of group elements (whereas ours
would be in the tens). Our techniques are much easier to understand, significantly more general, and vastly
more efficient.

We summarize our comparison with other works on NIZK proofs in Figure 3.

Inefficient Efficient
Circuit Satisfiability E.g. [KP98] [GOS06b, GOS06a]
Group-dependent language[Gro06] (restricted case) This work

Figure 3: Classification of NIZK proofs according to usefulness.
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We note that there have been many earlier works (starting with [GMR89]) dealing with efficientinterac-
tivezero-knowledge protocols for a number of algebraic relations. Here, we focus onnon-interactiveproofs.
We also note that even for interactive zero-knowledge proofs, no set of techniques was known for dealing
with general algebraic assertions arising in bilinear groups, as we do here.

1.3 New Techniques

[GOS06b, GOS06a, Gro06] start by constructing non-interactive proofs for simple statements and then com-
bine many of them to get more powerful proofs. The main building block in [GOS06b], for instance, is a
proof that a given commitment contains either 0 or 1, which has little expressive power on its own. Our
approach is the opposite: we directly construct proofs for very expressive languages; as such, our techniques
are very different from previous work.

The way we achieve our generality is by viewing the groupsG1, G2, GT as modules over the ringZn.
The ringZn itself can also be viewed as aZn-module. We therefore look at the more general question of sat-
isfiability of quadratic equations overZn-modulesA1, A2, AT with a bilinear map, see Section 3 for details.
Since many bilinear groups with various cryptographic assumptions and various mathematical properties can
be viewed as modules we are not bound to any particular bilinear group or any particular assumption.

Given modulesA1, A2, AT with a bilinear map, we construct new modulesB1, B2, BT , also equipped
with a bilinear map, and we map the elements inA1, A2, AT intoB1, B2, BT . These modules will typically
be larger modules, which give us space to hide the elements ofA1, A2, AT . More precisely, we devise
commitment schemes that map variables fromA1, A2, AT to the modulesB1, B2, BT . The commitment
schemes are homomorphic with respect to the module operations but also with respect to the bilinear map.

Our techniques for constructing witness-indistinguishable proofs are fairly involved mathematically, but
we will try to present some high level intuition here. (We give more detailed intuition later in Section 6, where
we present our main proof system). The main idea is the following: because our commitment schemes are
homomorphicandwe equip them with a bilinear map, we can take the equation that we are trying to prove,
and just replace the variables in the equation with commitments to those variables. Of course, because the
commitment schemes are hiding, the equations will no longer be valid. Intuitively, however, we can extract
out the additional terms introduced by the randomness of the commitments: if we give away these terms in the
proof, then this would be aconvincingproof of the equation’s validity (again, because of the homomorphic
properties). But, giving away these terms might destroy witness indistinguishability. Suppose, however, that
there is only one “additional term” introduced by substituting the commitments. Then, because it would be
the unique value which makes the equation true, giving it away would preserve witness indistinguishability!
In general, we are not so lucky. But if there are many terms, that means that these terms are not unique, and
because of the nice algebraic environment that we work in, we can randomize these terms so that the equation
is still true, but so that we effectively reduce to the case of there being a single term being given away with a
unique value.

1.4 Applications

Building on our work, Chandran, Groth and Sahai [CGS07] have constructed ring-signatures of sub-linear
size using the NIWI proofs in the first instantiation, which is based on the subgroup decision problem. Groth
and Lu [GL07] have used the NIWI and NIZK proofs from instantiation 3 to construct a NIZK proof for the
correctness of a shuffle. Groth [Gro07] has used the NIWI and NIZK proofs from instantiation 3 to construct
a fully anonymous group signature scheme. Independently of our work Boyen and Waters [BW06, BW07]
constructed non-interactive proofs that they used for group signatures. These proofs can be seen as examples
of the NIWI proofs in instantiation 1. Also, by attaching NIZK proofs to semantically secure public-key
encryption in any instantiation we get an efficient non-interactive verifiable cryptosystem. Boneh [Bon06]
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has suggested using this for optimistic fair exchange [Mic03], where two parties use a trusted but lazy third
party to guarantee fairness.

2 Non-interactive Witness-Indistinguishable Proofs

Let R be an efficiently computable ternary relation. For triplets(gk, x, w) ∈ R we callgk the setup,x the
statement andw the witness. Given somegk we letL be the language consisting of statements inR. For
a relation that ignoresgk this is of course the standard definition of an NP-language. We will, however, be
more interested in the case wheregk describes a bilinear group.

A non-interactive proof system for a relationR with setup consists of four probabilistic polynomial time
algorithms: a setup algorithmG, a CRS generation algorithmK, a proverP and a verifierV . The setup
algorithm outputs a setup(gk, sk). In our paper,gk will be a description of a bilinear group. The setup
algorithm may output some related informationsk, for instance the factorization of the group order. A
cleaner case, however, is whensk is just the empty string, meaning the protocol is built on top of the group
without knowledge of any trapdoors. The CRS generation algorithm takes(gk, sk) as input and produces
a common reference stringσ. The prover takes as input(gk, σ, x, w) and produces a proofπ. The verifier
takes as input(gk, σ, x, π) and outputs 1 if the proof is acceptable and 0 if rejecting the proof. We call
(G,K, P, V ) a non-interactive proof system forR with setupG if it has the completeness and soundness
properties described below.

PERFECT COMPLETENESS. For all adversariesA we have

Pr
[
(gk, sk)← G(1k);σ ← K(gk, sk); (x,w)← A(gk, σ);π ← P (gk, σ, x, w) :

V (gk, σ, x, π) = 1 if (gk, x, w) ∈ R
]

= 1.

PERFECT SOUNDNESS. For all adversariesA we have

Pr
[
(gk, sk)← G(1k);σ ← K(gk, sk); (x, π)← A(gk, σ) : V (gk, σ, x, π) = 0 if x /∈ L

]
= 1.

In the standard definition of soundness defined above, the adversary is successful if creating a valid
proof for x /∈ L. We will generalize this notion to what we will call co-soundness, where the adversary is
successful if creating a valid proof forx ∈ Lco for some languageLco, which may depend ongk andσ.
Standard soundness is a special case of co-soundness withLco being the complement ofL.

PERFECTLco-SOUNDNESS. For all adversariesA we have

Pr
[
(gk, sk)← G(1k);σ ← K(gk, sk); (x, π)← A(gk, σ) : V (gk, σ, x, π) = 0 if x ∈ Lco

]
= 1.

COMPOSABLE WITNESS INDISTINGUISHABILITY. In this paper, we will use a strong definition of witness
indistinguishability. We introduce a reference string simulatorS that generates a simulated CRS. We require
that the adversary cannot distinguish a real CRS from a simulated CRS. We also require that on a simulated
CRS it isperfectlyindistinguishable which witness the prover used.

In other words, for all non-uniform polynomial time adversariesA we have

Pr
[
(gk, sk)← G(1k);σ ← K(gk, sk) : A(gk, σ) = 1

]
≈ Pr

[
(gk, sk)← G(1k);σ ← S(gk, sk) : A(gk, σ) = 1

]
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and

Pr
[
(gk, sk)← G(1k);σ ← S(gk, sk); (x,w0, w1)← A(gk, σ);π ← P (gk, σ, x, w0) : A(π) = 1

]
= Pr

[
(gk, sk)← G(1k);σ ← S(gk, sk); (x,w0, w1)← A(gk, σ);π ← P (gk, σ, x, w1) : A(π) = 1

]
,

where we require(gk, x, w0), (gk, x, w1) ∈ R.

COMPOSABLE ZERO-KNOWLEDGE. Composable zero-knowledge [Gro06] is a strengthening of the usual
notion of non-interactive zero-knowledge. First, we require that an adversary cannot distinguish a real CRS
from a simulated CRS. Second, we require that the adversary,even when it gets access to the secret simulation
keyτ , cannot distinguish real proofs on a simulated CRS from simulated proofs.

In other words, there exists a polynomial time simulator(S1, S2) so for all non-uniform polynomial time
adversariesA we have

Pr
[
(gk, sk)← G(1k);σ ← K(gk, sk) : A(gk, σ) = 1

]
≈ Pr

[
(gk, sk)← G(1k); (σ, τ)← S1(gk, sk) : A(gk, σ) = 1

]
,

and

Pr
[
(gk, sk)← G(1k); (σ, τ)← S1(gk, sk); (x,w)← A(gk, σ, τ);π ← P (gk, σ, x, w) : A(π) = 1

]
= Pr

[
(gk, sk)← G(1k); (σ, τ)← S1(gk, sk); (x,w)← A(gk, σ, τ);π ← S2(gk, σ, τ, x) : A(π) = 1

]
,

where we requireA outputs(gk, x, w) ∈ R.

3 Modules with Bilinear Maps

Let (R,+, ·, 0, 1) be a finite commutative ring. Recall that anR-moduleA is an abelian group(A,+, 0)
where the ring acts on the group such that

∀r, s ∈ R ∀x, y ∈ A : (r + s)x = rx+ sx ∧ r(x+ y) = rx+ ry ∧ r(sx) = (rs)x ∧ 1x = x.

A cyclic groupG of ordern can in a natural way be viewed as aZn-module. We will observe that all
the equations in Figure 1 can be viewed as equations overZn-modules with a bilinear map. To generalize
completely, letR be a finite commutative ring and letA1, A2, AT be finiteR-modules with a bilinear map
f : A1 ×A2 → AT . We will consider quadratic equations over variablesx1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2

of the form
n∑

j=1

f(aj , yj) +
m∑

i=1

f(xi, bi) +
m∑

i=1

n∑
j=1

γijf(xi, yj) = t.

In order to simplify notation, let us forx1, . . . , xn ∈ A1, y1, . . . , yn ∈ A2 define

~x · ~y =
n∑

i=1

f(xi, yi).

The equations can now be written as

~a · ~y + ~x ·~b+ ~x · Γ~y = t.

We note for future use that due to the bilinear properties off , we have for any matrixΓ ∈ Matm×n(R) and
for anyx1, . . . , xm, y1, . . . , yn that~x · Γ~y = Γ>~x · ~y.

Let us now return to the equations in Figure 1 and see how they can be recast as quadratic equations over
Zn-modules with a bilinear map.
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Pairing product equations: DefineR = Zn, A1 = G1, A2 = G2, AT = GT , f(x, y) = e(x, y) and we
can rewrite the pairing product equation as( ~A · ~Y)( ~X · ~B)( ~X · Γ~Y) = tT . Footnote2

Multi-scalar multiplication in G1: DefineR = Zn, A1 = G1, A2 = Zn, AT = G1, f(X , y) = yX and
we can rewrite the scalar multiplication equation as~A · ~y + ~X ·~b+ ~X · Γ~y = T1.

Multi-scalar multiplication in G2: DefineR = Zn, A1 = Zn, A2 = G2, AT = G2, f(x,Y) = xY and we
can rewrite the multi-scalar multiplication equation as~a · ~Y + ~x · ~B + ~x · Γ~Y = T2.

Quadratic equation in Zn: DefineR = Zn, A1 = Zn, A2 = Zn, AT = Zn, f(x, y) = xy mod n and we
can rewrite the quadratic equation inZn as~a · ~y + ~x ·~b+ ~x · Γ~y = t.

From now on, we will therefore focus on the more general problem of constructing non-interactive compos-
able witness-indistinguishable proofs for satisfiability of quadratic equations overR-modulesA1, A2, AT

(using additive notation for all modules) with a bilinear mapf .

4 Commitment from Modules

In our NIWI proofs we will commit to the variablesx1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2. We do this by
mapping them into otherR-modulesB1, B2 and making the commitments in those modules.

Let us for now just consider how to commit to elements from oneR-moduleA. The public key for the
commitment scheme will describe anotherR-moduleB andR-linear mapsι : A → B andp : B → A. It
will also contain elementsu1, . . . , un ∈ B. To commit tox ∈ A we pickr1, . . . , rn ← R at random and
compute the commitment

c := ι(x) +
n∑

i=1

riui.

Our commitment scheme will have two types of commitment keys.

Hiding key: A hiding key contains(B, ι, p, u1, . . . , un) such thatι(G) ⊆ 〈u1, . . . , un〉. The commitment
c := ι(x) +

∑n
i=1 riui is therefore perfectly hiding whenr1, . . . , rn are chosen at random fromR.

Binding key: A binding key contains(B, ι, p, u1, . . . , un) such that∀i : p(ui) = 0 andι ◦ p is non-trivial.
The commitmentc := ι(x) +

∑n
i=1 riui therefore contains the non-trivial informationp(c) = p(ι(x))

aboutx. In particular, ifι ◦ p is the identity map onA, then the commitment is perfectly binding.3

Computational indistinguishability: The main assumption that we will be making throughout this paper is
that the distribution of hiding keys and the distribution of binding keys are computationally indistin-
guishable. Witness-indistinguishability of our NIWI proofs and later the zero-knowledge property of
our ZK proofs will rely on this property.

Since we will often be committing to many elements at a time let us define some convenient notation.
Given elementsx1, . . . , xm we will write ~c := ι(~x) + R~u with R ∈ Matm×n(R) for making commitments
c1, . . . , cm computed asci := ι(xi) +

∑n
j=1 rijuj .

2We use multiplicative notation here, because, usuallyGT is written multiplicatively in the literature. When we work with the
abstract modules, however, we will use additive notation.

3The mapp is not efficiently computable. However, one can imagine scenarios where a secret key will makep efficiently
computable andι ◦ p is the identity map. In this case the commitment scheme is a cryptosystem withp being the decryption
operation.
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4.1 Instantiations

The treatment of commitments using the language of modules generalizes several previous works dealing
with commitments over bilinear groups, including [BGN05, GOS06b, GOS06a, Gro06, Wat06].

Instantiation 1: Subgroup decision. In this setting, we have a composite order groupG of ordern := pq.
The group can in a natural way be viewed as aZn-module; using the notation above we defineA = G and
B = G. The commitment key will contain an elementU . We can choose it soU generatesG or soU has order
q. The subgroup decision assumption tells us that the two types of commitment keys are computationally
indistinguishable.

Let ι : G → G be the identity map. Defineλ ∈ Zn soλ = 1 mod p andλ = 0 mod q. The map
p : G→ G is p(X ) := λX ; in other words,p maps elements onto the orderp subgroup ofG. If U generates
G, thenC := ι(X ) + rU is perfectly hiding. On the other hand, ifU has orderq, thenλC = λX definesX
uniquely inGp.

We can also commit to exponents. The modules areA′ = Zn andB = G. Let ι′ : Zn → G be given
by ι′(x) = xP andp′ : G → Zn be given byp′(xP) = λx. WhenU generatesG, the commitment scheme
C := xP + rU is perfectly hiding. On the other hand, ifU has orderq, then the commitment determines
p′(C) = λx ∈ Zn.

Instantiation 2: SXDH. Consider a cyclic groupA := G of prime orderp. By entry-wise addition we
get an abelian groupB := G2, which is a module overZp. The commitment key will contain an element
u1 = (P,Q), whereQ = αP for a randomly chosenα ∈ Z∗

p. It will also contain an elementu2 = (U ,V)
which can be chosen in one of two ways:u2 := tu1 or u2 := tu1 − (O,P) for a randomly chosent ∈ Z∗

p.
The former will give a perfectly binding commitment key, whereas the latter will give a perfectly hiding
commitment key. The DDH assumption tells us that the two types of commitment keys are computationally
indistinguishable.

Let us now describe how to commit to an elementX ∈ G. We defineι(X ) := (O,X ). Using randomness
r1, r2 ∈ Zp we get a commitment of the formc := ι(X ) + r1u1 + r2u2. If u2 = tu1 we havec =
((r + st)P, (r + st)Q) which is an ElGamal encryption ofP. We definep : (C1, C2) 7→ C2 − αC1 and see
that the commitment is perfectly binding sinceι ◦ p is the identity map onG andp(u1) = p(u2) = O. If u1

andu2 are linearly independent we have thatu1, u2 is a basis forB = G2 and thereforeι(G) ⊆ 〈u1, u2〉.
Whenu1 andu2 are linearly independent we therefore have a perfectly hiding commitment.

To commit to an exponentx ∈ A′ := Zp, we use the following approach. We defineu = u1 + (O,P)
andι′(x) := xu andp′(c1P, c2P) := c2 − αc1. To commit tox using randomnessr ∈ Zp we compute
c := ι′(x)+ rU1. On a hiding key we haveu = tu1 sou ∈ 〈u1〉, which impliesι′(Zp) ⊆ 〈u1〉. A hiding key
therefore gives us a perfectly hiding commitment scheme. On a binding key we havec = ((r + xt)P, (r +
xt)Q+ xP), which is an ElGamal encryption ofxP. We have thatι′ ◦ p′ is the identity map andp′(u1) = 0
so the commitment scheme is perfectly binding.

Instantiation 3: DLIN. In a DLIN group letU := αP,V := βP be given for randomα, β ∈ Z∗
p.

The DLIN assumption states that it is hard to tell whether three elementsrU , sV, tP have the property that
t = r+s. We will use theZp-modulesA = G andB = G3 formed by entry-wise addition. The commitment
key will contain three elementsu1, u2, u3 ∈ B. We useu1 := (U ,O,P), u2 := (O,V,P) andu3 can be
chosen as eitheru3 := ru1 +su2 oru3 := ru1 +su2−(O,O,P), which will give respectively a binding key
and a hiding key. The DLIN assumption implies that the two types of commitment keys are computationally
indistinguishable.

We will now describe how to commit toX ∈ G. The mapι is defined byι(X ) := (O,O,X ). A com-
mitment is formed by choosingr1, r2, r3 ∈ Zp and computingc := ι(X ) +

∑3
i=1 riui. On a hiding key

9



u1, u2, u3 are linearly independent so they form a basis forB = G3 and thereforeι(G) ⊆ 〈u1, u2, u3〉 so the
commitment scheme is perfectly hiding. On a binding key we havec = ((r1 + rr3)U , (r2 + sr3)V, (r1 +
r2 + (r + s)r3)P + X ), which is a BBS encryption [BBS04] ofX . Defining the decryption function
p(C1, C2, C3) := C3 − 1

αC1 −
1
βC2 we see thatp(u1) = p(u2) = p(u3) = O and ι ◦ p is the identity

map so the commitment is perfectly binding.4

To commit to a messagex ∈ A′ := Zp we first defineu := u3 +(O,O,P) andι′(x) := xu. We commit
to x using randomnessr1, r2 by settingc := xu+ r1u1 + r2u2. On a hiding key, we have thatu = ru1 +su2

soι′(Zp) ⊆ 〈u1, u2〉 and the commitment scheme is perfectly hiding. On a binding key, the commitment is
c = ((r1 + rx)U , (r2 + sx)V, (r1 + r2 + x(r + s))P + xP). This corresponds to a BBS encryption ofxP.
We definep′(C1, C2, C3) := C3− 1

αC1−
1
βC2). We havep′(u1) = p′(u2) = 0 andι′ ◦ p′ is the identity onZp,

so the commitment scheme is perfectly binding.

5 Setup

In our NIWI proofs the common reference string will contain commitment keys to commit to elements in
respectivelyA1 andA2. These commitment keys specifyB1, ι1, p1, u1, . . . , um′ andB2, ι2, p2, v1, . . . , vn′ .
In addition, the common reference string will also specify a thirdR-moduleBT together withR-linear maps
ιT : AT → BT andpT : BT → AT . There will be a bilinear mapF : B1 × B2 → BT as well. We require
that the maps are commutative. We refer to Figure 4 for an overview of the modules and the maps. For

A1 × A2 → AT

f
ι1 ↓↑ p1 ι2 ↓↑ p2 ιT ↓↑ pT

B1 × B2 → BT

F

∀x ∈ A1 ∀y ∈ A2 : F (ι1(x), ι2(y)) = ιT (f(x, y))
∀x ∈ B1 ∀y ∈ B2 : f(p1(x), p2(x)) = pT (F (x, y))

Figure 4: Modules and maps between them.

notational convenience, let us define for~x ∈ Bn
1 , ~y ∈ Bn

2 that

~x • ~y =
n∑

i=1

F (x, y).

The final part of the common reference string is a set of matricesH1, . . . ,Hη ∈ Matm′×n′(R) that all satisfy
~u •Hi~v = 0.

There will be two different types of settings of interest to us.

Soundness setting:In the soundness setting, we require that the commitment keys are binding so we have
p1(~u) = ~0 andp2(~v) = ~0 and the mapsι1 ◦ p1 andι2 ◦ p2 are non-trivial.

Witness-indistinguishability setting: In the witness-indistinguishability setting we have hiding commit-
ment keys, soι1(G1) ⊆ 〈u1, . . . , um′〉 andι2(G2) ⊆ 〈v1, . . . , vn′〉. We also require thatH1, . . . ,Hη

4This commitment scheme coincides with the scheme of [Wat06]. We note that the different, and less efficient, commitment
scheme of [Gro06] can be similarly described in our language of modules, as well.
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generate theR-module of all matricesH so~u • H~v = 0. As we will see in the next section, these
matrices play a role as randomizers in the witness-indistinguishability proof.

Computational indistinguishability: The (only) computational assumption this paper is based on is that
the two settings can be set up in a computationally indistinguishable way. The instantiations show
that there are many ways to get such computationally indistinguishable soundness and witness-
indistinguishability setups.

5.1 Instantiations

Instantiation 1: Subgroup Decision. The common reference string specifies(p, G,GT , e,P,U), which
is sufficient to describe the entire setup given in this section. We useB = B1 = B2 = G andBT = GT and
the bilinear mapF (X ,Y) := e(X ,Y). In the witness-indistinguishability setup we use a hiding keyU that
generatesG and consequentlye(U ,U) generatesGT . The only solution toe(U ,HU) = 1 is therefore the
trivial H = 0, so we do not need to include anyHi in the common reference string.

There are three scenarios to look at: pairing product equations, multi-scalar multiplication and quadratic
equations inZn. In the pairing product equation scenario, we haveA1 = A2 = G andAT = GT and a
bilinear mapf := e. We define the mapιT : AT → BT to be the identity map, whereaspT (z) := zλ.
Observe, sinceλ = 1 mod p, λ = 0 mod q that λ2 = λ mod n so we have the commutative property
e(p1(X ), p2(Y)) = e(λX , λY) = pT (e(X ,Y)) and the other commutative property is trivial.

In the multi-scalar multiplication scenario, we haveA1 = Zn, A2 = G,AT = G. The bilinear mapf
is the scalar multiplication functionf(x,Y) := xY. We definêιT (Z) := e(P,Z) andp̂T (e(P,Z)) = λZ.
This gives us the required commutative propertiese(ι′(x), ι(Y)) = e(xP,Y) = e(P, xY) = ι̂T (xY) and
p̂T (e(xP,Y)) = λxY = (λx)(λY) = p′(xP)p(Y ).

In the quadratic equation inZn, we haveA1 = A2 = AT = Zn. The bilinear mapf is the multiplication
function f(x, y) := xy mod n. We defineι′T (z) := e(P,P)z andp′T (e(P,P)z) := λz. We have the
commutative propertiese(ι′(x), ι′(y)) = e(xP, yP) = e(P,P)xy = ι′T (xy) andp′T (e(xP, yP)) = λxy =
(λx)(λy) = p′(xP)p′(yP).

Instantiation 2: SXDH. The common reference string specifies(p, G1, G2, GT , e,P1,P2, u1, u2, v1, v2),
where(u1, u2) is a commitment key for the groupG1 and(v1, v2) is a commitment key forG2 as described
in Section 4.1. We haveB1 = G2

1, B2 = G2
2 and defineBT := G4

T with respectively entry-wise addition and
entry-wise multiplication. The mapF is defined as follows:

F : G2
1 ×G2

2 → G4
T (

(
X1

X2

)
,

(
Y1

Y2

)
) 7→

(
e(X1,Y1) e(X1,Y2)
e(X2,Y1) e(X2,Y2)

)
.

In the pairing product equation scenario, we haveA1 = G1, A2 = G2, AT = GT and f(x, y) :=
e(x, y). The commitment keys areu1, u2 and v1, v2 for committing to respectively elements inG1 and
G2. In the witness-indistinguishability scenario, the commitment keys are hiding, which means they are
chosen sou1 andu2 are linearly independent andv1 andv2 are linearly independent. The four elements
F (u1, v1), F (u1, v2), F (u2, v1), F (u2, v2) are linearly independent in this scenario. This implies that~u•H~v
only has the trivial solution whereH is the2× 2 matrix with 0-entries. As for the mapsιT , pT we define

ιT : z 7→
(

1 1
1 z

)
, pT (

(
z11 z12
z21 z22

)
) 7→ z22z

−α1
12 (z21z−α1

11 )−α2 .

The mappT corresponds to first ElGamal decrypting down the columns usingα1 whereu1 = (P1, α1P1)
and then ElGamal decrypting the resulting row by usingα2 wherev1 = (P2, α2P2). We note thatιT ◦ pT is
the identity map. One can check that the maps satisfy the commutative properties in Figure 4.
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We will now look at the case of multi-scalar multiplication inG2. The case of multi-scalar multiplication
inG1 is treated similarly. We haveA1 = Zp, A2 = G2, AT = G2 and the bilinear map isf(x,Y) = xY. We
will use ι′, u1 for commitments to scalars inZp andι, v1, v2 for commitments to elements inG2. We define
ι̂T (Z) = ιT (e(P,Z)). Let e−1(e(P,Z)) := Z and definêpT (z) := e−1(pT (z)). We note that̂ιT ◦ p̂T

is the identity map onG2. We see that in the witness-indistinguishability setting, wherev1, v2 are linearly
independent, the equationu1 •H~v = 0 only has the trivial solution whereH is the1× 2 matrix containing
0-entries.

Finally, we have the case of quadratic equations inZp. We haveA1 = A2 = AT = Zp and the bilinear
mapf(x, y) := xy mod p. We useu, u1 for commitments inG2

1 andv, v1 for commitments inG2
2. We

defineι′T (z) := ιT (e(P,P)z) andp′T (z) := logP(p̂T (z)). The maps satisfy the commutative properties
from Figure 4 and we haveι′T ◦ p′T is the identity map onZp. SinceF (u1,Hv1) has no non-trivial solution
we do not need to specify a set of generatorsH1, . . . ,Hη.

Instantiation 3: DLIN. The common reference string specifies(p, G,GT , e,P, u1, u2, u3), where
(u1, u2, u3) is a commitment key for the groupG, andu1, u2 is used for committing to exponents. We
haveB = G3.

We will use the moduleBT = G9
T defining the addition of two elements to correspond to entry-wise

multiplication of the 9 group elements. We will use two different bilinear mapsF, F̃ . The mapF̃ is defined
as follows:

F̃ : G3 ×G3 → G9
T (

 X1

X2

X3

 ,

 Y1

Y2

Y3

) 7→

 e(X1,Y1) e(X1,Y2) e(X1,Y3)
e(X2,Y1) e(X2,Y2) e(X2,Y3)
e(X3,Y1) e(X3,Y2) e(X3,Y3)

 .

The symmetric mapF is defined byF (x, y) := 1
2 F̃ (x, y) + 1

2 F̃ (y, x).
In the pairing product equation scenario, we haveA1 = G1, A2 = G2, AT = GT and f(x, y) :=

e(x, y). The commitment key isu1, u2, u3. In the witness-indistinguishability scenario, the commitment
key is hiding, which means that it is chosen sou1, u,u3 are linearly independent and hence span all of
B = G3. Some computation shows that the nine elementsF̃ (ui, uj) are linearly independent in the witness-
indistinguishability setting. This implies that~u •̃H~u only has the trivial solution whereH is the3×3 matrix
with 0-entries.

On the other hand, the mapF has non-trivial solutions to~u • H~u corresponding to the identities
F (ui, uj) = F (uj , ui). Some computation shows that the matrices

H1 =

 0 1 0
−1 0 0
0 0 0

 H2 =

 0 0 1
0 0 0
−1 0 0

 H3 =

 0 0 0
0 0 1
0 −1 0


form a basis for the matricesH so~u •H~u = 0.

As for the mapsιT , pT we define

ιT (z) :=

 1 1 1
1 1 1
1 1 z

 , pT (

 z11 z12 z13
z21 z22 z23
z31 z32 z33

) := (z33z−α
13 z

−1/β
23 )(z31z

−1/α
11 z

−1/β
21 )−1/α(z32z

−1/α
12 z

−1/β
22 )−1/β .

The mappT corresponds to first BBS decrypting down the columns using the decryption keyα, β and then
after that BBS decrypting along the row. We note thatιT ◦ pT is the identity map. One can check that the
maps satisfy the commutative properties with bothF̃ andF in Figure 4.

We will now look at the case of multi-scalar multiplication inG. We haveA1 = Zp, A2 = G,AT =
G and the bilinear map isf(x,Y) = xY. We will use ι′, u1, u2 for commitments to scalars inZp and
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ι, u1, u2, u3 for commitments to elements inG. We definêιT (Z) = ιT (e(P,Z)). Let e−1(e(P,Z)) := Z
and definêpT (z) := e−1(pT (z)). We note that̂ιT ◦ p̂T is the identity map onG. We see that(u1, u2) •̃H~u =
0 only has the trivial solution whereH is the2 × 3 matrix containing 0-entries. We also have thatH1 =(

0 1 0
−1 0 0

)
generates the matricesH so(u1, u2) •H~u = 0.

Finally, we have the case of quadratic equations inZp. We haveA1 = A2 = AT = Zp and the
bilinear mapf(x, y) := xy mod p. We useu1, u2 for commitments to the exponents. We defineι′T (z) :=
ιT (e(P,P)z andp′T (z) := logP(p̂T (z)). The maps satisfy the commutative properties from Figure 4 and we
haveι′T ◦ p′T is the identity map onZp. Again we have for̃F only trivial matricesH, whereas forF we have

the non-trivial basisH1 =
(

0 1
−1 0

)
.

6 Proving that Committed Values Satisfy a Quadratic Equation

Recall that in our setting, a quadratic equation looks like the following:

~a · ~y + ~x ·~b+ ~x · Γ~y = t,

with constants~a ∈ An
1 ,
~b ∈ Am

2 ,Γ ∈ Matm×n(R), t ∈ AT . The prover’s task is to convince the verifier that
the commitments contain~x ∈ Am

1 , ~y ∈ An
2 that satisfy the quadratic equation.

We will first consider the case of a single quadratic equation of the above form. The first step in our
NIWI proof will be to commit to all the variables~x, ~y. The commitments are of the form

~c = ι1(~x) +R~u , ~d = ι2(~y) + S~v.

(Note that for all equations we will use these same commitments.)

Intuition. Before giving the proof let us give some intuition. In the previous sections, we have carefully
set up our commitments so that the commitments themselves also “behave” like the values being committed
to: they also belong to modules (theB modules) equipped with a bilinear map (the mapF , also implicitly
used in the• operation). Given that we have done this, a natural idea is to take the quadratic equation we are
trying to prove, and “plug in” the commitments in place of the variables; let us evaluate:

ι1(~a) • ~d+ ~c • ι2(~b) + ~c • Γ~d.

After some computations, where we expand the commitments, make use of the bilinearity of•, and rearrange
terms (the details can be found in the proof of Theorem 1 below) we get(

ι1(~a) • ι2(~y) + ι1(~x) • ι2(~b) + ι1(~a) • Γι2(~y)
)

+ι1(~a) • S~v +R~u • ι2(~b) + ι1(~x) • S~v +R~u • ι2(~y) +R~u • ~v.

By the commutativity properties of the maps, the first group of three terms are equal toιT (t), if the equation
is true. Looking at the remaining terms, note that the verifier knows~u and~v. Using the fact that bilinearity
implies that for any~x, ~y we have~x•Γ~y = Γ>~x•~y, we can sort the remaining terms so that they match either
~u or ~v to get (again see the proof of Theorem 1 for details)

ιT (t) + ~u •
(
R>ι2(~b) +R>Γι2(~y)

)
+

(
S>ι1(~a) + S>Γ>ι1(~x)

)
• ~v.
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Now, for sake of intuition, let us make some simplifying assumptions: Let’s assume that we’re working in
a symmetric case whereA1 = A2, andB1 = B2, and therefore~u = ~v and, so, the above equation can be
simplified further to get:

ιT (t) + ~u •
(
R>ι2(~b) +R>Γι2(~y) + S>ι1(~a) + S>Γ>ι1(~x)

)
.

Assume further,ι1 ◦ p1, ι2 ◦ p2 andιT ◦ pT are the identity maps onA1, A2 andAT .

Now, suppose the prover gives to the verifier as his proof~π =
(
R>ι2(~b) + R>Γι2(~y) + S>ι1(~a) +

S>Γ>ι1(~x)
)

. The verifier would then check that the followingverification equationholds:

ι1(~a) • ~d+ ~c • ι2(~b) + ~c • Γ~d = ιT (t) + ~u • ~π.

It is easy to see that this proof would be convincing in the soundness setting, because we have that
p1(~u) = ~0. Then the verifier would know (but not be able to compute) that by applying the mapsp1, p2, pT

we get
~a • p2(~d) + p1(~c) •~b+ p1(~c) • Γp2(~d) = t+ p1(~u) • p2(~π) = t.

This gives us soundness, since~x := p1(~c) and~y := p2(~d) satisfy the equations.
The remaining problem is to get witness-indistinguishability. Recall that in the witness-

indistinguishability setting, the commitments are perfectly hiding. Therefore, in the verification equation,
nothing except for~π has any information about~x and~y except for the information that can be inferred from
the quadratic equation itself. So, let’s consider two cases:

1. Suppose that~π is the unique value so that the verification equation is valid. In this case, we trivially
have witness indistinguishability, since this means that all witnesses would lead to the same value for
~π.

2. The simple case above might seem too good to be true, but let’s see what it means if it isn’t true. If two
values~π and~π′ both satisfy the verification equation, then just subtracting the equations shows that
~u• (~π−~π′) = 0. On the other hand, recall that in the witness indistinguishability setting, the~u vectors
generate the entire space where~π or ~π′ live, and furthermore we know that the matricesH1, . . . ,Hη

generate allH such that~u •H~u = 0. Therefore, let’s chooser1, . . . , rη at random, and consider the
distribution~π′′ = ~π +

∑η
i=1 riHi~u. We thus obtain the same distribution on~π′′ regardless of what~π

we started from, and such that~π′′ always satisfies the verification equation.

Thus, for the symmetric case we obtain a witness indistinguishable proof system. For the general non-
symmetric case, instead of having just~π for the ~u part of the equation, we would also have~ψ for the ~v
part. In this case, we would also have to make sure that this split does not reveal any information about the
witness. What we will do is to randomize the proofs such that they get a uniform distribution on all~π, ~ψ that
satisfy the verification equation. If we pickT ← Matn′×m′(R) at random we have that~ψ + T~u completely
randomizes~ψ. The part we add in~ψ can be “subtracted” from~π by observing that

ιT (t) + ~u • ~π + ~ψ • ~v = ιT (t) + ~u •
(
~π − T>~v

)
+

(
~ψ + T~u

)
• ~v.

This leads to a unique distribution of proofs for the general non-symmetric case as well.
Having now explained the intuition behind the following proof system, we proceed to a formal description

and proof of security properties.
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Proof: PickT ← Matn′×m′(R), r1, . . . , rη ← R at random. Compute

~π := R>ι2(~b) +R>Γι2(~y) +R>ΓS~v − T>~v +
η∑

i=1

riHi~v

~ψ := S>ι1(~a) + S>Γ>ι1(~x) + T~u

and return the proof(~ψ, ~π).

Verification: Return 1 if and only if

ι1(~a) • ~d+ ~c • ι2(~b) + ~c • Γ~d = ιT (t) + ~u • ~π + ~ψ • ~v.

Perfect completeness of our NIWI proof will follow from the following theorem no matter whether we
are in the soundness setting or the witness-indistinguishability setting.

Theorem 1 Given~x, ~y,R, S satisfying

~c = ι1(~x) +R~u , ~d = ι2(~y) + S~v , ~a · ~y + ~x ·~b+ ~x · Γ~y = t,

we have for all choices ofT, r1, . . . , rη that the proofs~π, ~ψ constructed as above will be accepted.

Proof. The commutative property of the linear and bilinear maps gives usι1(~a) • ι2(~y) + ι1(~x) • ι2(~b) +
ι1(~x) • Γι2(~y) = ιT (t). For any choice ofT, r1, . . . , rη we have

ι1(~a) • ~d+ ~c • ι2(~b) + ~c • Γ~d

= ι1(~a) •
(
ι2(~y) + S~v

)
+

(
ι1(~x) +R~u

)
• ι2(~b) +

(
ι1(~x) +R~u

)
• Γ

(
ι2(~y) + S~v)

)
= ι1(~a) • ι2(~y) + ι1(~x) • ι2(~b) + ι1(~x) • Γι2(~y)

+R~u • ι2(~b) +R~u • Γι2(~y) +R~u • ΓS~v + ι1(~a) • S~v + ι1(~x) • ΓS~v

= ιT (t) + ~u •
(
R>ι2(~b) +R>Γι2(~y) +R>ΓS~v

)
+

(
S>ι1(~a) + S>Γ>ι1(~x)

)
• ~v

= ιT (t) + ~u •
(
R>ι2(~b) +R>Γι2(~y) +R>ΓS~v

)
+

η∑
i=1

ri(~u •Hi~v)− ~u • T>~v

+T~u • ~v +
(
S>ι1(~a) + S>Γ>ι1(~x)

)
• ~v

= ιT (t) + ~u • ~π + ~ψ • ~v

�

Theorem 2 In the soundness setting, where we havep1(~u) = ~0, p2(~v) = ~0 a valid proof impliesp1(ι1(~a)) ·
p2(~d) + p1(~c) · p2(ι2(~b)) + p1(~c) · Γp2(~d) = pT (ιT (t)).

Proof. An acceptable proof~π, ~ψ satisfiesι(a)• ~d+~c•ι2(~b)+~c•Γ~d = ιT (t)+~u•~π+ ~ψ•~v. The commutative
property of the linear and bilinear maps gives us

p1(ι1(~a)) ·p2(~d)+p1(~c) ·p2(ι2(~b))+p1(~c) ·Γp2(~d) = pT (ιT (t))+p1(~u) ·p2(~π)+p1(~ψ) ·p2(~v) = pT (ιT (t)).

�
Observe as a particularly interesting case that whenι1◦p1, ι2◦p2, ιT ◦pT are the identity maps onA1, A2

andAT respectively, then this means~x := p1(~c) and~y := p2(~d) give us a satisfying solution to the equation
~a · ~y + ~x · ~y + ~x · Γ~y = t. In this case, the theorem says that the proof is perfectly sound in the soundness
setting. It is still possible though that interesting co-soundness properties emerge also in the case where these
maps are not the identity-maps onA1, A2 andAT .
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Theorem 3 In the witness-indistinguishable setting whereι1(G1) ⊆ 〈u1, . . . , um′〉, ι2(G2) ⊆ 〈v1, . . . , vn′〉
andH1, . . . ,Hη generate all matricesH so ~u • H~v = 0, all satisfying witnesses~x, ~y,R, S yield proofs
~π ∈ 〈v1, . . . , vn′〉m′

and ~ψ ∈ 〈u1, . . . , um′〉n′
that are uniformly distributed conditioned on the verification

equationι1(~a) • ~d+ ~c • ι2(~b) + ~c • Γ~d = ιT (t) + ~u • ~π + ~ψ • ~v.

Proof. Sinceι1(G1) ⊆ 〈u1, . . . , um′〉 andι2(G2) ⊆ 〈v1, . . . , vn′〉 there existsA,B,X, Y so ι1(~a) = A~u,
ι1(~x) = X~u andι2(~b) = B~v, ι2(~y) = Y ~v. We have~c = ~0 + (X +R)~u and~d = ~0 + (Y + S)~v. The proof is
~π, ~ψ given by

~ψ = S>ι1(~a) + S>Γ>ι1(~x) + T~u =
(
S>A+ S>Γ>X + T

)
~u

~π = R>ι2(~b) +R>Γι2(~y) +R>ΓS~v))− T>~v +
η∑

i=1

riHi~v

=
(
R>B +R>ΓY +R>ΓS − T>

)
~v +

( η∑
i=1

riHi

)
~v.

We chooseT at random, so we can think of~ψ being a uniformly random variable given by~ψ = Ψ~v for a
randomly chosen matrixΨ. We can think of~π as being written~π = Π~v, whereΠ is a random variable that
depends onΨ.

By perfect completeness all satisfying witnesses yield proofs whereι1(~a)• ~d+~c•ι2(~b)+~c•Γ~d−ιT (t)−
~ψ • ~v = ~u • ~π = ~u • Π~v. Conditioned on the random variableΨ we therefore have that any two possible
solutions~π1, ~π2 satisfy~u • (Π1 − Π2)~v = 0. SinceH1, . . . ,Hη generate all matricesH so~u • H~v = 0

we can write this asΠ1 = Π2 +
∑η

i=1 riHi. In constructing~π we form it as
(
R>B + R>ΓY + R>ΓS −

T>
)
~v +

( ∑η
i=1 riHi

)
~v for randomly chosenr1, . . . , rη. We therefore get a uniform distribution over all~π

that satisfy the equation conditioned on~ψ. Since~ψ is uniformly chosen, we conclude that for any witness we
get a uniform distribution over~ψ, ~π conditioned on them constituting an acceptable proof. �

6.1 Linear Equations

As a special case, we will consider the proof system when~a = 0 andΓ = 0. In this case the equation is
simply

~x ·~b = t.

The scheme can be simplified in this case by choosingT = 0 in the proof, which gives~ψ := ~0 and~π :=
R>ι2(~b) +

∑η
i=1 riHi~v. Theorem 1 still applies withT = 0. Theorem 2 gives usp1(~c) · p2(ι2(~b)) =

pT (ιT (t)), which will give us soundness. Finally, we have the following theorem.

Theorem 4 In the witness-indistinguishable setting whereι1(G1) ⊆ 〈u1, . . . , um′〉, ι2(G2) ⊆ 〈v1, . . . , vn′〉
andH1, . . . ,Hη generate all matricesH so~u •H~v = 0, all satisfying witnesses~x, ~y,R, S yield the uniform
distribution of the proof~π ∈ 〈v1, . . . , vn′〉m′

conditioned on the verification equation~c•ι2(~b) = ιT (t)+~u•~π
being satisfied.

Proof. As in the proof of Theorem 3 we can write~π = Π~v. Any witness gives a proof that satisfies

~c • ι1(~b)− ιT (t) = ~u • ~π = ~u •Π~v.

SinceH1, . . . ,Hη generate all matricesH so~u •H~v = 0 we have thatΠ has a uniform distribution over all
matricesΠ satisfying the verification equation. �
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6.2 The Symmetric Case

An interesting special case is whenB := B1 = B2, m′ ≤ n′ with u1 = v1, . . . , um′ = vm′ and for all
x, y ∈ B we haveF (x, y) = F (y, x). We call this the symmetric case. In the symmetric case, we can
simplify the scheme by just padding~ψ with zeroes in the end to extend the length ton′, call this vector~ψ′,
and revealing the proof~φ = ~π + ~ψ′. In the verification, we check that

ι1(~a) • ~d+ ~c • ι(~b) + ~c • Γ~d = ιT (t) + ~φ • ~v.

Theorem 1 and Theorem 3 still hold in this setting. With respect to soundness we have the following theorem.

Theorem 5 In the soundness setting, where we havep2(~v) = ~0 a valid proof implies

p1(ι1(a)) · p2(~d) + p1(~c) · p2(ι(~b)) + p1(~c) · Γp2(~d) = pT (ιT (t)).

Proof. An acceptable proof~φ satisfiesι1(~a) • ~d + ~c • ι2(~b) + ~c • Γ~d = ιT (t) + ~φ • ~v. The commutative
property of the linear and bilinear maps gives us

p1(ι1(~a)) · p2(~d) + p1(~c) · p2(ι(~b)) + p1(~c) · Γp2(~d) = pT (ιT (t)) + p1(~φ) · p2(~v) = pT (ιT (t)).

�
We can simplify the computation of the proof in the symmetric case. We have

~π := R>ι2(~b) +R>Γι2(~y) +R>ΓS~v − T>~v +
η∑

i=1

riHi~v

~ψ := S>ι1(~a) + S>Γ>ι1(~x) + T~u,

and extendψ toψ′ by padding it withm′ − n′ 0’s. Another way to accomplish this padding is by paddingT
with m′ − n′ 0-rows andS with m′ − n′ 0-columns andHi with m′ − n′ 0-columns. We then have

~φ := R>ι2(~b) +R>Γι2(~y) +R>ΓS′~u− (T ′)>~u+
η∑

i=1

riH
′
i~u+ (S′)>ι1(~a) + (S′)>Γ>ι1(~x) + T ′~u.

Since the map is symmetric we have~u • (T ′ − (T ′)>)~u = 0, so if we have a setH ′
1, . . . ,H

′
η′ that generates

all matricesH ′ so~u •H ′~u = 0, then we can rewrite the proof as

~φ := R>ι2(~b) +R>Γι2(~y) + (S′)>ι1(~a) + (S′)>Γ>ι1(~x) +R>ΓS′~u+
η′∑

i=1

riH
′
i~u.

7 NIWI Proof for Satisfiability of a Set of Quadratic Equations

We will now give the full composable NIWI proof for satisfiability of a set of quadratic equations in a module
with a bilinear map. The proof will haveLco-soundness, where

Lco =
{
{(~ai,~bi,Γi, ti)}Ni=1

∣∣∣∀~x, ~y∃i : p1(ι1(~ai)) · ~y + ~x · p2(ι2(~bi)) + ~x · Γi~y 6= pT (ιT (ti))
}
.

Observe thatLco-soundness and soundness are the same notions in the common case whereι1 ◦ p1, ι2 ◦ p2

andιt ◦ pT are the identity maps on respectivelyA1, A2 andAT .
The cryptographic assumption we make is that the common reference string is created by one of two

algorithmK or S and that their outputs are computationally indistinguishable. The first algorithm outputs a
common reference string that specifies a soundness setting, whereas the second algorithm outputs a common
reference string that specifies a witness-indistinguishability setting.
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Setup: (gk, sk) := ((R, A1, A2, AT , f), sk)← G(1k).

Soundness string:σ := (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , ~u,~v)← K(gk, sk).

Witness-indistinguishability string: σ := (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , ~u,~v)← S(gk, sk).

Proof: The input consists ofgk, σ, a list of quadratic equations{(~ai,~bi,Γi, ti)}Ni=1 and a satisfying witness
~x, ~y.

Pick at randomR ← Matm×m′(R) andS ← Matn×n′(R) and commit to all the variables as~c :=
~x+R~u and~d := ~y + S~v.

For each equation(~ai,~bi,Γi, ti) make a proof as described in Section 6. In other words, pickTi ←
Matn′×m′(R) andri1, . . . , riη ← R compute

~πi := R>ι2(~bi) +R>Γι2(~y) +R>ΓS~v − T>i ~v +
η∑

j=1

rijHj~v

~ψi := S>ι1(~ai) + S>Γ>ι1(~x) + Ti~u.

Output the proof(~c, ~d, {(~πi, ~ψi)}Ni=1).

Verification: The input isgk, σ, {(~ai,~bi,Γi, ti)}Ni=1 and the proof(~c, ~d, {(~πi, ~ψi)}).
For each equation check

ι1(~ai) • ~d+ ~c • ι2(~bi) + ~c • Γi
~d = ιT (ti) + ~u • ~πi + ~ψi • ~v.

Output 1 if all the checks pass, else output 0.

Theorem 6 The protocol given above is a NIWI proof for satisfiability of a set of quadratic equations with
perfect completeness, perfectLco-soundness and composable witness-indistinguishability.

Proof. Perfect completeness follows from Theorem 1.
Consider a proof(~c, ~d, {(~πi, ~ψi)}) on a soundness string. Define~x := p1(~c), ~y := p2(~d). It follows from

Theorem 2 that for each equation we have

p1(ι1(~ai)) ·~y+~x ·p2(ι2(~bi))+~x ·Γi~y = p1(ι1(~ai)) ·p2(~d)+p1(~c) ·p2(ι2(~bi))+p1(~c) ·Γip2(~d) = pT (ιT (ti)).

This means we have perfectLco-soundness.
Our computational assumption is that soundness strings and witness-indistinguishability strings are com-

putationally indistinguishable. Consider now a witness-indistinguishability stringσ. The commitments are
perfectly hiding, so they do not reveal the witness~x, ~y that the prover uses in the commitments~c, ~d. Theorem
3 says that in either equation each of two possible witnesses yield the same distribution on the proof for that
equation. A straightforward hybrid argument then shows that we have perfect witness-indistinguishability.
�

Proof of knowledge. We observe that ifK outputs an additional secret piece of informationξ that makes
it possible to efficiently computep1 andp2, then it is straightforward to compute the witness~x = p1(~c) and
~y = p2(~d), so the proof is a perfect proof of knowledge.
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Proof size. The size of the common reference string ism′ elements inB1 andn′ elements inB2 in addition
to the description of the modules and the maps. The size of the proof ism+Nn′ elements inB1 andn+Nm′

elements inB2.
Typically, m′ andn′ will be small, giving us a proof size that isO(m + n + N) elements inB1 and

B2. The proof size may thus be smaller than the description of the statement, which can be of size up toNn
elements inA1,Nm elements inA2,Nmn elements inR andN elements inAT .

7.1 NIWI Proofs for Bilinear Groups

We will now outline the strategy for making NIWI proofs for satisfiability of a set of quadratic equations over
bilinear groups. As we described in Section 3, there are four different types of equations, corresponding to
the following four combinations ofZn-modules:

Pairing product equations: A1 = G1, A2 = G2, AT = GT , f(X ,Y) = e(X ,Y).

Multi-scalar multiplication in G1: A1 = G1, A2 = Zn, AT = G1, f(X , y) = yX .

Multi-scalar multiplication in G2: A1 = Zn, A2 = G2, AT = GT , f(x,Y) = xY.

Quadratic equations inZn: A1 = Zn, A2 = Zn, AT = Zn, f(x, y) = xy mod n.

The common reference string will specify commitment schemes to respectively scalars and group elements.
We first commit to all the variables and then make the NIWI proofs that correspond to the types of equations
that we are looking at. It is important that we use the same commitment schemes and commitments for
all equations, i.e., for instance we only commit to a scalarx once and we use the same commitment in the
proof whether the equationx is involved in is a multi-scalar multiplication inG2 or a quadratic equations
in Zn. The use of the same commitment in all the equations is necessary to ensure a consistent choice ofx
throughout the proof. As a consequence of this we use the same moduleB′

1 to commit tox in both multi-
scalar multiplication inG2 and quadratic equations inZn. We therefore end up with at most four different
modulesB1, B

′
1, B2, B

′
2 to commit to respectivelyX , x,Y, y variables.

Instantiation 1: Subgroup decision.

Setup: (gk, sk) := ((n, G,GT , e,P), (p,q))← G(1k), wheren = pq.

Soundness string:On input(gk, sk) returnσ := U whereU := rpP for randomr ∈ Z∗
n.

Witness-indistinguishability string: On input(gk, sk) returnσ := U whereU := rP for randomr ∈ Z∗
n.

Proof: On input(n, G,GT , e,P,U), a set of equations and a witness~x, ~Y do:

1. Commit to each exponentx1, . . . , xm and each elementY1, . . . ,Yn as respectivelyCi := xiP +
riU andDi := Yi + siU for randomly chosen~r,~s.

2. For each pairing product equation( ~A · ~Y)(~Y · Γ~Y) = tT make a proof as described in section
6.2. Writing it out and doing calculations, we get

φ := ~s> ~A+ ~s>(Γ + Γ>)~Y + ~s>Γ~sU =
n∑

i=1

siAi +
n∑

i=1

n∑
j=1

(γij + γji)siYj +
n∑

i=1

n∑
j=1

γijsisjU .
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3. For each multi-scalar multiplication equation~a · ~Y + ~x · ~B + ~x · Γ~Y = T the proof is

φ : = ~r> ~B + ~r>Γ~Y + ~r>Γ~sU + ~s>~aP + ~s>Γ~xP

=
m∑

i=1

riBi +
m∑

i=1

n∑
j=1

riγijYj +
m∑

i=1

n∑
j=1

γijrisjU +
n∑

i=1

si(ai +
m∑

j=1

γijxj)P.

4. For each quadratic equation~x ·~b+ ~x · Γ~x = t in Zn we have

φ := ~r>~bP+~r(Γ+Γ>)~xP+~rΓ~rU = (
m∑

i=1

ribi +
m∑

i=1

m∑
j=1

(γij +γji)rixj)P+
m∑

i=1

m∑
j=1

γijrirjU .

Verification: On input(n, G,GT , e,P,U), a set of equations and a proof~C, ~D, {φi}Ni=1 do:

1. For each pairing product equation( ~A · ~Y)(~Y · Γ~Y) = tT check that
∏n

i=1 e(Ai,Di) ·∏n
i=1

∏n
j=1 e(Di, Dj)γij = tT e(U , φ).

2. For each multi-scalar multiplication~a · ~Y + ~x · ~B + ~x · Γ~Y = T check that
∏n

i=1 e(aiP,Di) ·∏m
i=1 e(Ci,Bi) ·

∏m
i=1

∏n
j=1 e(Ci,Dj)γij = e(P, T )e(U , φ).

3. For each quadratic equation~x · ~b + ~x · Γ~x = t in Zn check that
∏m

i=1 e(Ci, biP) ·∏m
i=1

∏m
j=1 e(Ci, Cj)γij = e(P,P)te(U , φ).

DefineLco to be the sets of quadratic equations overZn that are unsatisfiable in the orderp subgroups of
Zn, G andGT .

Theorem 7 The NIWI proof given above has perfect completeness, perfectLco-soundness and composable
witness-indistinguishability.

Proof. Perfect completeness follows from Theorem 1. PerfectLco-soundness follows from Theorem 2 since
theι ◦ p maps all go to the orderp subgroups ofZn, G andGT . The subgroup decision problem gives us that
we cannot distinguish whetherU has orderq or ordern so the two types of common reference strings are
computationally indistinguishable. On a witness-indistinguishability string, the commitments are perfectly
hiding and we get perfect witness-indistinguishability from Theorem 3. �

The size of the proof ism + n +N group elements inG, wherem is the number of variables in~x, n is
the number of variables in~Y andN is the number of equations.

Instantiation 2: SXDH.

Setup: gk := (p, G1, G2, GT , e,P1,P2)← G(1k).

Soundness string:On inputgk returnσ := (u1, u2, v1, v2) from the soundness setup described in Section 5.
This gives usu2 = t1u1 andv2 = t2v2 for randomt1, t2 ← Zp so the elements are linearly dependent.

Witness-indistinguishability string: On input gk return σ := (u1, u2, v1, v2) from the witness-
indistinguishability setup described in Section5. This gives usu2 = t1u1 − (O,P1) and v2 =
t2v1 − (O,P2) for randomt1, t2 ← Zp.

Proof: On inputgk, σ, a set of equations and a witness~X , ~Y, ~x, ~y do:

1. Commit to group elements~X as~c := ι1( ~X ) +R~u for R← Matm×2(Zp) and group elements~Y
asd := ι2(~Y) + S~v for S ← Matm×2(Zp). Commit to exponents~x as~c′ := ι′1(x) + ~ru1 and
exponentsy asd′ := ι′2(y) + ~sv1 for ~r ← Zm′

p , ~s← Zn′
p .
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2. For each pairing product equation( ~A · ~Y)( ~X · ~B)(~Y · Γ~Y) = tT make a proof as described in
section 6. Writing it out we have forT ← Mat2×2(Zp) the following proof.

~π := R>ι2( ~B) +R>Γι2(~Y) + (R>ΓS − T>)~v
~ψ := S>ι1( ~A) + S>Γ>ι1( ~X ) + T~u

For each linear equation~A · ~Y = tT we use~ψ := S>ι1( ~A).
For each linear equation~X · ~B = tT we use~π := R>ι2( ~B).

3. For each multi-scalar multiplication equation~A · ~y + ~X ·~b+ ~X · Γ~y = T1 in G1 the proof is for
randomT ← Mat1×2(Zp)

~π := R>ι′2(~b) +R>Γι′2(~y) + (R>Γ~s− T>)v1
ψ := ~s>ι1( ~A) + ~s>Γ>ι1( ~X ) + T~u

For each linear equation~A · ~y = T1 the proof isψ := ~s>ι1( ~A).
For each linear equation~X ·~b = T1 the proof is~π := R>ι′2(~b).

4. For each multi-scalar multiplication equation~a · ~Y + ~x · ~B + ~x · Γ~Y = T2 in G2 the proof is for
randomT ← Mat2×1(Zp)

π := ~r>ι2( ~B) + ~r>Γι2(~Y) + (~r>ΓS − T>)~v
~ψ := S>ι′1(~a) + S>Γ>ι′1(~x) + Tu1

For each linear equation~a · ~Y = T2 the proof is~π := S>ι′1(~a).
For each linear equation~x · ~B = T2 the proof isπ := ~r>ι2( ~B).

5. For each quadratic equation~x ·~b+ ~x · Γ~x = t in Zp the proof is for randomT ← Zp

π := ~r>ι′2(~b) + ~r>Γι′2(~y) + (~r>Γ~s− T )v1
ψ := ~s>ι′1(~a) + ~s>Γ>ι′1(~x) + Tu1

For each linear equation~a · ~y = t we useψ := ~s>ι′1(~a).
For each linear equation~x ·~b = t we useπ := ~r>ι′2(~b).

Verification: On input(gk, σ), a set of equations and a proof~c, ~d,~c′, ~d′, {~πi, ~ψi}Ni=1 do:

1. For each pairing product equation( ~A · ~Y)( ~X · ~B)(~Y · Γ~Y) = tT check that

ι1( ~A) • ~d+ ~c • ι2( ~B) + ~c • Γ~d = ιT (tT ) + ~u • ~π + ~ψ • ~v.

2. For each multi-scalar equation( ~A · ~y)( ~X ·~b)( ~X · Γ~y) = T1 in G1 check that

ι1( ~A) • ~d′ + ~c • ι′2(~b) + ~c • Γ~d′ = ι̃T (T1) + ~u • ~π + F (ψ, v1).

3. For each multi-scalar multiplication~a · ~Y + ~x · ~B + ~x · Γ~Y = T2 in G2 check that

ι′1(~a) • ~d+ ~c′ • ι2( ~B) + ~c′ • Γ~d = ι̂T (T2) + F (u1, π) + ~ψ • ~v.

4. For each quadratic equation~a · ~y + ~x ·~b+ ~x · Γ~y = t in Zp check that

ι′1(~a) • ~d′ + ~c′ • ι′2(~b) + ~c′ • Γ~d′ = ι′T (t) + F (u1, π) + F (ψ, v1).
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Theorem 8 The protocol is a NIWI proof with perfect completeness, perfect soundness and composable
witness-indistinguishability for satisfiability of a set of equations over a bilinear group where the SXDH
problem is hard.

Perfect completeness follows from Theorem 1. Perfect soundness follows from Theorem 2 since theι ◦
p maps are identity maps onZp, G1, G2 andGT . The SXDH assumption gives us that the two types of
common reference strings are computationally indistinguishable. On a witness-indistinguishability string,
the commitments are perfectly hiding and we get perfect witness-indistinguishability from Theorem 3.�

The modules we work in areB1 = G2
1 andB2 = G2

2, so each element in a module consists of two group
elements from respectivelyG1 andG2. Table 5 list the cost of all the different types of equations.

Assumption: SXDH G1 G2

Variablesx ∈ Zp,X ∈ G1 2 0
Variablesy ∈ Zp,Y ∈ G2 0 2
Pairing product equations 4 4
- Linear equation:~A · ~Y = tT 4 0
- Linear equation:~X · ~B = tT 0 4
Multi-scalar multiplication equations inG1 2 4
- Linear equation:~A · ~y = T1 2 0
- Linear equation:~X ·~b = T1 0 4
Multi-scalar multiplication equations inG2 4 2
- Linear equation:~a · ~Y = T2 4 0
- Linear equation:~x · ~B = T2 0 2
Quadratic equations inZp 2 2
- Linear equation:~a · ~y = t 2 0
- Linear equation:~x ·~b = t 0 2

Figure 5: Cost of each variable and equation measured in elements fromG1 andG2.

Instantiation 3: DLIN.

Setup: gk := (p, G,GT , e,P)← G(1k).

Soundness string:On inputgk returnσ := (u1, u2, u3) from the soundness setup described in Section 5.
This gives usu3 = t1u1 + t2u2 for randomt1, t2 ← Zp so the elements are linearly dependent.

Witness-indistinguishability string: On input gk return σ := (u1, u2, u3) from the witness-
indistinguishability setup described in Section5. This gives usu1 = (αP,O,P), u2 =
(O, βP,P), u3 = (O − P) + t1u1 + t2u2) for randomα, β ← Z∗

p and t1, t2 ← Zp. Define for
notational convenience~v := (u1, u2).

Proof: On inputgk, σ, a set of equations and a witness~x, ~Y do:

1. Commit to exponents~x as~c := ι′(~x) + R~v for R ← Matm×2(Zp). Commit to group elements
~Y as~d := ι(~Y) + S~u for S ← Matn×3(Zp).
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2. For each pairing product equation( ~A · ~Y)(~Y · Γ~Y) = tT make a proof as described in section 6
using the symmetric mapF .

~φ := R>ι( ~B) +R>Γι(~Y) + S>ι( ~A) + S>Γ>ι( ~X ) +R>ΓS~u+
3∑

i=1

riHi~u.

For each linear equation~Y · ~B = tT we use the asymmetric map̃F to get the proof

~φ := S>ι( ~B).

We remark that the reason we use the asymmetricF̃ is that there are no matrices non-trivialH
so ~u •̃ H~u = 0, which simplifies the proof. Observe that~φ = ι(S> ~B) = S>ι( ~B) and vice
versap(~φ) = S> ~B is easily computable in this special setting, sinceι(Bi) = (O,O,Bi). We can
therefore just reveal the proofφ′ := p(~φ) = S> ~B, which is three group elements.

3. For each multi-scalar multiplication equation~a · ~Y + ~x · ~B + ~x · Γ~Y = T2 we use the symmetric
mapF̃ . The proof is for randomr1 ← Zp

~φ := R>ι( ~B) +R>Γι(~Y) + (S′)>ι′(~a) + (S′)>Γ>ι′(~x) +R>ΓS′~u+ r1H1~u.

For each linear equation~Y ·~b = T we use the asymmetric map̃F to get the proof

~φ := S>ι′(~b).

It suffices to reveal the value~φ′ = S>~b. Sinceφ determinesφ′ uniquely, this does not compro-
mise the perfect witness-indistinguishability we have on witness-indistinguishability strings. The
verifier can compute~φ = ι′(~φ′). The proof now consists of only 3 elements inZp.

For each linear equation~x · ~B = T we useF̃ again to get the proof

φ := R>ι( ~B).

We can use~φ′ = R> ~B as the proof, since it allows the verifier to compute~φ = ι(~φ′). The proof
therefore consists of only 2 group elements.

4. For each quadratic equation~x ·~b+ ~x · Γ~x = t in Zp we use the symmetric mapF . There is one
matrixH1 that generates allH so~v •H~v. The proof is for randomr1 ← Zp

~φ := R>ι′(~b) +R>(Γ + Γ>)ι′(x) +R>ι′(~a) +R>ΓR~v + r1H1~v.

For each linear equation~x ·~b = t we use the asymmetric map̃F to get the proof~φ := R>ι′(~b).
It suffices to reveal justR>~b, from which the verifier can compute~φ = ι′(R>~b).

Verification: On input(gk, σ), a set of equations and a proof~c, ~d, {~φi}Ni=1 do:

1. For each pairing product equation( ~A · ~Y)(~Y · Γ~Y) = tT check that

ι( ~A) • ~d+ ~d • Γ~d = ιT (tT ) + ~u • ~φ.

For each linear equation~Y · ~B = tT check

~d •̃ ι( ~B) = ιT (tT ) + ~u •̃ ~φ.
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2. For each multi-scalar multiplication~a · ~Y + ~x · ~B + ~x · Γ~Y = T check that

ι′(~a) • ~d+ ~c • ι( ~B) + ~c • Γ~d = ι̂T (T ) + ~u • ~φ.

For each linear equation~Y ·~b = T check

~d •̃ ι′(~b) = ι̂T (T ) + ~u •̃ ~φ.

For each linear equation~x · ~B = T check

~c •̃ ι( ~B) = ι̂T (T ) + ~v •̃ ~φ.

3. For each quadratic equation~x ·~b+ ~x · Γ~x = t in Zp check that

~c • ι′(~b) + ~c • Γ~c = ι′T (t) + ~v • ~φ.

For each linear equation~x ·~b = t check

~c •̃ ι′(~b) = ι′T (t) + ~v •̃ ~φ.

Theorem 9 The protocol is a NIWI proof with perfect completeness, perfect soundness and composable
witness-indistinguishability for satisfiability of a set of equations over a bilinear group where the DLIN
problem is hard.

Perfect completeness follows from Theorem 1. Perfect soundness follows from Theorem 2 since theι◦pmaps
are identity maps onZp, G andGT . The DLIN assumption gives us that the two types of common reference
strings are computationally indistinguishable. On a witness-indistinguishability string, the commitments are
perfectly hiding and we get perfect witness-indistinguishability from Theorem 5. �

The module we work in isB = G3, so each element in the module consists of three group elements from
G. In some of the linear equations, we can computep(~φ) efficiently and we haveι(p(~φ)) = ~φ which gives
us a shorter proof. Table 6 list the cost of all the different types of equations.

Assumption: DLIN G Zp

Variablesx ∈ Zp,Y ∈ G 3 0
Pairing product equations 9 0
- Linear equation:~Y · ~B = tT 3 0
Multi-scalar multiplication equations 9 0
- Linear equation:~Y ·~b = T 0 3
- Linear equation:~x · ~B = T 2 0
Quadratic equations inZp 6 0
- Linear equation:~x ·~b = t 0 2

Figure 6: Cost of each variable and equation measured in elements fromG.

8 Zero-Knowledge

We will show that in many cases it is possible to make zero-knowledge proofs for satisfiability of quadratic
equations. An obvious strategy would of course be to use our NIWI proofs directly, however, such proofs
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may not be zero-knowledge because the zero-knowledge simulator may not be able to compute any witness
for satisfiability of the equations. It turns out that the strategy is better than it seems at first sight, because we
will often be able to modify the set of quadratic equations into an equivalent set of quadratic equations where
a witness can be found.

We consider first the case whereA1 = R, A2 = AT , f(r, y) = ry and whereS outputs an extra piece of
informationτ that makes it possible to trapdoor open the commitments inB1. More precisely,τ permits the
computation of~s ∈ Rm′

soι1(1) = ι1(0) + ~s>~u. We remark that this is a common case; in bilinear groups
both multi-scalar multiplication equations inG1,G2 and quadratic equations inZn have this structure.

Definec = ι1(1) to be a commitment toφ = 1. Let us rewrite the equations in the statement as

~ai · y + f(−φ, ti) + ~x ·~bi + ~x · Γ~y = 0.

We have introduced a new variableφ and if we choose all of our variables in these modified equations to be 0
then we have a satisfying witness. In the simulation, we give the simulator trapdoor information that permits
it to openc to 0 and we can now use the NIWI proof from Section 7.

Setup: (gk, sk) := ((R, A1, A2, AT , f), sk)← G(1k).

Soundness string:σ := (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , ~u,~v)← K(gk, sk).

Proof: This protocol is exactly the same as in the NIWI proof. The input consists ofgk, σ, a list of quadratic
equations{(~ai,~bi,Γi, ti)}Ni=1 and a satisfying witness~x, ~y.

Pick at randomR ← Matm×m′(R) andS ← Matn×n′(R) and commit to all the variables as~c :=
ι1(~x) +R~u and~d := ι2(~y) + S~v.

For each equation(~ai,~bi,Γi, ti) make a proof as described in Section 6. In other words, pickTi ←
Matn′×m′(R) andri1, . . . , riη ← R and compute

~πi := R>ι2(~bi) +R>Γι2(~y) +R>ΓS~v − T>i ~v +
η∑

j=1

rijHj~v

~ψi := S>ι1(~ai) + S>Γ>ι1(~x) + Ti~u.

Output the proof(~c, ~d, {(~πi, ~ψi)}Ni=1).

Verification: The input isgk, σ, {(~ai,~bi,Γi, ti)}Ni=1 and the proof(~c, ~d, {(~πi, ~ψi)}).
For each equation check

ι1(~ai) • ~d+ ~c • ι2(~bi) + ~c • Γi
~d = ιT (ti) + ~u • ~πi + ~ψi • ~v.

Output 1 if all the checks pass, else output 0.

Simulation string: (σ, τ) := ((B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , ~u,~v), ~s) ← S1(gk, sk), whereι1(1) =
ι1(0) +

∑m′

i=1 siui.

Simulated proof: The input consists ofgk, σ, a list of quadratic equations{(~ai,~bi,Γi, ti)}Ni=1 and a satisfy-
ing witness~x, ~y.

Rewrite the equations as~ai · ~y + ~x ·~bi + f(φ,−ti) + ~x · Γi~y = 0. Define~x := ~0, ~y := ~0 andφ = 0 to
get a witness that satisfies all equations.
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Pick at randomR ← Matm×m′(R) andS ← Matn×n′(R) and commit to all the variables as~c :=
~0 +R~u and~d := ~0 + S~v. We havec := ι1(1) = ι1(0) +

∑m′

i=1 siui.

For each modified equation(~ai,~bi,−ti,Γi, 0) make a proof as described in Section 6. Return the
simulated proof{(~c, ~d, ~πi, ~ψi)}Ni=1.

Theorem 10 The protocol described above is a composable NIZK proof for satisfiability of pairing product
equations with perfect completeness, perfectLco-soundness and composable zero-knowledge.

Proof. Perfect completeness on a soundness string follows from the perfect completeness of the NIWI proof.
The simulator knows an opening ofc := ι1(1) to c = ι1(0) +

∑m′

i=1 siui. It therefore knows a witness
~0,~0, φ = 0 for satisfiability of all the modified equations. It therefore outputs a proof{(~c, ~d, ~πi, ~ψi)}Ni=1 such
that for alli we have

ι1(~ai) • ~d+ ~c • ι2(~bi) + F (c,−ι2(ti)) + ~c • Γi
~d = ιT (0) + ~u • ~πi + ~ψi • ~v.

The commutative properties of the maps gives usF (ι1(1), ι2(ti)) = ιT (f(1, ti)) = ιT (ti), so the proof
satisfies the equation the verifier checks. Perfect completeness on a simulation string now follows from the
perfect completeness of the NIWI proof as well.

PerfectLco-soundness follows from the perfectLco-soundness of the NIWI proof.
We will now show that on a simulation string we have perfect zero-knowledge. The commitments~c, ~d and

c = ι1(1) are perfectly hiding and therefore have the same distribution whether we use witness~x, ~y, φ = 1
or~0,~0, φ = 0. Theorem 3 now tells us that the proofs~πi, ~ψi made with either type of opening of~c, ~d, c are
uniformly distributed over all possible choices of{(~ψi, ~πi)}Ni=1 that satisfy the equationsι1(~ai) • ~d+~c •~bi +
~c • Γ~d = ιT (t). We therefore have perfect zero-knowledge on a simulation string. �

8.1 NIZK Proofs for Bilinear Groups

Let us return to the four types of quadratic equations given in Figure 1. If we set up the common reference
string such that we can trapdoor open respectivelyι′1(1) andι′2(1) to 0 then multi-scalar multiplication equa-
tions and quadratic equations inZn are of the form for which we can give zero-knowledge proofs (at no
additional cost).

In the case of pairing product equations we do not know how to get zero-knowledge, since even with
the trapdoors we may not be able to compute a satisfiability witness. We do observe though that in the
special case, where alltT = 1 the choice of~X = ~O, ~Y = ~O is a satisfactory witness. Since we also use
~X = ~O, ~Y = ~O in the other zero-knowledge proofs, the simulator can use this witness and give a NIWI
proof. In the special case where alltT = 1 we can therefore make NIZK proofs for satisfiability of the set of
pairing product equations.

Next, let us look at the case where we have a pairing product equation withtT =
∏n

i=1 e(Pi,Qi) for
some knownPi,Qi. In this case, we can add linear equationsZi = Pi to the set of multi-scalar multiplication
equations inG1. We already know that such equations have zero-knowledge proofs. We can now rewrite the
pairing product equation as( ~A · ~Y)( ~X · ~B)( ~Z · ~Q)( ~X · Γ~Y) = 1. This is a pairing product equation of the
type where we can make a zero-knowledge proof. We can therefore also make zero-knowledge proofs for
a set of quadratic equations over a bilinear group if all the pairing product equations havetT of the form
tT =

∏n
i=1 e(Pi,Qi) for some knownPi,Qi.

The case of pairing product equations points to a couple of differences between witness-indistinguishable
proofs and zero-knowledge proofs using our techniques. NIWI proofs can handle any targettT , whereas zero-
knowledge proofs can only handle special types of targettT . Furthermore, iftT 6= 1 the size of the NIWI
proof for this equation is constant, whereas the NIZK proof for the same equation may be larger.
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9 Conclusion and an Open Problem

Our main contribution in this paper is the construction of efficient non-interactive cryptographic proofs for
use in bilinear groups. Our proofs can be instantiated with many different types of bilinear groups and
the security of our proofs can be based on many different types of intractability assumptions, of which we
have given three instantiations: the subgroup decision assumption, the SXDH assumption and the DLIN
assumption.

Since we have been interested in bilinear groups we have in our instantiations based the modules on
bilinear groups. Our techniques generalize beyond bilinear groups though; we do for instance not require
the modules to be cyclic as is the case for bilinear groups. It is possible that other types of modules with
a bilinear map exist, which are not constructed from bilinear groups. The existence of such modules might
lead to efficient NIWI and NIZK proofs based on entirely different intractability assumptions. We leave the
construction of such modules with a bilinear map as an interesting open problem.
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A Quick Reference to Notation

Bilinear groups.
G1, G2, GT : cyclic groups with bilinear mape : G1 ×G2 → GT .
P1,P2: generators of respectivelyG1 andG2.
Group order: prime orderp or composite ordern.

Modules with bilinear map.
R: finite commutative ring(R,+, ·, 0, 1).
A1, A2, AT , B1, B2, BT : R-modules.
f, F : bilinear mapsA1 ×A2 → AT andF : B1 ×B2 → BT .

~x · ~y :=
n∑

i=1

f(xi, yi) , ~x • ~y :=
n∑

i=1

F (xi, yi).

Properties that follows from bilinearity:

~x ·M~y = M>~x · ~y , ~x •M~y = M>~x • ~y.

Commutative diagram of maps in setup.

A1 × A2 → AT

f
ι1 ↓↑ p1 ι2 ↓↑ p2 ιT ↓↑ pT

B1 × B2 → BT

F

Commutative properties:

F (ι1(x), ι2(y)) = ιT (f(x, y)) , f(p1(x), p2(x)) = pT (F (x, y)).

Equations.
(Secret) variables:~x ∈ Am

1 , ~y ∈ Am
2 .

(Public) constants:~a ∈ An
1 ,
~b ∈ Am

2 ,Γ ∈ Matm×n(R), t ∈ AT .
Equations:~a · ~y + ~x ·~b+ ~x · Γ~y = t.

Commitments.
Commitment keys:~u ∈ Bm′

1 , ~v ∈ Bn′
2 .

Commitments:
~c := ι1(~x) +R~u ∈ Bm

1 , ~d := ι2(~y) + S~v ∈ Bn
2 .

NIWI proofs.
Additional setup information:H1, . . . ,Hη so~u •Hi~v = 0.
Randomness in proofs:T ← Matm′×n′(R), r1, . . . , rη ← R.
Proofs:

~π := R>ι2(~b) +R>Γι2(~y) +R>ΓS~v − T>~v +
η∑

i=1

riHi~v

~ψ := S>ι1(~a) + S>Γ>ι1(~x) + T~u

Verification: ι1(~a) • ~d+ ~c • ι2(~b) + ~c • Γ~d = ιT (t) + ~u • ~π + ~ψ • ~v.
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