MPC vs. SFE: Perfect Security in a Unified Corruption Model

Zuzana Beerlio&-Truldniova, Matthias Fitzi, Martin Hirt, Ueli Maurer, and Vassilis Zikas

Department of Computer Science, ETH Zurich
{bzuzana,fitzi,hirt, maurer,vzikas }@inf.ethz.ch

Abstract. Secure function evaluation (SFE) allows a set of players to compute an arbitrary agreed function of their
private inputs, even if an adversary may corrupt some of the players. Secure multi-party computation (MPC) is a gener-
alization allowing to perform an arbitrary on-going (also called reactive or stateful) computation during which players
can receive outputs and provide new inputs at intermediate stages.

At Crypto 2006, Ishagt al. considered mixed threshold adversaries that either passively corrupt some fixed number of
players, or, alternatively, actively corrupt some (smaller) fixed number of players, and showed that for certain thresholds,
cryptographic SFE is possible, whereas cryptographic MPC is not.

However, this separation does not occur when one congidefsctsecurity. Actually, past work suggests that no such
separation exists, as all known general protocols for perfectly secure SFE can also be used for MPC. Also, such a
separation does not show up wghneral adversariesharacterized by a collection of corruptible subsets of the players,
when considering passive and active corruption.

In this paper, we study the most general corruption model where the adversary is characterized by a collection of ad-
versary classes, each specifying the subset of players that can be actively, passively, or fail-corrupted, respectively, and
show that in this model, perfectly secure MPC separates from perfectly secure SFE. Furthermore, we derive the exact
conditions on the adversary structure for the existence of perfectly secure SFE resp. MPC, and provide efficient protocols
for both cases.



1 Introduction
1.1 Secure Function Evaluation and Secure Multi-Party Computation

Secure function evaluation (SFE) allows a #et= {p1,...,p,} of n players to compute an arbitrary agreed
function f of their inputsz, ..., z, in a secure way. Security means that dishonest players can neither falsify
the output of the computation, nor can obtain information about the honest players’ inputs (except what they
can derive from their own inputs). (Reactive) secure multi-party computation (MPC) is a slight generalization of
SFE. Here, the function to be computed is reactive, meaning that players can give inputs and get outputs several
times during the course of the computation, and every output can depend on all inputs given so far.

A bit more formally, SFE and MPC can be best described by considering a hypothetical trusted party which
performs the specified task on behalf of the players. In SFE, the trusted party is non-reactive: it takes inputs
from the players, evaluates the function, and announces the outputs (and disappears). In MPC, the trusted party
is reactive: it continuously interacts with the players, taking inputs and sending outputs. It maintains an internal
state which is updated with every input, and every output is computed based on this state. The goal of SFE
and MPC is tosimulatethis trusted party among the sptof players. The potential dishonesty of players is
modeled by a central adversary corrupting players, where players can be actively corrupted (the adversary takes
full control over them), passively corrupted (the adversary can read their internal state), or fail-corrupted (the
adversary can make them crash at any suitable time). A crashed player stops sending any messages, but the
adversary cannot read the internal state of the player (unless he is actively or passively corrupted at the same
time).

Typical examples of SFE include e-voting, i.e., the computation of the sum of the players’ secret votes, or the
double-agent problem, i.e., the identification of identical entries in several confidential databases. An example
of MPC is the simulation of a fair stock market, where inputs (e.g. new trading orders) are given and outputs
(e.g. current stock prices) are provided while the computation proceeds.

SFE (and MPC) was introduced by Yao [Ya082]. The first general solutions were given by Goldreich, Mi-
cali, and Wigderson [GMW87]; these protocols are secure under some intractability assumptions. Later solu-
tions [BGW88,CCD88,RB89,Bea91b] provide information-theoretic security.

1.2 Summary of Known Results

In the seminal papers solving the general SFE and MPC problems, the adversary is specified by a single corrup-
tion type (active or passive) and a thresholoh the tolerated number of corrupted players. Goldreich, Micali,

and Wigderson [GMW87] proved that, based on cryptographic intractability assumptions, general secure MPC
is possible if and only it < n/2 players are actively corrupted, or, alternatively, if and only & n players

are passively corrupted. In the information-theoretic model, Ben-Or, Goldwasser, and Wigderson [BGW88] and
independently Chaum, €peau, and Dangégd [CCD88] proved that unconditional security is possible if and

only if ¢ < n/3 for active corruption, and for passive corruption if and only i n /2.

These results were unified and extended by fail-corruption in [FHM98] by proving that perfectly secure MPC
is achievable if and only i8¢, + 2t, + ¢ty < n, wheret,, t,, andt; denote the upper bounds on the number of
actively, passively and fail corrupted players, respectively.

Another line of generalization is concerned with so-called general adversaries: Here, the adversary is not
characterized by a threshold, but rather by an enumeration of the possible subsets of players that the adversary
can corrupt: In [HM97] it was proved that perfect security is possible if and only if no two corruptible subsets
cover the full players set (passive adversary), respectively no three corruptible subsets cover the full player set
(active case). These results naturally generalize the threshold restilts of, respectivel\3t < n. These results
were unified to a mixed general adversary in [FHM99], where the adversary is characterized by an enumeration
of classes, each class consisting of an actively corruptible subset of players and of a passively corruptible subset
of the players. Fail-corruption was not considered. The bounds on the existence of perfectly secure MPC are a
natural combination of the bounds in the threshold model.

! This allows to model non-symmetric settings where not every player’s potential dishonesty is modeled in exactly the same way. Some
coalitions of colluding players might be more likely than others, and some players might have a higher level of dishonesty than others.



A similar development of generalizations (from threshold via dual-failure to general adversaries) can be
observed in the area of Byzantine agreement protocols [LSP82,DS82,LF82,MP91,GP92,FM98,AFM99].

Recently, Ishaét al.[IKLP06] considered a mixed model in which the adversary can either carymtdyers
actively, or,alternatively ¢, players passively (in contrast to previous work [FHM98], where the adversary could
corruptt, players actively, and, simultaneouslyplayers passively). They showed thatfpr< »n andt, < n/2
cryptographically secure SFE is possible, whereag,fer n—1 and¢, > 1, cryptographically secure (reactive)
MPC is not possible.

1.3 Contributions of this Paper

The original motivation for this paper was to determine the exact conditions for SFE and MPC in the natural and
most general adversary model where all corruption types can occur. We characterize the adversary’s corruption
capability by aradversary structure€ = {(A1, E1, F1), ..., (Am, Em, Fin)}, whereAy, Ey, F, C P andAy C

E, and A, C F. The adversary can (secretly) choose an arbitealyersary classZ;, = (Ax, Ex, Fi) € Z

and actively corrupt the players iy, passively corrupt the players i, and fail-corrupt the players ify. In

the technical sections of this paper, we present and prove exact conditions on the adversary structure to allow
perfectly secure MPC and perfectly secure SFE. This unifies all previously considered models, where either
not all three types of corruption were considered, or where the corruption capability was specified in terms of
thresholds.

Interestingly, the conditions for SFE and MPC are different. This is surprising since all known results on
perfectly secure protocols suggest no such separation. In particular, when considering active, passive and fail-
corruption (but onlythresholdtype), then no such separation has been observed [FHM98]. When considering
general adversaries (with active and passive corruptionwhibibut fail-corruptior), no separation can be ob-
served neither [FHM99]. However, in the combination of both these models, the separation shows up. This indi-
cates that the most general adversary model considered here is both natural and appropriate since all restricted
models hide the fact that SFE and MPC separate.

We describe a simple example of an adversary structure which separates, i.e., for which SFE with perfect
security is possible but MPC is not. LBt = {p1, ps, p3,pa} andZ = {7, Z5, Z3}, whereZ; = (0, {p1},0),

Zy = ({p2}, {p2}, {p2,p4a}), andZs = ({ps}, {ps}, {p3, p4}). In other words, the adversary can either corrupt
p1 passively, or corrupts, actively and fail-corruppa, or corruptps actively and fail-corrupp,.?

A protocol for SFE works as follows: First ugg as the trusted party with the constraint thatsends the
output of the function first tp; and then tgs andps. If p4 crashes, then restart the protocol ugin@s trusted
party (the crashing g, guarantees that the adversary did not chafse Z and hence that; is uncorrupted).

If p; has received the output from beforep, crashed, then he forwards it pg andps, otherwise he evaluates
the function on the inputs received pyandps; and sends them the output. The security of this protocol is trivial
to verify. The impossibility of MPC for this example follows from the observation that if some intermediate
valuev — part of the state of an MPC protocol — is not knowngptq then there is no protocol that always
reveals it to him. Indeed, if in such a protocol the adversary crashesd forcesp, or ps to send random
messages whenever he is instructed to send something (he can do so by cleasiig), then with non-zero
probability, p; will not be able to decide whethes or ps is misbehaving and will accept a value different than
v, contradicting perfect security.

2 The Model

We consider the standard secure-channels model introduced in [BGW88,CCD88]: The playersp,, are
connected by a complete network of bilateral synchronous secure channels. The computation is described as an
arithmetic circuit over some finite fielH, consisting of addition (or linear) gates and multiplication gates.

The security of our protocols is information-theoretic without error probability, which is cpkefibctse-
curity and is the strongest possible security notion. A protocol is defined to be secure if it realizes a trusted
functionality (computing the functiorf), where the term “realize” is defined via the simulation paradigm

2 Additionally, Zy = ({pa}, {ps}, {pa}) could be tolerated, but this would unnecessarily complicate the example.

2



[Can00,MR91,Bea91a,DM00,PWO01] which, in a nutshell, guarantees that whatever the adversary can achieve
in the real world where the protocol is executed, he could also achieve in the ideal setting with the trusted func-
tionality.3 This security notion implies in particular that the adversary cannot obtain any information about the
players’ inputs beyond what is implied by the outputs (secrecy), and that he cannot influence the outputs other
than by choosing the inputs of the corrupted players (correctness).

The adversary’s corruption capability is characterized by an adversary strugtare{(A;, E1, FY), .. .,
(A, B, Fp) Y (for somem). The adversary chooses a triplegmon-adaptively, i.e., before the beginning of
the protocol; this triple is denoted & = (A*, E*, F*) and is called thectual adversary classr simply the
actual adversary. The playersirt, E*, andF™* are actively, passively and fail-corrupted, respectively. Note that
Z* is not known to the honest players and appears only in the security analysis. A protocol isZcattedreif
it is secure against an adversary with corruption power characteriz&d by

For notational simplicity we assume thdat C F and A C F for any (A, E,F) € Z (anyway, an ac-
tively corrupted player can behave as being passively or fail-corrupted). Furthermore, as most constructions only
need to consider the maximal classes of a structure, we define the maximal s@ctur{a(A, E F)e Z:
AA'E' F') € Zwith (A,E,F) # (A,E',F')andAC A, EC E',F C F'}.

To simplify the description, we adopt the following convention: Whenever a player does not receive a mes-
sage (when expecting one), or receives a message outside of the expected range, then the speciagsymbol
is taken for this message. Note that after a player has been crashed, he only skadsayer has followed the
protocol instructions correctly up to a certain point, he is catledectat that point, independently of whether
he is actually corrupted. A player who has deviated from the protocol (e.g., has crashed or has sent inconsistent
messages) is calladcorrect

3 Tools (Sub-protocols)

In this section we present some protocols that will be used as building blocks in the main sections. Several of
these protocols are non-robust, i.e., they might abort when faults occur. In case of abortion, all (correct) players
agree on a non-empty sBtC P of incorrect players; we say then thiihe protocol aborts withB.

3.1 Broadcast and Consensus

A broadcast protocoallows a sendep with input valuev to distributev among a seP of players, where it is
guaranteed that all correct playersfroutput the same valug (consistency), and that = v when the sender
is correct during the execution of the protocol (correctness). Similadgnaensus protocalllows a setP of
players, each holding an input valug to reach agreement, such that every correct playfrautputs the same
valuev’ (consistency), and that = v if all (correct) players hold as input(correctness).

In [AFM99] a tight condition on the existence of perfectly-secure broadcast and consensus is given for the
model with active and fail-corruption. The presented protocols assume pairwise authenticated (but not neces-
sarily private) channels, hence they remain secure even when the adversary is allowed to passively corrupt any
number of players. Therefore these conditions immediately translate to our model:

Lemma 1. In the secure channels model, perfeciysecure broadcast and consensus among &swtplayers
is possible if and only i€sc (P, Z) holds, where

CBc(P,Z) < \V/(Al,El,Fl), (AQ,EQ,FQ), (Ag,Eg,Fg) €Z: AfUAU Az U (Fl N FyN Fg) 7& P.

We denote the broadcast and the consensus protocol of [AFM33}daylcast andConsensus, respectively.

3 While our protocols can be proven secure in any of these simulation-based frameworks, with perfect indistinguishability of the real
and the ideal world, we will in this paper not give full-fledged simulation-based security proofs; this is consistent with the previous
literature on secure SFE and MPC.

“In contrast, amdaptiveadversary can corrupt more and more players during the protocol execution, subject only to the constraint that
the corrupted sets are within one of the triplesZinWe do not consider the adaptive setting in this paper, but our results could be
generalized to it.



3.2 Crash Detection

We present a protocol which allows the player®ito commonly detect whether a specific playet P is alive

or has crashed. Such a decision cannot be sharp, as an actively corrupted player can always behave as having
crashed, i.e., not send any messages during the execution of the sub-protocol. However, we require that correct
players are always identified as “alive”, and crashed players are always identified as “crashed”.

Protocol CDP(P, Z, p)

1. p sends d-bit to everyp; € P.

2. Everyp; € P setsh; = 1 if he received d-bit, andb; = 0 otherwise.

3. The players ir? invoke Consensus on inputsby, . . . , by,.

4. Everyp; € P outputs “alive” when the output of the consensus protoct) end “crashed” otherwise.

Lemma 2. If Cpc (P, Z) holds, then the protocdlDP (P, Z, p) has the following properties: Consistency: The
(correct) players agree on the output. Correctness 6 correct until the end o€DP, then every (correct)
player outputs “alive” and ifp has crashedeforethe invocation ofCDP, then every (correct) player outputs
“crashed”.®

3.3 Strong Broadcast

Intuitively, a fail-corrupted player never sends a “wrong” message; in the worst case, he sends no message at all.
This intuition does not apply to broadcast (according to the standard definition): When the sender of a broadcast
protocol crashes, only consistency of the output is guaranteed. But the output value can be &rbitrary.

We lift the intuition that fail-corrupted players never send “wrong” messages to broadcast by introducing the
notion ofstrong broadcastA protocol with sendep, holding inputv, achieves strong broadcast when it achieves
broadcast and additionally ensures that the output{is,ii. } when the sender is not actively-corrupted. We show
how to construct a protocol fgr to strongly broadcast, given a protocol for broadcast (e.@roadcast) and
CDP.

Protocol StrongBroadcast(P, Z, p, v)

1. InvokeBroadcast to havep broadcast his input. For eactp; € P, letv; denotep;’s output inBroadcast.
2. InvokeCDP to detect whethep is alive or has crashed.

3. Everyp; € P outputsv; whenp is alive, andL whenp has crashed.

Lemma 3. If Cpc(P, Z) holds, then the protocdtrongBroadcast(P, Z, p,v) has the following properties:
Consistency: All (correct) players output the same value€orrectness: If the senderis correct, then/ = v;
if p crashedbeforethe invocation of the protocol, theh =_L; if p crashes during the protocol, theh € {v, L }.

3.4 Secret Sharing

A secret-sharing scheme allows a player (called the dealer) to distribute a secret, in such a way that only qualified

sets of players can reconstruct it. As secret-sharing scheme, we employ a sum sharing (i.e., the secret is split into
summands that add up to the secret), folded with a replication sharing (i.e., every summand is given to a subset
of the players): Such a sharing is characterized bgaxing specificatios , which is a vector of subsets of the

player setP. A value s is sharedwith respect to a sharing specificatioh= (51,..., .S, ), when there exist
summandsy, ..., s, With s = > si, andsy, is given to everyp; € Si. For a playerp; € P, we consider
the vector(s;, , ..., s;,) of summands held by; to bep;’s shareof s, denoted ags);. The vector of all shares,
denoted ags) = ((s)1, (s)2, ..., (s)n), is asharingof s. We say thats) is a (consistent) sharing efaccording

to (P, S), if for eachS; € S all (correct) players irf; have the same view o ands = > 7" | s;.

® Note that in any case the adversary learns the outpGDdt.
% In [AFM99], the output of broadcast can even be chosen by the adversary, when the sender crashes.

4



For an adversary structut&, we say that a sharing specificati¢his Z-private if for any sharing(s)
according toS and for any adversary iZ, there exists a summang which this adversary does not know.
Formally, S is Z-private if V(A,E,F) € Z35 € § : SN E = (. For an adversary structut& with
maximal classesZ = {(-,El, ) P (-,Em,-)}, we denote the naturaf-private sharing specification by
Sz = (P\E1,...,P\En).

The following protocol allows a dealerto share a value among the players if? according to a sharing
specificationS. The protocol is a modification of the sharing protocol from [Mau02] to tolerate fail-corruption.
It may abort whem is incorrect.

Protocol Share(P, Z, S, p, s)
1. Dealerp chooses the summanss .. ., s|s; randomly and sets; = s — |k ‘2 Sk
2. Execute the following steps fér=1,...,|S|:

(a) p sendssy, to everyp; € Sk, who denotes the received valuesé@ (L when no value is received).
(b) Everyp; € Si sendSSg) to everyp; € Sy, who denotes the received value&é@
(c) Foreachp; € S, StrongBroadcast is invoked to havey; broadcast a complaint Wi, ;, whereby, ; = 1
Whens,g) =1 orsk ) ¢ {sk , L} for somei, andby ; = 0 otherwise.
(d) If a complaint was reported (i.eh; ; = 1 for somej), thenStrongBroadcast is invoked to havep
broadcassy, and everyp; € S, sets's,(j ) to the broadcasted value.
3. If p broadcasts. in Step 2d, theibhare aborts withB = {p}.

Lemmad4. If Cpc(P,Z) holds andS is a Z-private sharing specification, then the protocBhare
(P, Z,S,p,s) has the following properties. CorrectnesShare either outputs a consistent sharing of some
s’, wheres’ = s unless the dealer is actively corrupted, or it aborts with= {p}; it does not abort ifp is
correct. Secrecy: No information enleaks to the adversary.

Reconstructing a shared value towards a player is straight-forward: All players send the summands they
know (i.e., their share) to the output player, who tries to find the correct value for each summand and computes
the secret as the sum of the summands. However, finding the correct value of a summand is not always possible
when corrupted players send wrong values or no value to the output player, so we need an extra condition on
the adversary structure to ensure that the output player can always decide on the value of every summand. We
can slightly relax this condition when a sharing is reconstructed publicly (rather than towards a dedicated output
player): In this case, the players can decide depending on the published values whether a summand is uniquely
defined or not, and if not, agree on a & P of incorrect players.

In the sequel, we present the protocAisnounce and Reconstruct to announce a summand, respectively
reconstruct a sharing, towards a dedicated player, and the profgolisAnnounce and PublicReconstruct
to announce a summand, respectively to reconstruct a sharing, towards all players. The latter protocols are
non-robust; they might abort with a non-empty €tC P of incorrect players. The abortion of the protocol
PublicAnnounce will allow to derive information on the actual adversary class, which will be helpful in the
output protocol of SFE.

Protocol Announce(P, Z, Sk, Sk, P)

1. Everyp; € Si sendssy to p, who denotes the received value%f% (L when no value is received).

2. LetV C F denote the set of valueghat are “explainable” with some adversarydni. e for which there is
an adversary clags\, E, F) € Z,suchthafp; € Sy : s,(f) =1} C Fand{p; € Si : k gé {v,1}} C A.

3. p setssy, to be the smallest elementin.

Lemma5. If V(Ay, E1, F1), (A, B9, Fy) € Z: S, £ A1 UA2U(F1NFy), then the protocohnnounce robustly
announces;, to p.

Proof. We have to prove that (i) the sét contains the correct summang and (ii) the setl/ contains no
other values. (i) Observe that the summa@)sreceived byp satisfy that{p; € S : s,€ =1} C F* and

5



{pi € Sk : .s,(f) ¢ {sk, L}} C A*, where(A*, E*, F*) denotes the actual adversary class.(As, E*, F*) €
Z, it follows thats, € V. (ii) Consider any value € V. There exists an adversary clas$, F, F) € Z
such that{p; € Sj : s,(f) =1} C Fand{p; € S : s,(j) ¢ {v,L}} C A. By assumption we know that
Sk € AU A* U (F N F*), hence there exists a playgre Sy with s,(f) #1,p; ¢ Aandp; ¢ A*. This implies
thatv = s](j) = S. a

Protocol Reconstruct(P, 2, S, (s), p)

1. For everySy € S, Announce is invoked to have the correct summa#idannounced towards

2. p computess = Z',lel s and outputs.

Lemma6. If Vk =1,...,|S|, Y(41, E1, F1), (A2, B2, F5) € Z: S, € A1 U Aa U (F1 N Fy), then the protocol
Reconstruct robustly reconstructs towardsp.

The proof follows immediately from Lemma 5.

Protocol PublicAnnounce(P, Z, Sk, sk)

1. Everyp; € Si publishes his value fot;, (denoted as,(f)) usingStrongBroadcast.

2. Everyp; € P: determine the set’ C F of values that are “explainable” with some adversarirfsee
protocolAnnounce).

3. Everyp; € P:outputs, € V if |V| = 1, otherwise abort witlB = {p; C S}, : s§j> =1}

Lemma 7. If Cpc(P, Z) holds andv(Ay, -, -), (Ag,-,-) € Z: S, € A1U Ag, then the protocaPublicAnnounce
either publicly announces, or aborts with a non-empty sét C P of incorrect players. When it aborts, then
there exists an adversary clagd, E, F') € Z such thatS, C A*UAU (F*NF).

Proof. As V' contains at least the correct summamndsee proof of Lemma 5), it is clear thBtiblicAnnounce
either outputss, or aborts. It remains to be shown that when it aborts \#ftthen|B| > 0 and there exists an
adversary clasgA, E, F') € Z such thatS, € A* U AU (F* N F). Note thats;, € V, hencePublicAnnounce
aborts only when there exists a value s;, withv € V. Thisimplies that there is an adversary clgdsE, F') €
Z with {p; € Si : s§;> =1} C Fand{p; € Sk : s,(j) ¢ {v,1}} C A. Becausev # si, we need
{pi € Sk : s§;> #1} C AU A*, which implies thatS, € A*U A U (F* N F). Furthermore B must be
non-empty, because otherwiSg C (A* U A) would hold, contradicting the assumption in the Lemma. O

Protocol PublicReconstruct(P, Z, S, (s))
1. ForeveryS, € S, PublicAnnounce is invoked to have the correct summagdannounced. If an invocation

of PublicAnnounce aborts withB, then alsdPublicReconstruct aborts withB.
2. Everyp; € P computess = E‘,lel s and outputss.

Lemma 8. If Cpc(P, Z) holds andvk = 1,...,|S|, V(44,-, "), (As,-,-) € Z: S € A1UA,, then the protocol
PublicReconstruct either publicly reconstructs, or aborts with a non-empty sét of incorrect players.

The proof follows immediately from Lemma 7.

3.5 Multiplication

We present a protocol for securely computing a sharing of the product of two shared values. The protocol is a
variation of the multiplication protocol of [Mau02], capturing fail-corruptions. The multiplication protocol may
abort when faults occur, with outputting a $etC P of incorrect players.

The idea of the protocol is the following: Asandt are shared according %, we can use the summands
81,...,8|s| andty, ..., ;s to compute the product asst = ‘154!:1 site. To do so, each termy, o = syt of
this sum is shared by every player knowing bsthandt,. Then the players perform consistency checks on the
shared summands, and compute the sum of the shareditgymshich results in a sharing af.

6



Protocol Mult(P, Z, S, (s), (t))
1. Forevery(Sk, S¢) € S x S, the following steps are executed:
(@) Everyp; € (S, N S,) computes the products, ; = s;t, and invokesShare(P, Z, S, p;, 21 ¢); denote
the resulting sharing a(s:,(j,)ﬁ.
(b) Letp; denote the player with the smallest index #), N Sy). For everyp; € (S, N S;), the differenc
<x,(€]’)> - <x,(;)£> is computed and, by invokinBublicReconstruct, reconstructed.

(12

(c) If all differences aré, then the sharingz,(j’)ﬁ of p; is adopted as sharing af, /, i.e., (zx ) = <x,(€7’,)£>.
Otherwise (i.e., some difference is non-zef@jplicAnnounce is invoked to have botk, andt, an
nounced, and a default shariqg, ¢) of x;, , = syt, is created (e.g., the first summand is set e and
the other summands are setjo

2. Each player irP (locally) computes his share of the productas the sum of his shares of all terms,.
3. If any of the invoked sub-protocols aborts with then alsdviult aborts withB.

Lemma 9. Assuming thaf is a Z-private sharing specificatior{s) and (t) are consistent sharings according
t0o S, Cpc(P, Z) holds,VSy, Sy € S,V(4,-,-) € Z: S, NS, € A, andVS; € S,V(A1,-,-),(Az,-,-) € Z :

Sk € A1 U A, the protocolMult(P, Z, S, (s), (t)) has the following properties. Correctness: It either outputs
a sharing ofst according to(P, S) or it aborts with a non-empty sé? C P of incorrect players. Secrecy: No
information on the inputs (i.e., ofs) and(¢)) leaks to the adversary.

Proof. Correctness: The conditions in the lemma are sufficient for all the invoked sub-protocols
(Share,PublicReconstruct,PublicAnnounce). The conditionvSy, S, € S,V(A4,-,-) € Z: S, NS, € Aen-

sures that every;, . is known to at least one player who is not actively corrupted; hence if no invocation

of Share aborts and all differences are zero, then the shared values are correct. Privacy: Due to the security of
Share, the invocations ofhare do not leak information to the adversary. FurtherméxglicAnnounce is only

invoked on summands;, t, when two players irb, N Sy contradict each other; at least one of these players is
actively corrupted, hence the adversary already kngwg beforePublicAnnounce is invoked. O

3.6 Resharing

In the context of MPC, we will need to reshare shared values according to a different sharing specification.
The key idea is to have every summag)dn the original sharing being reshared according to the new sharing
specification, and then distributively add the sharings of the summand, resulting in a new sharing of the original
value. Due to space restrictions, the protdRedhare(P, Z,S,S’, (s)) is given in full detail in Appendix A. The
following lemma, proved in Appendix A, states the achieved security.

Lemma 10. Assuming thaS’ is a Z-private sharing specification(s) is a consistent sharing according &
CB(](P,Z) holds, andvS, € S,S]; € S/,(A17',‘),(A27',‘) IS (Sk Z A U Ag) VAN (S],€ Z A U Ag),
the protocolReshare(P, Z,S,S’, (s)) has the following properties. Correctness: It either outputs a sharing of
according to(P, S’) or it aborts with a non-empty sé C P of incorrect players. Secrecy: No information on
the inputs (i.e., onis)) leaks to the adversary.

4 (Reactive) Multi-Party Computation

In this section we prove the sufficient and necessary condition on the adversary steiéburtbe existence of
perfectly Z-secure multi-party computation protocols. The sufficiency of the condition is proven by constructing
an MPC protocol. The necessity is proven by an impossibility argument.

Theorem 1. A set P of players can perfectlyZ-securely compute any (reactive) computation when
Cymurt (P, Z) andCrec (P, Z) hold, where
Cymunt (P, 2) <= V(A1 B, Fr), (A, B2, F), (A3, E3,F3) € Z2: E{UEUA3U(F1NFaNEF3) #P
CREC(Pa Z) < V(Al, Ela F1)7 (AZa EQ, FQ), (Ag, Eg, Fg) €ceZ: F1U AQ U Ag U (F2 M F3) 7& P

The conditionCy\urr is heeded for (non-robust) multiplication. The conditiOpgc is needed for robust
reconstruction.



4.1 The MPC Protocol

The circuitC to be computed consists of input, addition, multiplication and output dafés. reactiveness of
the computation is modeled by assigning to each gate a point in time when it should be evaluated.

The circuit is evaluated in a gate-by-gate fashion, where for input, multiplication and output gates, the corre-
sponding sub-protoc@&hare, Mult, andReconstruct, respectively, is invoked. Due to the linearity of the sharing,
addition (or linear) gates can be evaluated locally by the players.

The non-robustness of the used sub-protocols is addressed differently depending on the type of the gate:
When in an input gate the input player does not share his input, the players just pick a default sharing of some
pre-agreed default value. The reconstruction protocol of the output gate is robust under the necessary condition
for MPC. The multiplication of shared values can abort (with af$&t P of incorrect players). If this happens,
the multiplication is retried in a smaller setting, namely with the player@et P \ B and the adversary
structureZ’ which contains only those adversary classes which are compatible with the fact that the players
in B are incorrect. More precisely, first both factors are re-shared to the new settingpwatind Z’, then the
multiplication sub-protocol is invoked within this setting, and upon success, the resulting sharing of the product
is re-shared to the original setting withand Z. This process is repeated until the multiplication succeeds, and
with each repetition, the active player $&€tbecomes smaller.

For the sake of clarity, we introduce two operators on adversary structures: FoBa&SeP, we denote
by Z|”<" the sub-structure of that contains only adversaries who can fail-corrupt all the players, ine.,

Z|P<" ={(A,E,F) € Z: B C F}.Furthermore, for asé?’ C P, we denote byZ|, the adversary structure
with all classes inZ restricted to the player s&’, i.e., 2|, = {(ANP ,ENP ,FNP): (A E,F) e Z}.
As syntactic sugar, we writg&| =" for (Z|7<") |,,.

It immediately follows from the above definitions that when the playei8 mave been detected to be incor-
rect, then the actual adversaty is in Z|”<". Furthermore, we exclude the playersirfrom the multiplication
protocol, and the new setting® = P \ B andZ’ = Z|;5; . One can easily verify that the conditiof%,

Cwurr, andCrec hold in (P \ B, Z[75;) when they hold inP, Z), for an arbitraryB C P. This results in
the following MPC protocol:

Protocol MPC(P, Z,C)
1. Initialize the set of detected as incorrect player®to= (). Set the default sharing specificatiSn= Sz.
2. For every gate to be evaluated, do the following:
— Input gate forp: Invoke Share to havep share his input according @, S). If Share aborts, then ja
default sharing of some pre-agreed default value is taken.
— Addition gate:Everyp; € P locally computes the sum of his respective shares.
— Multiplication gate: Denote the sharings of the factors @s$ and (¢), respectively, and denote the
set of active players a®’ = P \ P, and the adversary structure compatible wih being in-
correct asz’ = Z];Z@%f, and the correspondingZ(-private) sharing specification @& = Sz/. In-
voke Reshare(P’, 2’ S, S', (s)) andReshare(P’, 2/, S, S’, (t)) to obtain the sharing&)’ and(t)’ for
(P’,S"), respectively. Invokéult(P’, Z’, (s)’, (t)’) to obtain a sharingst)’ of the product, according
to (P’,S’). InvokeReshare(P’, 2", S', S, (st)’) to reshare this product according(t8, S).2 If any of
the sub-protocols aborts with sBtthen setP?, = P, U B and repeat the gate.
— Output gate fop: Invoke Reconstruct to have the output reconstructed towapds

& Reshare outputs a sharing according (&', S), which is trivially also a sharing according (@, S) since all players irP \ P’ are
incorrect.

Lemma 11. The above MPC protocol is perfectB-secure ifCyrurr (P, Z2) andCrec (P, Z) hold.

Proof (sketch)One can easily verify that the conditions in the lemma imply all conditions required in the sub-
protocols, hence the security of the MPC protocol follows from the security of the sub-protocols. ad

’ This does not exclude probabilistic circuits, as a random gate can be simulated by having each player input a random value and take
the sum of those values as the output.



4.2 Impossibility of MPC

In this section we prove that perfectly secure (reactive) MPC is not possible for some circuits when
Cyurr (P, 2) or Crec(P, Z) is violated. We first prove that whebhyyrr (P, Z) is violated, then even non-
reactive computations cannot be securely evaluated (Lemma 12). Secondly, we prove thairwbéR, Z)

is violated, then the players iR cannot hold a secret joint state, which excludes the evaluation of (non-trivial)
reactive circuit (Lemma 13).

Lemma 12. If C\yiupr (P, Z) is violated, then there exist (even non-reactive) circuits which cannot be evaluated
perfectlyZ-securely.

Proof. ConsiderP and Z with Cyurr (P, £) violated, and assume for the sake of contradiction, that for every
circuit C, a perfectlyZ-secure protocol exists. There exist,, E1, F1), (A, Eo, F3), (A3, E3, F3) € Z with
E1UE,UAsU(FINFyNEs) =P.LetF = FiNF,NEFy, PP =P\ F,andfori = 1,2,3, let A, = A;\ F and

E! = E; \ F. The alleged protocol must also be perfectly secure for the play@t setd the adversary structure
(with only active and passive corruptio) = {(A4}, E}), (4%, EY), (A5, E%)}, because one particular strategy
of the adversary is to fail-corrupt the playersfinand make them crash at the very beginning of the protocol.
However, for(P’, Z’) perfectly secure (non-reactive) MPC protocols do not exist for all circuits, as proven in
[FHM99, Thm. 1]. 0

Lemma 13. If Crec(P, Z) is violated, then the players cannot hold a secret joint state with perfect security.

Proof. Consider P and Z with Cgrpc(P, Z) violated, hence there existA;, E1, F1), (Ag, Eq, F3),
(Ag,Eg, Fg) € Zwith B UAs U AU (FQ N Fg) # P. Wlog assume thal; = {pl}, Ay = {pg}, Az = {pg},
andFy = F3 = {p4}. We denote the view gf; asv;. For the sake of contradiction, assume that these views de-
fine a secret joint state Privacy requires that, does not determine, hence there exists a different state# v
which could be represented by the viefvs, v, v5, v} ). Now consider the following two cases: (i) The secret
state isv, and the adversary corruptds, Fs, F») and make, crash ang- take a random view, which (with
perhaps negligible probability) could hg. (i) The secret state ig’, and the adversary corruptsls, Es, F3)

and makegp, crash angs take a random view, which (with perhaps negligible probability) couldfoén both
cases, the views of the players &g, v5, vs, L), but the joint state is once and oncev’ # v, contradicting
perfect security. ad

5 Secure Function Evaluation

In this section we prove the sufficient and necessary condition on the adversary steiéburtae existence of
perfectly Z-secure function evaluation protocols. The sufficiency of the condition is proven by constructing an
SFE protocol, and necessity is proven by an impossibility argument. Note that the condition for SFE is weaker
than the condition for MPC.

Theorem 2. A setP of players can perfectl-securely compute any function if and onlyff;yrr (P, Z) and
CNrec hold, where
CNIULT(P, Z) <= V(Al, El,F1), (AQ, EQ,FQ), (Ag, E3,F3) € Z: F1UEyUA3U (Fl NFyN Fg) 79 P,
Cnrec(P, Z) <= there exists an ordering(A;, E1, F), . .., (Ap, Em, F)) of Z s.t8
Vi, 4,k € {1,...,m},i <k: EkUAiUAjU(FZ'ﬂFj) % P.

The conditionCyurr is needed for (non-robust) multiplication. The conditiORgec is needed for non-
robust reconstruction. Essentially, the latter condition allows for a reconstruction protocol in which the actual
adversary gets information on the output only once it cannot disturb the protocol anymore.

8 Remember thaE denotes the maximum classesdnOne can verify that such an ordering exists foexactly if it exists forZ.



5.1 The SFE Protocol

Our SFE protocol follows the standard approach of SFE protocols, namely to first secret-share all inputs, then to
evaluate the circuit gate by gate, then to reconstruct the output. However, the protocol employs sharings which
are not robustly reconstructible. This means that the adversary can break down the computation in such a way
that all sharings are lost. As the circuit is non-reactive, we can handle such an abortion by repeating the whole
protocol, including the input stage. The correct players will give the same inputs in every iteration, but the
adversary might give different inputs. However, in a failed iteration, the adversary does not get any information
about any secrets (more precisely, the adversary could perfectly simulate all messages received within a failed
iteration already beforehand), so the inputs chosen by the adversary in the successful iteration are independent
of the other players’ inputs.

Termination is guaranteed by the fact that whenever an iteration aborts, then a non-enipty sgt of
incorrect players is identified, and the next iteration will proceed without these players. Hence the number of
iterations is bounded by.

The delicate task is the output protocol. For simplicity, we describe the protocol only for a single public
outputs; however, it naturally extends to a vectéof several public outputs, which then can be extended to
capture private outputs with standard techniques (the output player inputs a one-time pad used for perfectly
blinding the private element of the output vector).

The intuition of the output protocol is as follows: First observe that in our sharing, the privacy against each
adversary is protected by a particular summand. More precisely, for every adversaryAlags, ) € 2
there exists a summang, which is given only to the players if, € S with S, N E, = () (we even have
Sk = P\ Eg). As long as this summand is not published, an adversary of sy, F),) does not obtain
information about the output (from the point of view of the adversayyis a perfect blinding of the output,
and all other summands are either known to the adversary or are distributed uniformly). Second, observe
that whenever the publishing of some summapdails (i.e. the protocoPublicAnnounce aborts), then a set
B C P of incorrect players is identified. The information that the playerBiare incorrect leaks information
about the actual adversafyl*, £*, F'*), namely thatB C F*. The key idea of the output protocol is to publish
the summands in such an order that whenduaslicAnnounce aborts with B, then the information that the
players inB are incorrect excludes the possibility that the actual adversary is from a class whose summand has
already being published. In other words: Whenever an adversary of(@lass;, F;) could potentially abort the
announcing of the summang associated with the adversary cldss,, Ey, F}), then the summang), must be
announced strictly before the summands announced.

Let ((Al, E1,F),...,(An, En, F,)) denote an ordering of the maximum struct@&eatisfying

VlSi,j,kSm,igk‘:EkUAiUAjU(FiﬂFj)7573,
and letS denote the induced sharing specificat®n= (S, ..., S,) with S, = P\ Ex. Then the following
protocol perfectlyZ-securely publicly reconstructs a sharifsg according taS, or aborts with a non-empty set

B C P of incorrect players. Privacy of the protocol is guaranteed under the assumption that those summands of
(s) that are unknown to the adversary are uniformly distributed. This is the case for all sharings in our protocols.

Protocol OutputGeneration(P, Z2,S = (S1,...,Sm), (s))
1. Fork =1,...,m, the following steps are executedquentially
(@) PublicAnnounce(P, Z, Sk, si) is invoked to have the correct summasdpublished.
(b) If PublicAnnounce aborts withB, thenOutputGeneration immediatelyaborts withB.
2. Everyp; € P (locally) computes = >/, s; and outputs.

Lemma 14. Assuming thasS is a Z-private sharing specification constructed as explair@gl (P, Z) holds,

andvSy € S, (A1, -,+),(A2,-,-) € Z: S € A1 U Ay, and(s) is a consistent sharing according & with

the property that those summands that are unknown to the adversary are randomly chosen, then the protocol
OutputGeneration either publicly reconstructs, or it aborts with a non-empty sé&t C P of incorrect players.

If OutputGeneration aborts, then the protocol does not leak any informatiors ¢m the actual adversary.

10



Proof. First observe that the pre-conditionsiiblicAnnounce are satisfied. Second, observe that by construc-
tion of S, we havevi, j,k € {1,...,m},i <k : (P\ Sy) UA; UA;U(F;NF;) # P. Now assume that the
invocation ofPublicAnnounce(P, Z, Sy, si.) aborts withB C P. It follows from Lemma 7 that the actual adver-
sary(A*, E*, F*) satisfies the property that there exi§ts;, E;, F;) € Z such thatS, C A*UA; U (F*N Fj).

By the construction o5, no adversary clasg4;, E;, F;) € Z with ¢ < k satisfies this condition, hence the
summand associated with actual adversary has not yet been announced. a

With this protocol, the SFE protocol can be constructed easily:

Protocol SFE(P, Z, C)
0. LetS = (P\ Ey,..., P\ Ey,) for the assumed ordering A, E1, 1), ..., (Am, Em, Fy)) of Z.
1. Input stage:For every input gate irC, Share is invoked to have the input playex share his input:;
according taS.2
2. Computation stagefhe gates irC are evaluated as follows:
— Addition gate:Everyp; € P locally computes the sum of his respective shares.
— Multiplication gate:Invoke Mult to compute a sharing of the product accordingto
3. Output stagelnvoke OutputGeneration(P, Z, S, (s)) for the sharing's) of the public output.
4. If any of the subprotocols aborts wifh, then setP < P \ B, and setZ to the adversary structure which

is compatible withB being incorrect, i.e.Z « Z|2-", and go to Step 1.

1f in a later iteration a playep; ¢ P should give input, then the playersipick the default sharing of a default value.

Lemma 15. The above SFE protocol is perfectrsecure ifCyrurr (P, Z) and Cxrec (P, Z£) hold.

Proof (sketch)One can easily verify that the conditions in the lemma imply all conditions required in the sub-
protocols, hence the security of the SFE protocol follows from the security of the sub-protocols.

Special care needs to be taken for the fact that the adversary can abort the protocol and provoke repetitions.
Termination of this process is obvious, as in every repetition the player set shrinks. Also correctness is straight-
forward. Privacy is argued as follows: The adversary can perfectly simulate his view in every iteration which
aborts (even without knowing the public output), hence his capability to abort an iteration does not give him any
additional power. O

5.2 Impossibility of SFE

In this section we prove that perfect§-secure SFE is not possible for some circuits whigpyr (P, Z) or
Cnrec (P, Z) is violated. The necessity f@aryurr (P, Z£) follows immediately from Lemma 12. It remains to
show thatCnrec (P, Z) is necessary:

Lemma 16. If Cxrec(P, 2) is violated, then there exist functions which cannot be evaluated perigetly
securely.

Proof. Consider P and Z with Cxgrec(P,Z) violated, i.e., for every ordering
(A1, E1, F1),...,(Am, En, Fy)) of Z there existsi,j,k € {1,...,m} such thati < k and

E, U A; U A; U (F; N F;) = P. Consider the identity function, where every playgr € P inputs
some valuer;, and the public output is the vect¢r,...,z,). For the sake of contradiction, assume that
there exists a perfectlg-secure SFE protocol for this function. This protocol implicitly defines for every
set . C P the protocol round in which the players i obtain full joint information about the output. We
denote the index of this round ag L), i.e., the joint view of the players i in round ¢(L) gives full
information on(x1,...,x,), but their joint view in roundy(L) — 1 does not give full information. The
function ¢ implies an ordering((Al,El,Fl), e (Am,Em,Fm)) on the adversary classes B such that
foreveryl < i < k < m : ¢(E;) < ¢(E). Denote byi, j, k those indices that satisfy < k£ and

E, U A; U A; U (F; N F;) = P (which are assumed to exist for contradiction). The adversary corrupts

11



(A;, E;, F;) and behaves as follows: Up to rouadE;) — 1, the adversary lets the corrupted players behave
correctly. In roundy(E;), the adversary crashes the playergjm F};, and has the players iA; \ (F; N F})

send random values (also in all subsequent rounds). Still, the adversary obtains full information on the output in
round¢(E;) (he knows all correct messages that were sent, respectively should have been sent to the players
in E;). However, the players itls;, do not have full informatiorbeforeround ¢(Ex) > ¢(E;). Hence these
players cannot with certainty distinguish the current situation from the situation when the output vector would
be different, the players in clags;, £}, F;) would be corrupted, those ifi; N F; would be crashed, and those

in A; \ (F; N F;) would send random messages. Hence the adversary has obtained full information about the
output vector, but some uncorrupted players do not, contradicting perfect security. ad

6 Separation and Conclusions

We have considered an adversary whose corruption capability is described by a colecfiadversary classes

(A, E, F), where the adversary may actively corrupt the playerd ipassively corrupt the players i, and
fail-corrupt the players irf". This model unifies all corruption models considered in the literature, as they are
all special cases, either in terms that not all corruption types were considered, or in terms that only threshold
corruption was considered.

For this general adversary model, we have derived exact conditions for the existence of perfectly secure
multi-party computation (MPC) and secure function evaluation (SFE). It turned out that the condition for SFE
is strictly weaker than the condition for MPC. In fact, there are simple adversary structures for which per-
fectly secure SFE is possible, but perfectly secure MPC and verifiable secret sharing are not possible. This
separation does not show up in the restricted models considered so far. The following theorem states this sepa-
ration. It follows immediately from the separating example in the introduction Rits {p;, p2, p3,p4} and

Z={0.{r1},0). ({p2} {p2} {p2, pa}), ({ps}. {ps}. {ps. pa}).

Theorem 3. Perfectly secure MPC and SFE separate, i.e., there &xetd Z such that perfecthg-secure SFE
among the players i is possible, whereas perfectBrsecure MPC is not.

12



References

[AFM99] Bernd Altmann, Matthias Fitzi, and Ueli Maurer. Byzantine agreement secure against general adversaries in the dual failure
model. InDistributed Computing — DISC '9%olume 1693 o£ NCS pages 123-137, 1999.

[Bea9la] Donald Beaver. Foundations of secure interactive computingdvances in Cryptology — CRYPTO ;3blume 576 of
LNCS pages 377-391, 1991.

[Bea91b] Donald Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty mioarital of
Cryptology 4(2):370-381, 1991.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant dis-
tributed computation. IACM Symposium on the Theory of Computing — STOCp88es 1-10, 1988.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protaimisnal of Cryptology13(1):143-202, 2000.

[CCD88] David Chaum, Claude €peau, and Ivan Daragd. Multiparty unconditionally secure protocols (extended abstrac8CM
Symposium on the Theory of Computing — STOCpa&ges 11-19, 1988.

[DMO0O0] Yevgeniy Dodis and Silvio Micali. Parallel reducibility for information-theoretically secure computatioAdiances in
Cryptology — CRYPTO 2000olume 1880 of- NCS pages 74-92, 2000.

[DS82] Danny Dolev and H. Raymond Strong. Polynomial algorithms for multiple processor agreem&aMISymposium on the
Theory of Computing — STOC '8@ages 401-407, 1982.

[FHM98] Matthias Fitzi, Martin Hirt, and Ueli Maurer. Trading correctness for privacy in unconditional multi-party computation. In
Advances in Cryptology — CRYPTO ;9%lume 1462 of NCS pages 121-136, 1998. Corrected version is available online.

[FHM99] Matthias Fitzi, Martin Hirt, and Ueli Maurer. General adversaries in unconditional multi-party computatiéavamces in
Cryptology — ASIACRYPT '99olume 1716 o£ NCS pages 232-246, 1999.

[FM98] Matthias Fitzi and Ueli Maurer. Efficient Byzantine agreement secure against general advers&@issibuted Computing
— DISC '98 volume 1499 of NCS pages 134-148, 1998.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game — a completeness theorem for protocols
with honest majority. I'ACM Symposium on the Theory of Computing — STOCp&8ges 218—229, 1987.

[GP92] Juan A. Garay and Kenneth J. Perry. A continuum of failure models for distributed computiBgstributed Algorithms,
6th International Workshop — WDAG ’'9%2olume 647 oLLNCS pages 153-165, 1992.

[HM97] Martin Hirt and Ueli Maurer. Complete characterization of adversaries tolerable in secure multi-party computa®iGi In
Symposium on Principles of Distributed Computing — PODGC [ges 25-34, 1997. Full version appearedadurnal of
Cryptology13(1): 31-60, 2000.

[IKLPO6] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining privacy with guaranteed output delivery in
secure multiparty computation. Advances in Cryptology — CRYPTO 2006lume 4117 of NCS pages 483-500, 2006.

[LF82] Leslie Lamport and Michael J. Fischer. Byzantine generals and transaction commit protocols. Technical Report Opus 62, SRI
International (Menlo Park CA), TR, 1982.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals pAMmransactions on Programming
Languages and Systep#3):382—-401, 1982.

[Mau02] Ueli Maurer. Secure multi-party computation made simplelHimd Conference on Security in Communication Networks —
SCN 2002volume 2576 oL NCS pages 14-28, 2002. Full version appeareDiscrete Applied Mathematic454(2):370-

381, 2006.

[MP91] Fred J. Meyer and Dhiraj K. Pradhan. Consensus with dual failure moBEE Transactions on Parallel and Distributed
Systems2(2):214-222, 1991.

[MR91] Silvio Micali and Phillip Rogaway. Secure computation.Advances in Cryptology — CRYPTO ;9blume 576 olLNCS
pages 392-404, 1991.

[PWO01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and its application to secure message
transmission. INEEE Symposium on Security and Privapgges 184—200, 2001.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majoA§MIiSymposium
on the Theory of Computing — STOC ,§f&ges 73-85, 1989.

[Yao82] Andrew C. Yao. Protocols for secure computations. IHRE Symposium on the Foundations of Computer Science —
FOCS '82 pages 160-164, 1982.

13



Appendix
A Protocol Reshare

The following protocol allows the players iR to Z-securely reshare a sharing @f) according to sharing
specificationS to the new sharing specificatidH.

Protocol Reshare(P, Z,S,S’, (s))
1. ForeveryS; € S, the following steps are executed:

(@) Everyp; € Sy invokesShare(P, Z,S8’, p;, si); denote the resulting sharing @”y

(b) Letp; denote the player with the smallest indexSp For everyp; € Sy, the difference(sfj)> - <s,(j)>
is computed and, by invokinBublicReconstruct, publicly reconstructed.

(c) If all differences ard, then the sharings,(j)) of p; is adopted as sharing @, i.e., (s;) = (s,(j)>.
Otherwise (i.e., some difference is non-zeR)blicAnnounce is invoked to have;, announced, and a
default sharing s of s; according taS’ is created.

2. Everyp; € P (locally) computes the sum of his shares of all summands
3. If any of the invoked sub-protocols aborts wigh then als@Reshare aborts withB.

Lemma 10. Assuming thatS’ is a Z-private sharing specification(s) is a consistent sharing according &
Cpc(P, Z) holds, andvS;, € S,S;, € §',(A1,-,-),(A2,-,-) € Z: (S € A1 U A) A (S}, € A1 U Ay),
the protocolReshare(P, Z,S,S’, (s)) has the following properties. Correctness: It either outputs a sharing of
according to(P, S’) or it aborts with a non-empty sé& C P of incorrect players. Secrecy: No information on
the inputs (i.e., onis)) leaks to the adversary.

Proof. Correctness: The conditions in the lemma are sufficient for all the invoked sub-protocols
(Share,PublicReconstruct,PublicAnnounce). The conditionw'Sy, € S,V(A1, -, ), (As,-,-) € Z: Sp L A1 U Ay
implies thatvS, € S,V(A4,-,:) € Z : S € A, which ensures that every, is known to at least one player

p; Who is not actively corrupted; hence if no invocationStfare aborts and all differences are zero, then the
shared values are correct. Privacy: Due to the securibpafe, the invocations ofhare do not leak information

to the adversary. Furthermor@ublicAnnounce is only invoked on the summang, when two players inSy
contradict each other; at least one of these players is actively corrupted, hence the adversary alreasly knows
beforePublicAnnounce is invoked. a

B Proofs of Lemmata

Lemma 2 (Crash Detection).If Cgc(P, Z) holds, then the protocdlDP (P, Z, p) has the following proper-
ties: Consistency: The (correct) players agree on the output. Correctngsss Horrect until the end o€DP,
then every (correct) player outputs “alive” andjfhas crashedeforethe invocation of.DP, then every (cor-
rect) player outputs “crashed”.

Proof. Correctness: Whenis correct, then every (correqt) € P setsb; = 1, and by definition of consensus,

all correct players decide dnand output “alive”. Whem has crashed befofeDP is invoked, then every correct

p; € P setsb; = 0, and hence all correct players output “crashed”. Consistency: As the output is decided by
using consensus, the output of all correct players is identical. ad

Lemma 3 (Strong Broadcast).If Csc(P, Z) holds, then the protocdbtrongBroadcast(P, Z, p,v) has the

following properties: Consistency: All (correct) players output the same valu€orrectness: If the sender

is correct, then’ = v; if p crashedbeforethe invocation of the protocol, thert =_; if p crashes during the
protocol, then” € {v, L}.

14



Proof. Consistency follows immediately from the consistency propertgrobdcast and the consistency prop-
erty of CDP. For correctness we consider 3 cases: (a)lf the senidecorrect through the whole protocol, then
the consistency property &roadcast implies that for all correcp; 's, v; = v and the correctness property of
CDP implies that all correct players will output “alive” iGDP, hence they will all output in StrongBroadcast.

(b) If p has already crashdskforethe invocation of5trongBroadcast, then this is detected in Step 2 (RP)

and the protocol outputs. (c) If p crashes during the protocol but is correct up to that point, then either this
is detected in Step 2 and the protocol outputsor p is still alive at the beginning of Step 2 and has correctly
broadcast his input. Since, wherp is not actively-corrupted one of the above 3 cases must hold, the output of
StrongBroadcast for such ap is always in{v, L }. O

Lemma 4 (Share).If Cc(P, Z) holds andS is a Z-private sharing specification, then the proto&Hare

(P, 2,8, p, s) has the following properties. Correctnesiare either outputs a consistent sharing of soge
wheres’ = s unless the dealer is actively corrupted, or it aborts with= {p}; it does not abort ifp is correct.
Secrecy: No information onleaks to the adversary.

Proof. Correctness: The consistency of the sharing is guaranteed because correct players either hold the same
value for a common summand, or they complain and get a consistent value for the summand by strong broadcast.
Because all sent and broadcasted summands,anech thats = ) sy itis clear that the shared valuedsvhen

the dealer is correct. Lastly, the protocol only aborts when the dealer is incorrect in an invocation of strong
broadcast. Secrecy: BecauSds Z-private we know that the summands of corrupted players do not reveal
information ons. On the other hand, the dealer only broadcasts summands for which a complaint is broadcast,
i.e., two players (claim to) have different values for that summand. This only happens when the dealer or one
of the disputing players is actively corrupted, or when the dealer has crashed. In the first case, the adversary
is entitled to know the summand, and in the second case, the summand will not be broadcasted (the dealer is
crashed). a

C Implications Among the Conditions

The following figure summarizes the implications between the conditions: An arrow from Condition 1 to Con-
dition 2 means that 1 implies 2; an erased arrow means that there is an example (i.e., an adversaryz3j}ructure
that strictly separates the two conditions.

AV4 -
Cric(P,2) ¢ VA ~ Cyvurr(P, 2)
Cnrec(P,2) g % Cgc(P, 2)

15



