
Forward-Secure Sequential Aggregate Authentication

Di Ma, Gene Tsudik

University of California, Irvine
{dma1,gts }@ics.uci.edu

Abstract. Wireless sensors are employed in a wide range of applications. One common feature of most sensor
settings is the need to communicate sensed data to some collection point or sink. This communication can be direct
(to a mobile collector) or indirect – via other sensors towards a remote sink. In either case, a sensor might not be
able to communicate to a sink at will. Instead it collects data and waits (for a potentially long time) for a signal to
upload accumulated data directly.
In a hostile setting, a sensor may be compromised and its post-compromise data can be manipulated. One important
issue isforward security– how to ensure that pre-compromise data cannot be manipulated? Since a typical sensor
is limited in storage and communication facilities, another issue is how to minimize resource consumption due to
accumulated data. It turns out that current techniques are insufficient to address both challenges. To this end, we
explore the notion ofForward-Secure Sequential Aggregate(FssAgg) authentication Schemes. We considerFssAgg
authentication schemes in the contexts of both conventional and public key cryptography and construct aFssAgg
MAC scheme and aFssAggsignature scheme, each suitable under different assumptions. This work represents the
initial investigation of Forward-Secure Aggregation and, although the proposed schemes are not optimal, it opens a
new direction for follow-on research.
KEYWORDS:sensors, signature schemes, authentication schemes, key compromise, forward security, aggregate
signatures.

1 Introduction

Wireless sensors can enable large-scale data collection in many different settings, scenarios and applica-
tions. Examples abound in all kinds of tracking and monitoring applications in both civilian and military
domains. A Wireless Sensor Network (WSN) might contain hundreds or thousands of low-cost sensors and
one or more sinks or data collectors. Individual sensors obtain measurements from the environment and (pe-
riodically or upon request) forward the accumulated data to the sink. A sink might be a gateway to another
network, a powerful data processing or storage center, or an access point for human interface. (Some WSNs
support user-driven data queries and commands through the sink.)

In this paper, we are motivated by two types of envisaged sensor scenarios:

A Sensors do not communicate with each other, i.e., there isno sensor networkas such. Instead, a mobile
device that we call acollector.1 A collector might not be fully trusted; it might be nothing more than an
intermediary between sensors and an off-line (trusted) sink.

B Sensors communicate but they do not actually “network”, i.e., communication is restricted to mere
forwarding of information from other sensors towards a sink or sinks. In this context, a sink is a fully
trusted entity.

In either case, a sensor might not be able to communicate to a sink at will. Instead, it collects data and waits
(potentially, for a long while) either for a signal – or some pre-determined time – to upload accumulated
data to a collector or a sink. Put another way, there is no real-time reporting of sensed information between
sensors and a collector or a sink.

Data integrity and (sensor) authentication are essential security services required in most sensor appli-
cations [19] since sensors are often used in unattended and adversarial environments. They interact closely

1 We use the terms “collector” and “sink” to distinguish between entities that gather data in the two scenarios.

with the physical environment and with people, thus being subject to a wide range of security risks. An
attacker may inject its own data as well as modify and delete data produced by sensors. As a result, sensor
data must be authenticated before being processed and used for whatever purposes. Particularly in critical
settings (e.g., radiation, seismic or intrusion monitoring) strong data integrity and authenticity guarantees
are needed. Standard textbook techniques, such as MACs (Message Authentication Codes) or digital signa-
tures, can be used in applications where data integrity/authenticity is required. However, several obstacles
hinder straight-forward usage of these standard techniques.

One important issue is the threat ofsensor compromiseand the consequent exposure of secret keys
used for MACs or signatures.2 Key exposure makes it easy for the adversary to produce fraudulent data
ostensibly sensed after the compromise. Moreover, it also allows the adversary to produce fraudulent data
before the compromise, assuming it has not been reported to a sink or a collector. This is clearly undesirable.
Fortunately, there are so-calledforward-securecryptographic techniques that allow the signer (sensor, in
our case) to periodically evolve its secret key such that compromise of a current secret key cannot lead to
compromise of secret key(s) used in past periods. It is therefore possible to mitigate the effects of sensor
compromise by using a sense-and-sign approach. In other words, a sensor does not wait to sign (or MAC)
ALL sensed data until it has to send it, since doing that would openall collected datato attack. Instead, it
signs data as soon as it is sensed and evolves the signing key.

Another important issue isstorage and communication overheads. Clearly, on-board storage is a lim-
ited commodity in most sensor settings and it is natural to minimize its size and consumption. In both
scenarios A and B outlined above, a sensor gradually accumulates data (readings, measurements), stores it
locally and – at some later time – sends it to a sink. We are not concerned in minimizing storage consumed
by the actual data; that is an interesting topic in its own right. Instead, we are interested in minimizing
storage due to authentication tags (i.e., MACs or signatures) since they represent pure overhead. If key com-
promise and forward security were not an issue, minimizing storage overhead would be trivial – a sensor
simply signs or MACs all accumulated data once, before forwarding it to the sink. At the same time, forward
security forces us to compute authentication tags per sensed unit of data, which we refer to as amessage
from now on.3 Therefore, a sensor accumulates as many authentication tags as messages while it waits for
a time or a signal to off-load the data. This is problematic since even the size of a MAC (and certainly of a
signature) can easily exceed the size of actual data, i.e., messages. At the minimum, each 128 bits per MAC
or 160 bits per signature would need to be allocated.

Communication overhead is a related, though perhaps not as critical, matter. In scenario A, a sensor
uploads accumulated messages directly to the collector. Thus, the communication overhead due to sending
multiple authentication tags is less problematic than in Scenario B where the same overhead affects all
sensors that forward information from other sensors towards the sink. (We refer to the oft-cited folklore
in [3] which claims that wireless transmission of a single bit can consume over1, 000 times of the energy of
a single 32-bit computation.)

Reconciling the need to minimize storage (and communication) overhead with the need to mitigate
potential key compromise (i.e., obtain forward security) is precisely the topic of this paper.

Contributions:We explore Forward Secure Sequential Aggregate (FssAgg) authentication schemes that
simultaneously mitigate the threat of key compromise and achieve optimal storage and communication effi-
ciency. AnFssAggauthentication scheme allows a signer to combine multiple authentication tags generated
in different key/time periods into a single constant-size tag. Compromise of the current key does not allow

2 Building an inexpensive tamper-proof, or even tamper-resistant, sensor is a much greater challenge.
3 Note that the duration of the key evolvement period in a forward-secure scheme does not have to match the time between

successive sensor readings; however, to simplify the discussion, we assume that it does.

2

the attacker to forge any aggregate authentication tag containing elements pre-dating the compromise. Any
insertion of new messages, modification and deletion (including truncation) of existing messages makes
the aggregate tag demonstrably invalid. We consider this topic in both conventional and public key cryp-
tographic settings and construct two practical schemes: anFssAggMAC scheme as well as anFssAgg
signature scheme.

Organization:After a brief overview of related work in Section 2, we introduce the model and security
requirements in Section 3. Next, we present anFssAggMAC scheme in Section 4 and anFssAggsignature
scheme in 5. Section 6 concludes the main body of the paper. Appendix A presents a brief performance
evaluation of theFssAggsignature scheme, followed by appendices B and C that contain, respectively, the
security model and a proof sketch for the same scheme.

2 Related Work

NOTE: this section is kept brief due to dire space limitations.
The topic of this paper is quite distinct from data aggregation in sensor networks [8, 11, 12, 20, 21]. In

an FssAggauthentication scheme, authentication objects are aggregate while data records (messages) are
kept intact. In a data aggregation scheme, individual data information is lost and the aggregate value is used
to provide or derive statistical information, such as mean, median or max/min. Data aggregation schemes
are very useful, but unsuitable for applications, where the availability of individual sensed data records is
required (e.g., temperature pattern sensing in a nuclear reactor).

The notion of forward security was introduced in the context of key-exchange protocols [10] and lagter
adapted to signature schemes. Forward-secure signatures were first proposed by Anderson in [2] and subse-
quently formalized by Bellare and Miner in [4]. The main challenge is efficiency: an ideal scheme must have
constant (public and secret) key size, constant signature size as well as constant signing, verification, and
(public and secret) key update operations. Several schemes proposed in the literature satisfy some or most
of these requirements [1,4,13–15]. Also, in [5], Bellare and Yee examine forward security in the context of
conventional cryptography.

Several aggregate signature schemes have been proposed in the literature, starting with the initial seminal
result by Boneh, et al. [6, 16, 17]. An aggregate signature scheme combinesk signatures generated byn
signers (k ≥ n) into a single and compact aggregate signature that, if verified, simultaneously verifies every
component signature. Interestingly, our goal is to aggregate signatures by thesamesigner (e.g., a sensor),
however, these signatures are computed in different periods, and with different keys. Thus, our goals impose
no additional restrictions on existing definitions of aggregate signatures. Also, our envisaged schemes do not
require simultaneous aggregaqtion of multiple signatures as in [6]; instead, we need sequential (incremental)
aggregation as in [17] or [16].

3 Definitions and Properties

In this section we present some informal definitions and properties.4 An FssAggsignature scheme is com-
posed of the following algorithms. They are quite similar to those in sequential aggregated signature schemes,
notably, the recent scheme of Lu, et al. [16].

The key generation algorithmFssAgg.Kgis used to generate public/private key-pairs. Unlike the one
used in [16], it also takes as inputT – the maximum number of time periods (key evolvements).

4 Our presentation is informal to conserve very limited space.

3

The sign-and-aggregate algorithmFssAgg.Asigtakes as input a private key, a message to be signed and
a signature-so-far (an aggregated signature computed up to this point). It computes a new signature on the
input message and combines it with the signature-so-far to produce a new aggregated signature. As the final
step ofFssAgg.Asig, it runs a key update subroutineFssAgg.Updwhich takes as input the signing key for the
current period and returns the new signing key for the next period (not exceedingT .) We make key update
part of the sign-and-aggregate algorithm in order to obtain stronger security guarantees (see below).

The verify algorithmFssAgg.Aver, on input of a putative aggregate signature, a set of presumably
signed distinct messages and a public key, outputs whether the aggregate is valid. (The distinction from
non-forward-secure schemes is that we use a single public key, as there is only one signer.)

The key update algorithmFssAgg.Updtakes as input the signing key for the current period and returns
the new signing key for the next period (provided that the current period does not exceedT − 1.)

A secureFssAggscheme must satisfy the following properties:
1. Correctness:Any aggregated signature produced withFssAgg.Asig must be accepted byFssAgg.Aver.
2. Unforgeability:Without the knowledge of any signing keys (for any period), no adversary can compute

an aggregate signature on any message or set of messages.
3. Forward-security:No adversary who compromises the signer’si-th signing key can generate a valid

aggregate signature containing a signed message – for any periodj < i – except the aggregate-so-far
signature generated by the signer before the compromise, i.e., the aggregated signature the adversary
finds upon compromise.

Note that the last property subsumes security against truncation or deletion attacks. An adversary who com-
promises a signer has two choices: either it includes the intact aggregate-so-far signature in future aggre-
gated signatures, or it ignores the aggregate-so-far signature completely and start a brand new aggregated
signature. What it cannot do is selectively delete components of an already-generated aggregate signature.

4 A Forward-Secure Sequential Aggregate MAC Scheme

We now present a trivialFssAggMAC scheme. It can be used to authenticate multiple messages when
public (transferrable) verification is not required. As such, it is well-suited for scenario B in Section 1 where
a sensor communicates (via other sensors) to the sink. We first present the scheme and then show how to
apply it to the envisaged sensor environment.

The scheme uses the following cryptographic primitives:
– H: a collision resistant one-way hash function with domain restricted tok-bit strings:H : {0, 1}k →
{0, 1}k.

– Ha: a collision resistent one-way hash function with arbitrary length input:Ha : {0, 1}∗ → {0, 1}k.
– h: a secure MAC schemeh : {0, 1}k ×{0, 1}∗ → {0, 1}t that, on input of ak-bit keyx and an arbitrary

messagem outputs at-bit MAC hx(m).
FssAgg.Kg. Any symmetric key generation algorithm can be used to generate an initialk-bit secret keys.

We setsk0 = vk = s.
FssAgg.Asig. At time periodi, the signer is given a messageMi to be signed and an aggregate-so-far

MAC σ1,i−1 on messagesM1, · · · ,Mi−1. The signer first generates a MACσi onMi with h usingski:
σi = hski

(Mi). It then computesσ1,i by foldingσi ontoσ1,i−1 throughHa: σ1,i = Ha(σ1,i−1||σi).Ha

acts as the aggregation function. Alternatively we can computeσ1,i as follows:5

σ1,i = Ha(Ha(· · ·Ha(Ha(σ1||σ2)||σ3))|| · · ·)||σi)whereσj = hskj (Mj)∀j = 1, · · · , i (1)

5 Note that hash functions are generally designed as an iterative process [18]. That is, a hash functionH : {0, 1}∗ → {0, 1}k with
arbitrarily long finite input is executed by iteratively invoking an internal (per block) functionf : {0, 1}r+k → {0, 1}k (r > k

4

Finally, the signer executes the key update subroutine defined as:
FssAgg.Upd. We define thei-th signing keyski as the image underH of the previous keyski−1:
ski = H(ski−1), i > 0. (This part is the same as the forward-secure MAC scheme in [19].)

FssAgg.Aver. To verify a candidateσ1,i over messagesM1, · · · , Mi, the verifier (who has the verifying
key vk which is the same as the initial signing keysk0) computes keyssk1, · · · , ski through the public
key update function. It then mimics the signing process and re-computesσc

1,i and compares it withσ1,i.
If the two values match, it outputsvalid. Otherwise it outputsinvalid.

5 A Forward-Secure Sequential Aggregate Signature Scheme

If public (transferrable) verification is required we need aFssAggsignature scheme to check the authenticity
of data records. Trivially, all aggregate signature schemes [6, 16, 17] can be used as aFssAggsignature
scheme if we treat the key of signeri as the key used (by the same signer) in the time periodi. However
a trivial construction is useless for our purposes since a signer (e.g., a sensor) would needO(T) storage to
store its secret keys.

The overall efficiency of aFssAggsignature scheme depends on the following metrics: 1) size of the
aggregate signature; 2) size of the signing key; 3) complexity of key update; 4) complexity of aggregate
signing; 5) size of verification key; 6) complexity of aggregate verifying. The first four representsigner
efficiencyand the last two representverifier efficiency; the size parameters (aggregate signature, signing key
and verification key) representspace efficiencyand the complexity parameters (sign, verify and key update)
representtime efficiency. In our envisaged sensor scenarios, signer efficiency is much more important than
verifier efficiency and space efficiency more important than time efficiency.

Focusing on the signer and space efficiency, we propose aFssAggsignature scheme based on the BLS
signature scheme [6]. BLS signatures can be aggregated through EC multiplication by anyone [7]. We first
introduce the BLS scheme and then show how to modify it to be aFssAggsignature scheme.

The BLS scheme works in groups with bilinear maps. A bilinear map is a mape : G1 × G2 → GT ,
where: (a)G1 andG2 are two (multiplicative) cyclic groups of prime orderq; (b) |G1| = |G2| = |GT |;
(c) g1 is a generator ofG1 andg2 is a generator ofG2. The bilinear mape : G1 × G2 → GT satisfies the
following properties:

1. Bilinear: for allx ∈ G1, y ∈ G2 anda, b ∈ Z, e(xa, yb) = e(x, y)ab;
2. Non-degenerate:e(g1, g2) 6= 1

The BLS scheme uses a full-domain hash functionH1(·): {0, 1}∗ → G1. Key generation involves picking
a randomx ∈ Zq for each signer, and computingv = gx

2 . The signer’s public key isv ∈ G2 and her
secret key isx. Signing a messageM involves computing the message hashh = H1(M) and then the
signatureσ = hx. To verify a signature one computesh = H1(M) and checks thate(σ, g2) = e(h, v). The
verification costs amount to 2 bilinear mappings.

To aggregaten BLS signatures, one computes the product of individual signatures as follows:

σ1,n =

nY
i=1

σi (2)

as a hash function compresses its input) with fixed-size input. A hash inputx of arbitrary finite length is divided into fixed-length
r-bit blocksxi. In each iteration,f takes on the current input blockxi and the intermediate resultHi−1 produced byf in the
previous iteration. We can thus modify the aggregation function as follows: form an input block with several MACs and then
fold the block into the aggregate in one round. This way,σ1,i can be represented as:σ1,i = Ha(σ1||σ2|| · · · ||σi). Compared
with 1, this aggregation function in is more efficient.

5

whereσi corresponds to the signature on messageMi. The aggregate signatureσ1,n is of the same size as
an individual BLS signature and aggregation can be performed incrementally and by anyone.

Verification of an aggregate BLS signatureσ1,n includes computing the product of all message hashes
and verifying the following match:

e(σ1,n)
?
=

nY
i=1

e(hi, vi) (3)

wherevi is the public key of the signer who generatesσi on messageMi.

FssAgg.KgThe signer picks a randomx0 ∈ Zp and computes a pair(xi, vi) (i = 1, · · · , T) as:xi =
H(xi−1), vi = gxi

2 . The initial signing key isx0 and the public key is:(v1, · · · , vT) = (gx1
2 , · · · , gxT

2).
Note that, in our sensor scenarios, a sensor (signer) would not generate its own keys. Instead, the sink
(or some other trusted party) would generate all public and secret keys for all sensors. The collector,
however, would be given the public keys only.

FssAgg.AsigWith inputs of messageMi to be signed, an aggregate-so-far signatureσ1,i−1 over messages
M1, · · · ,Mi−1 and the current signing keyxi, the signer first computes a BLS signature onMi using
xi: σi = Hxi(index||Mi) whereindex denotes the position ofMi in the storage. The purpose of this
index is to provide message ordering, since the original BGLS aggregation function does not impose
any order on aggregate elements. Next, the signer aggregatesσi onto σ1,i−1 through multiplication:
σ1,i = σ1,i−1 · σi. Finally, the signer updates the key.

FssAgg.UpdA signer evolves its secret signing key through the hash functionH: xi = H(xi−1).
FssAgg.AverThe verifier uses Equation 3 and the public keypk to verify an aggregate signatureσ1,i

The security of ourFssAggsignature scheme is based on the underlying BLS scheme and no other assump-
tions is needed. The following theorem summarizes the security of ourFssAggsignature scheme and is
strait-forward to prove. For completeness, a formal description of the security model and the proof of the
theorem can be found in Appendix B and C.

Theorem 1. If BLS is a(t′, qH , q′S , ε)-secure signature scheme, our construction above is a(t, qH , qS , T, ε)-
secureFssAggsignature scheme wheret′ = t + O(qH + qS), ε′ = ε/T , andq′S = qS/T .

A proof sketch for this theorem is presented in Appendix C. (Appendix B contains the security model).
See Appendix A for some performance results.

6 Summary and Future Work

In this paper we motivated the need for Forward-Secure Sequential Authentication to address both key ex-
posure and storage efficiency issues. We constructed two sampleFssAggschemes (one MAC-based and one
signature-based). While our trivial MAC-based scheme is near-optimal in terms of efficiency, the signature-
based scheme is not. Although it is both signer- and space-efficient, it is not verifier-friendly as the verifier
needsO(T) space to store the public key and the verification is fairly expensive because of bilinear map
operations. Constructing a more efficient scheme – with either (or both) compact public keys or lower verifi-
cation complexity – is a challenge for future work. And, a more careful formal treatment of Forward-Secure
Sequential Authentication is certainly needed.

References

1. M. Abdalla, and L. Reyzin. “A new forward-secure digital signature scheme.” InASIACRYPT 2000, pp. 116-129, 2000.

6

2. R. Anderson. “Two remarks on public-key cryptology - Invited Lecture”.Fourth ACM Conference on Computer and Commu-
nications Security, Apr. 1997.

3. K. Barr, and K. Asanovic. “Energy aware lossless data compression.” InProc. of MobiSys’03. San Francisco, CA, May 2003.
4. M. Bellare, and S. K. Miner. “A forward-secure digital signature scheme”. InProc. of Adances in Cryptology - Crypto 99,

LNCS Vol 1666:431-448, Aug. 1999.
5. M. Bellare, and B. Yee. “Forward-Security in Private-Key Cryptography”. In Proceedings ofCT-RSA’03, LNCS Vol. 2612, M.

Joye ed, Springer-Verlag, 2003.
6. D. Boneh, B. Lynn, and H. Shacham. “Short signatures from the Weil pairing”.J. Cryptology, 17(4):297-319, Sept. 2004.

Extended abstract inProceedings of Asiacrypt 2001.
7. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. “Aggregate and verifiably encrypted signatures from bilinear maps”. InProc.

of Eurocrypt 2003, LNCS 2656:416-432, May 2003.
8. C. Castelluccia, E. Mykletun, and G. Tsudik. “Efficient aggregation of encrypted data in wireless networks”. InMobile and

Ubiquitous Systems: Networking and Services MobiQuitous 2005. July 2005.
9. Y. Frankel, P. Gemmell, P.D. MacKenzie, and M. Yung. “Optimal resilience proactive public-key cryptosystems”. InFOCS,

1997.
10. C. G. Gunther. “An identity-based key-exchange protocol.”Advances in Cryptology - EuroCrypt’89. LNCS 434, pp. 29-37,

1990.
11. L. Hu, and D. Evans. “Secure aggregation for wireless networks.” InWorkshop on Security and Assurance in Ad Hoc Networks,

2003.
12. C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. “Impact of network density on data aggregation in wireless

sensor networks”. InICDCS’02, pp. 457-458. 2002.
13. G. Itkis, and L. Reyzin. “Forward-secure signatures with optimal signing and verifying”. InProc. of Advances in Cryptology -

Crypto’01, LNCS 2139:332-354, Aug. 2001.
14. A. Kozlov, and L. Reyzin. “Forward-secure signatures with fast key update”. InProf. of the 3rd International Conference on

Security in Communication Networks (SCN’02), 2002.
15. H. Krawczyk. “Simple forward-secure signatures from any signature scheme”. InProc. 7th ACM Conference on Computer and

Communication Security (CCS), pp. 108-115, Nov. 2000.
16. S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. “Sequential aggregate signatures and multisignatures without

random oracles”. InProf. of Eurocrypt 2006, May 2006.
17. A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. “Sequential aggregate signatures from trapdoor permutations”. In

Proc. of Eurocrypt 2004, LNCS 3027:245-254, Nov. 2001.
18. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. “Handbook of applied cryptography”.CRC Press, 1997. ISBN 0-8493-

8523-7.
19. A. Perrig, J. Stankovic, and D. Wagner. “Security in wireless sensor networks”.ACM Commun., 47(6):53-57, 2004.
20. D. Wagner. “Resilient aggregation in sensor networks”. InWorkshops on Security of Ad Hoc and Sensor Networks.2004.
21. Y. Yang, X. Wang, S. Zhu, and G. Cao. “SDAP: a secure hop-by-hop data aggregation protocol for sensor networks”. InACM

MOBIHOC’06. May 2006.

A Performance

In this section, we evaluate the performance of the proposed BLS-basedFssAggsignature scheme. We begin
by accessing the cost in terms of basic cryptographic operations(e.g, multiplications, exponentiation, etc).
Then we show the actual overhead incurred through experiment.

We use the notation in Table 1. We consider the generation and verification of aFssAggsignatureσ1,k∗t
wheret denotes the number of periods occupied byσ1,k∗t andk denotes the number of signatures generated
per time period. Table 2 illustrates the overhead (computation, storage and bandwidth) associated with the
scheme in terms of cryptographic operations.

We used a fieldFp where|p| = 512 and we choose the size of group order as|q| = 160. We test our
scheme on a Pentium 1.86GHz machine with 512M memory. The experiment result is listed in Table 3.
Signature generation is quite efficient and it costs an average 7.64ms to generate a BLS signature (1.5ms on
the map-to-point operation and 6.14ms on the scalar multiplication operation) and another 0.05ms to fold it
into the aggregate. Aggregation imposes little overhead on the overall time forAsig. Verification cost is quite

7

Table 1.Notations.

MtP t(H1(·)) t map-to-point operations
SclMultt

m(l) t scalar multiplications with modulus of sizem and exponent of sizel
SclAddt

m t scalar additions with modulus of sizem
BM(t) t bilinear mappings

Hasht(l)(H(·)) t hash operations with input size ofl

Table 2.Operation Cost in Terms of Cryptographic Operations.

Parameters Cost Complexity

Aggregate Signature Size |p| O(1)
Secret Key Size |q| O(1)

Key Update Time Hash(|q|) O(1)
Aggregate Signing Time MtP 1 + Exp1

|p|(|q|) O(1)

+Mult1(|p|)
Public Key Size T ∗ |q| O(T)

Aggregate Verifying Time BM(t + 1)+ O(t)

+Multk∗t−1(|p|)

Table 3.Operation Cost in msecs.

BLS Sign Aggregation
Asig 1 signature MtP 1 SclMul1p(q) SclAdd1

p

1.5 6.14 0.05

1 signature 53.62
Aver k=1000,t=1 54.40

k=100,t=10 295.71
k=10,t=100 2708.79

expensive because of the involvement of pairing operations. When the number of time periods increases to
100, it takes the verifier more than 2 seconds to verify. The verification cost might impose an upper ceiling
on the total number of time periodsT .

B Security Model

The security of aFssAggsignature scheme is defined as the nonexistence of an adversary, capable, within
the confines of a certain game, of existentially forging aFssAggsignature even in the event of exposure
of the current secret key. Because aFssAggsignature scheme combines security properties from both a
aggregate signature scheme and a forward-secure signature scheme, we describe a security model for it that
is a hybrid of the aggregate chosen key model for aggregate signatures [7, 17] and the break-in model for
forward-secure signatures [4].

This new security model reflects the way aFssAggscheme is used. In this model, the adversaryA
first conducts an adaptive chosen message attack, requesting signatures on messages of its choice for as
many time periods as it desires. Whenever it chooses, it “breaks in” and is given the secret keyskb for the
current time periodb. Its goal is the existential forgery of aFssAggsignature pertaining to any past time
periods before the break-in time period. A forgeryσ1,t over messagesm1, · · · ,mt under keysski, · · · , skt

is considered as a valid forgery if at least one messagemi (1 ≤ i ≤ t ≤ b) is not queried byA during the
chosen message attack phase. To make explanation easy, we seti = t and the attackers’s goal is to forge a
signatureσ1,t such thatmt is not queried in the chosen message attack phase. The advantage ofA is defined
to be its probability of success in the following game.

Setup. TheFssAggforgerA is provided with the public keypk andT .
Queries. The initial time period isi = 1. Proceeding adaptively, at time periodi, A gets access to a

signing oracleOi under the current secret keyski. For each query, it also supplies aFssAggsignature
σi−1 on messagesm1, · · · ,mi−1 signed by secret keyssk1, · · · , ski−1, and an additional messagemi

to be signed by the oracle under keyski.A queries this as often as it wants until it indicates it is done for
the current time period. ThenA moves into the next time periodi + 1 and it is provided with a signing
oracleOi+1 under the secret keyski+1. The query process repeats untilA chooses to break in.

Break− in. At time periodb,A chooses to break in and is given the break-in privilege, the current secret
keyskb.

8

Response. Finally,A outputs aFssAggsignatureσ1,t on messagesm1, · · · ,mt under keyssk1, · · · , skt.
The forger wins if (1)t < b; (2) theFssAggsignatureσ1,t is a validFssAggsignature on messages
m1, · · · , mt under keyssk1, · · · , skt, and (3)σ1,t is nontrivial, i.e.,A did not askOt for signature
query on messagemi at timei. The probability is over the coin tosses of the key-generation algorithm
and ofA.

Definition 1. A FssAggforgerA (t, qH , qS , T, ε)-breaks aT -time-periodFssAggsignature scheme in the
FssAggbreak-in model if:A runs in time at mostt; A makes at mostqH queries to the hash function and
at mostqS queries to the signing oracle; the advantage ofA is at leastε; and the forged signature is taken
over at most T time periods. AFssAggscheme is(t, qH , qS , T, ε)-secure against existential forgery in the
FssAggbreak-in model if no forger(t, qH , qS , T, ε)-breaks it.

C Proof of Theorem 1

Our proof is similar to the proof in [15].

Proof. Suppose there exist a forgerA against the BLS-basedFssAggsignature scheme that succeeds withε.
We build a simulatorB to play the forgeability game against the BLS scheme. Given the chosen challenging
public keycpk, forgerB interacts withA as follows.

Setup. ForgerB first selects a random time periodt between 1 andT , hopingA’s eventual forgery will be
for thet-th time period.B setspk as the public key of time periodt: pkt = cpk. It is given an oracleOcpk

that given a message returns a signature on that message under the public keypk. ForgerB generates
information corresponding to the other time periods as follows: (1)B generates independentlyt−1 pairs
of BLS public/secret key pairs:(pki, ski), i = 1, · · · , t − 1 for time period 1 tot − 1; (2) B generates
a random BLS public/private key pair and sets the pair as the key pair for time periodt + 1. It uses the
key update function to generate out of itT − t − 1 pairs of public/private keys. These pairs are set as
keys for periodst + 1, · · · , T . B providesA with pk = {pk1, · · · , pkT } andT .

Forward-secure Aggregate Signature Queries. A is allowed to query for anyFssAggsignature corre-
sponding to any period of its choice except for the following restriction. WheneverA asks for aFssAgg
signature corresponding to a periodi, it cannot later ask for a signature corresponding to a previous
period.
At time periodi, whenA requests aFssAggsignature, it supplies a messagemi of its choice and an
aggregate-so-far signatureσ1,i−1 on messagesm1, · · · ,mi−1. If i is different thant thenB generates
a BLS signatureσi on mi with its knowledge of the signature keys for those periods (these keys were
chosen byB). If i = t, B goes to its oracleOcpk to get the corresponding signatureσi onmi. FinallyB
returnsσ1,i = σ1,i−1 × σi toA as theFssAggsignature at time periodi.

Break-in. WhenA decides to break in and query the secret information for someb-th period thenB does
the following. If b ≤ t then it aborts its run (i.e., in this caseB fails to forge). Ifb > t thenB providesA
the secret information for that period (B knows it).

Output . Finally A outputs a forgeryσ1,t′ over messagesm1, · · · ,m′
t under keyssk1, · · · , skt′ . B acts

as follows. If t′ 6= t, B aborts its run failing to forge. Otherwise ift′ = t, B outputs a forgeryσt =
σ1,t ·

∏t
i=1 σ−1

i whereσi is a BLS signature over messagemi under keyski, 1 ≤ i < t (B knowsski

and so it can generateσi). Then

e(σt, g2) = e(σ1,t·
t−1∏

i=1

σ−1
i , g2) = e(σ1,t, g2)·e(

t−1∏

i=1

σ−1
i , g2) =

t∏

i=1

e(hi, pki)·e(
t−1∏

i=1

σ−1
i , g2) = e(ht, pkt)

(4)

9

Thatσ1,t is a validFssAggforgery meansmt is not queried byA during time periodt, so in particular
B did not ask for that signature fromOcpk. Henceσt is a valid forgery forB.

Algorithm B makes as many as hash queries asA makes. AlgorithmB makes at most1/T signature
queries asA makes. AlgorithmB’s running time is that ofA, plus the overhead in handlingA’s hash and
signature queries.

If A succeeds with probability ofε in forging,B succeeds at least with probability roughlyε/T . The
argument is outlined as follows. First, the view ofA thatB produces is computationally indistinguishable
from the view ofA interacting with a realFssAggsigning oracle (where all secret keys are produced out
of a single initial seed from the forward-secure hash functionH). Indeed, if a distinguisher exists for these
two views ofA then, we can construct a distinguisher forH. Next, conditioned onB choosing the value of
t as the period for whichA eventually output a forgery, we have the probability thatB outputs a forgery
against the choosing public keypk is the same probability thatA succeeds in forging, i.e., probabilityε.
Since choosing the “right”t happens with probability1/T we get thatε/T is an approximate lower bound
on the forging probability ofB.

10

