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Abstract

Fingerprinting provides a means of tracing unauthorized redistribution of digital data by individually
marking each authorized copy with a personalized serial number. In order to prevent a group of users
from collectively escaping identi�cation, collusion-secure �ngerprinting codes have been proposed. In this
paper, we introduce a new construction of a collusion-secure �ngerprinting code which is similar to a recent
construction by Tardos but achieves shorter code lengths and allows for codes over arbitrary alphabets.

For binary alphabets, n users and a false accusation probability of �, a code length of m � �2c20 ln(n=�)

is provably suÆcient to withstand collusion attacks of at most c0 colluders. This improves Tardos' con-

struction by a factor of 10. Furthermore, invoking the Central Limit Theorem we show that even a code

length of m �
1
2
�2c20 ln(n=�) is suÆcient in most cases. For q-ary alphabets, assuming the restricted digit

model, the code size can be further reduced. Numerical results show that a reduction of 35% is achievable

for q = 3 and 80% for q = 10.

1 Introduction

1.1 Digital �ngerprinting

Fingerprinting, or forensic watermarking, provides a means of tracing the unauthorized redistri-

bution of digital data, such as entertainment content (i.e. music or movie clips), digital records

or software. Before authorized distribution, the distributor imperceptibly embeds a �ngerprint,

which plays the role of a personalized serial number, directly into the content. This is done using a

digital watermarking algorithm. If the �ngerprint is di�erent for each recipient (also called `user'),

the distributor can extract the embedded �ngerprint from an unauthorized copy of the content

and trace the recipient who leaked it.

Mathematically speaking, a �ngerprint is a �nite string over some q-ary alphabet �; the set

of all �ngerprints is called a �ngerprinting code. Throughout this paper we will denote by n the

number of users and by m the length of the �ngerprint. In order to mark a piece of content

before distribution, the distributor picks a �ngerprint from the code and imperceptibly embeds

each symbol of the �ngerprint into di�erent segments of the content, such as in di�erent scenes

of a movie. In addition, he stores in a database the association of a �ngerprint with the identity

of the user who received the personalized copy. In case an unauthorized copy of the content is

found, the distributor can perform watermark detection on the segments of the content to read

out its �ngerprint. Once the �ngerprint is retrieved, he can compare it with his database of

�ngerprints to identify the guilty user. Current watermarking schemes provide a considerable

level of robustness that allows correct reconstruction of the �ngerprint even if the content has

su�ered heavy distortions.

1.2 Collusion resistance

Fingerprinting schemes need to be robust against collusion attacks, where several users pool dif-

ferent individualized versions of the same content. By looking at the di�erences between these

versions, the colluding users (also referred to as `colluders' or `the coalition') try to produce an
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untraceable version of the content, from which the distributor cannot identify any of the colluders.

A segment of the content is called a detectable position if the colluders have at least two di�erently

marked versions of that segment available.

A code is called collusion-resistant against a coalition of size c0, if any set of c � c0 colluders

is unable to produce an untraceable copy. The construction of collusion-resistant codes has been

an active research topic since the late 1990s (see e.g. [5, 8, 3, 6, 9]). The constructions and the

achieved results depend strongly on various assumptions which restrict the type of manipulations

the attackers are allowed to perform. One often made assumption is the marking condition, stating

that the colluders are able to change �ngerprint symbols only in detectable positions. Throughout

this paper we will assume that the marking condition holds. Furthermore, several attack models

have been introduced in the literature:

� The restricted digit model or narrow-case model allows the colluders only to `mix and match'

their copies of the content, i.e. to replace a segment in a detectable position by any other

segment they have available in that position. On the �ngerprinting code level, this means

that in the unauthorized copy the symbol at each position can only be one of the symbols

that they have available in that position.

� The unreadable digit model allows for slightly stronger attacks. Besides mixing the content

segments, the attackers can also erase the embedded �ngerprint at detectable positions. At

the code level, we denote this by a special erasure symbol ? 62 �.

� The arbitrary digit model allows for even stronger attacks: the attackers can put an arbitrary

q-ary symbol from � (but not the erasure symbol `?') in detectable positions.

� The general digit model allows the attackers to put any symbol, including `?', in detectable

positions.

Note that in the case of a binary alphabet all four attack models are equivalent in terms of

traceability. (For q = 2 it is detrimental for the colluders to use `?', since it gives the distributor

more information than a `0' or `1', namely that the position is a detectable position for the

coalition).

The main parameters of a �ngerprinting code are the codeword length, the False Positive (FP)

error probability and the False Negative (FN) error probability. The codeword length in
uences to

a great extent the practical usability of a �ngerprinting scheme, as the number of segments m that

can be used to embed a �ngerprint symbol is severely constrained; typical video watermarking

algorithms for instance can only embed 7 bits of information in a robust manner in one minute

of a video clip. Furthermore, the amount of information that can be embedded per segment is

limited; hence the alphabet size q must be small (typically q � 16). Obviously, distributors are

interested in the shortest possible codes that are secure against a large number of colluders, while

accommodating a huge number n of users (of the order of n � 106 or even n � 109).

Low error probabilities are another central requirement. The most important type of error is the

FP, where an innocent user gets accused. The probability of such an event must be extremely small;

otherwise the distributor's accusations would be questionable, making the whole �ngerprinting

scheme unworkable. We will denote by "1 the probability that one speci�c user gets falsely accused,
while � denotes the probability that there are innocent users among the accused. The second type

of error is the FN, where the scheme fails to accuse any of the colluders. The FN probability will

be denoted as "2. In practical situations, fairly large values of "2 can be tolerated. Often the

objective of �ngerprinting is to deter unauthorized distribution rather than to prosecute all those

responsible for it. Even a mere 50% probability of getting caught is a signi�cant deterrent for

colluders.

1.3 Related work

For the restricted digit model, `deterministic' �ngerprinting codes have been proposed. Here

`deterministic' means that the error probabilities "1 and "2 are zero. Identi�able Parent Property
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(IPP) codes, introduced in [5], allow the distributor to identify at least one member of the coalition

with certainty, without the danger of accusing innocent people. However, the schemes proposed

in [5] are not resistant against more than two colluders. In [8] the existence was proved of a

deterministic �ngerprinting code resistant against c0 colluders, having code length m = c20 logq(n).
However, the alphabet size is impractically large, requiring q � n� 1.

More eÆcient �ngerprinting schemes are possible if nonzero error probabilities � and "2 are

tolerated. In [3] Boneh and Shaw presented a binary scheme (q = 2) with code length m =

O(c40 log n� log 1
� ). Their scheme uses concatenation of a partly randomized inner code with an

outer code. They also proved, for binary alphabets, a lower bound on the code length required

for resistance against c0 colluders: m > O(c0 log 1
c0�

). In [6] Peikert et al. proved a tighter lower

bound of m > O(c20 log 1
c0�

).

In [9] Tardos further tightened the lower bound to m > O(c20 log n� ). This bound is valid for

arbitrary alphabets in the arbitrary digit model and the unreadable digit model. In the same

paper, he described a fully randomized binary �ngerprinting code achieving this lower bound.

The code has length m = 100c20 ln
n
�
; a construction was given only for the binary alphabet. In [7]

Tardos' construction was further analyzed. It was shown that, without changing the scheme, the

constant `100' can be reduced to 4�2. In the same paper it was shown that an important quantity

in the scheme (the `accusation sum', see Section 2.1), resulting from the summation of many i.i.d.

stochastic variables, has a Gaussian distribution, up to correction terms that vanish for large c0.
Without changing the Tardos scheme in any way, but assuming a Gaussian distribution, the code

length m was further reduced to m = 2�2c20 ln
n
� .

1.4 Contributions and outline

In this paper, we propose a new construction of a �ngerprinting code, which is similar in spirit

to Tardos' original code, but allows for codes over arbitrary-size alphabets. For binary alphabets

the new scheme allows for codes that are a factor 4 shorter than the construction given by [7]

(and thus a factor 10 shorter than the scheme given in [9]). In the restricted digit attack model,

moving from a binary to a q-ary alphabet allows for even shorter �ngerprinting codes. The key

contributions of the paper are summarized as follows:

� In Section 2 we review Tardos' binary �ngerprinting scheme [9] and propose a di�erent

construction, which is symmetric and which can be used for arbitrary alphabets �. The

construction is di�erent from Tardos' code even for binary alphabets.

� In Section 4 we study the collusion resistance of the symmetric code. We apply the methods

of [9] to rigorously prove a lower bound on the code length m, such that the desired error

rates are achieved. The bound is given by m > 4~��2c20 ln
n
�
, where the quantity ~� is the

expectation value of the coalition's collective `suspiciousness'.

� In Section 5 we compute the expectation value ~� in the restricted digit model. In the case

of a binary alphabet we have ~� = 2=�. This corresponds to a bound on the code length of

m > �2c20 ln
n
�
, which is a factor 4 shorter than the bound obtained for the Tardos scheme

in [7] and a factor �10 shorter than the bound given in [9]. For q-ary alphabets we compute

~� numerically. The code length m is further reduced (with respect to the binary symmetric

scheme) by 40% for q = 3 and by 80% for q = 10.

� In Section 6 we make use of the Central Limit Theorem to show that an important quantity in

the scheme, the accusation sum of an innocent user, has a probability density that is almost

Gaussian. Convergence to the normal form improves with increasing c0. Approximation of

the distribution by a Gaussian is accurate starting from a value of c0 between 10 and 20.

Assuming a perfect normal distribution, we show that the desired error rates are achieved

for m > 2~��2c20 ln
n
�
. This is a factor 2 shorter than the code length derived in Section 4

without any assumptions.
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2 Symmetric Tardos �ngerprinting for arbitrary alphabet sizes

In this section we �rst introduce Tardos' initial binary �ngerprinting code [9] and then provide a

generalization for arbitrary alphabets.

2.1 The Tardos �ngerprinting scheme

Let n be the number of users to be accomodated in the system. The Tardos �ngerprinting scheme

distributes a binary codeword of length m to each user; the length m is a system parameter

chosen by the distributor. It a�ects the FP and FN error rates. The distributed codewords can be

arranged as an n�m matrixX, where the j-th row corresponds to the �ngerprint given to the j-th
user. Let C be a set of colluding users. We denote by c the number of colluders and byXC the c�m
matrix of codewords distributed to the colluders. The colluders use a (possibly nondeterministic)

strategy � to create an unauthorized copy of the content from their personalized copies. The

unauthorized copy carries a �ngerprint y 2 f0; 1gm which depends on both the strategy and the

received codewords, i.e. y = �(XC).

Fingerprint code generation. The distributor generates the matrix X in two randomized steps.

In the �rst step, he chooses m random variables fpigmi=1 over the interval pi 2 [t; 1 � t], where t
is a �xed small parameter satisfying c0t � 1. The variables pi are independent and identically

distributed according to the probability density function f . The function f(p) is symmetric1

around p = 1=2 and heavily biased towards values of p close to t and 1� t,

f(p) =
1

2 arcsin(1� 2t)

1p
p(1� p)

: (1)

In the second step, the distributor �lls the columns of the matrix X by independently drawing

random bits Xji 2 f0; 1g according to P[Xji = 1] = pi.
Fingerprint embedding. Before the content is realeased to customer j, it is watermarked with the

j-th row of the matrix X.

Accusation. Having spotted an unauthorized copy with embedded watermark y, the content owner
wants to identify at least one colluder. To achieve this, he computes for each user 1 � j � n an

accusation sum Sj as

Sj =

mX
i=1

yi U(Xji; pi); with U(Xji; pi) =

�
g1(pi) if Xji = 1

g0(pi) if Xji = 0;
(2)

where g1 and g0 are the `accusation functions'

g1(p) =

r
1� p

p
and g0(p) = �

r
p

1� p
: (3)

The distributor decides that user j is guilty if Sj > Z. The parameter Z is called the `accusation

threshold'. The threshold is a system parameter chosen by the distributor.

In words, the accusation sum Sj is computed by summing over all symbol positions i in y. All
positions with yi = 0 are ignored. For each position where yi = 1, the accusation sum Sj is either
increased or decreased, depending on how much suspicion arises from that position: if user j has
a `1' in that position, then the accusation is increased by a positive amount g1(pi). Note that

the suspicion decreases with higher probability pi, since g1 is a positive monotonically decreasing

function. If user j has a `0', the accusation is corrected by the negative amount g0(pi), which gets

more pronounced for large values of pi, as g0 is negative and monotonically decreasing.

Tardos chose the speci�c form (3) for the functions g1 and g0 because it has nice properties:

For �xed pi, the accusation U(Xji; pi) in (2) has zero mean and unit variance. Especially the

fact that the variance does not depend on pi greatly simpli�es the analysis of the scheme. It was

1 In [9] the parametrization pi = sin2 ri is used, and the density function for ri is speci�ed.
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shown in [7] that for Tardos' scheme the choice (1) for f is optimal, and that the choice (3) for

the accusation functions is optimal within the class of functions of the form pz1(1� p)z2 , where z1
and z2 are constants.

Tardos chose the system parameters m and Z as follows:

m = Ac20dln "�1
1 e ; Z = Bc0dln "�1

1 e; (4)

with A = 100 and B = 20. Recall from Section 1.2 that the parameter "1 is a re-scaled version of

the false positive error parameter �. It represents the probability that a speci�c innocent user j
gets accused. The relation between � and "1 is � = 1� (1� "1)

n�c. For "1 � 1 and c � n this

becomes � � (n� c)"1 � n"1.
A False Negative (FN) is de�ned as the event where none of the colluders are accused. Tardos

proved in [9] that his scheme achieves FP and FN error rates smaller than "1 and "2, respectively,

against coalitions of size c � c0, for "2 = "
c0=4
1 . In [7] the Tardos scheme was further analyzed and

the following results were obtained for "2 � "1 (a far more reasonable choice of parameters, see

Section 1.2): (i) the code length parameter A in (4) can be reduced to 4�2. (ii) The accusation sum
Sj has an almost Gaussian probability density function, with corrections that vanish in the limit

c0 ! 1. (iii) Assuming a perfect Gaussian distribution for Sj , the parameter A can be reduced

to 2�2. Hence, for suÆciently large c0, the code length m can be set to m = 2�2c20dln "�1
1 e without

any modi�cation of the code construction, embedding or accusation method.

2.2 Proposed symmetric �ngerprinting scheme

The scheme presented in Section 2.1 has two drawbacks. First, the computation of Tardos' accu-

sation sum (2) is asymmmetric in the sense that only those codeword positions i contribute where
yi = 1, while all the others are discarded. This is an ineÆcient way of exploiting the information

present in the unauthorized copy, because the yi = 0 positions carry as much information about

the colluders as the yi = 1 positions. Second, due to this asymmetry, the construction cannot be

directly applied to nonbinary alphabets.

We apply two modi�cations to Tardos' construction. The �rst modi�cation is a straightforward

generalization of the �ngerprint generation step to produce a random q-ary code. Instead of

bits we have Xji 2 �, with � = f0; 1; � � � ; q � 1g. Instead of scalar random variables pi we

have, independently for each column, a q-component random vector p(i) = (p
(i)
0 ; � � � ; p(i)q�1), withPq�1

�=0 p
(i)
� = 1. The vectors p(i) have the probability density function F (p), which replaces

f(p). While f is invariant under the mapping p ! 1 � p, our function F is invariant under any

permutation of the symbols � 2 �. Thus our construction is symmetric in all symbols � 2 �. In

the i-th column ofX, random symbols are drawn with probabilities dictated by p(i). The colluders

create an unauthorized copy y = �(XC) 2 �m according to a (possibly non-deterministic) strategy

�. We will always assume that this strategy does not depend on the column index, i.e. the

same strategy � is applied to each column of XC . We can make this assumption without loss

of generality; due to the column symmetry of p and X, the best colluder strategy is column-

symmetric.

The second modi�cation lies in the computation of the accusation sum. In contrast to Tardos'

scheme, we let every �ngerprint symbol in the unauthorized copy give rise to accusations. The

accusation for a certain user at a certain symbol location is positive if he has the same symbol

as the unauthorized copy; otherwise it is negative. The magnitude of the accusation depends on

the likelihood of the symbol that appears in the unauthorized copy. In full detail the proposed

construction is as follows:

Fingerprint code generation. As in the original Tardos construction, the distributor produces an

n �m matrix X of q-ary symbols; the rows of the matrix correspond to the �ngerprints for the

individual users. We parametrize m as in (4); the value of the parameter A is the subject of

Sections 4, 5 and 6. Again, the distributor uses a two-step procedure:

1. He generates m independent random vectors p(i) = (p
(i)
0 ; � � � ; p(i)q�1) for 1 � i � m, where
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the components satisfy p
(i)
� 2 [t=(q � 1); 1 � t] and

Pq�1
�=0 p

(i)
� = 1. We call t the `cuto�

parameter' or the `cuto�'. It satis�es 0 < t� 1; we parametrize it as t = Tc�a0 , with T > 0

and a 2 (0; 2). The random variables have a probability density function that is symmetric

in all the components p�. In our construction, we use a class of functions that are a special

case of the Dirichlet distribution (see e.g. [4]),

Fq�t(p) = N�1
q�t

q�1Y
�=0

p�1+�
� with � > 0: (5)

Here Nq�t is a normalising constant ensuring that
R
J(t;q)

dqp Fq�t(p) = 1. The expressionR
J(t;q)

dqp stands for
R 1�t

t
q�1

dp0 � � �
R 1�t

t
q�1

dpq�1Æ(1 �
Pq�1
�=0 p�), where Æ(�) is the Dirac delta

function. The delta function ensures that the integration is done only over p such thatP
� p� = 1. The parameter � determines the steepness of Fq�t. For q = 2, � = 1

2
the

function Fq�t reduces to Tardos' density function (1).

2. The distributor generates the columns of X independently. In the i-th column, the vector

p
(i) determines the probabilities of generating each speci�c symbol in the alphabet:

P[Xji = �] = p(i)� : (6)

Fingerprint embedding. Before the content is realeased to customer j, it is watermarked with the

j-th row of the matrix X.

Accusation. The distributor extracts the �ngerprint y from the unauthorized copy. For each

user j, the distributor computes the `accusation sum' Aj from X, p and y. He decides that the

user j is guilty if Aj > Z, where Z is referred to as the `accusation threshold'. We parametrize

Z as in (4), with the constant B as yet left undetermined. The list of accused users is denoted as

�(p;X; y). The accusation sum Aj is given by

Aj(p;X; y) =
mX
i=1

A(i)
j ; A(i)

j := Æyi;Xji
g1(p

(i)
yi
) + [1� Æyi;Xji

]g0(p
(i)
yi
); (7)

where Æx;y denotes the Kronecker delta. We have chosen the same functions g0(p) =
p
(1� p)=p,

g1(p) = �
p
p=(1� p) as Tardos. There is no guarantee that this choice is optimal for q > 2.

The choice is motivated by the zero-mean, unit-variance property mentioned in Section 2.1; this

property leads to a substantial simpli�cation of the analysis in the coming sections.

In words, the accusation (7) is computed as follows. If user j has the same symbol in position

i as the unauthorized copy, then he is accused by a positive amount g1(p
(i)
yi ), where the accusation

decreases with growing likelihood of the symbol. If user j has a di�erent symbol than the unau-

thorized copy, then he is accused by a negative amount g0(p
(i)
yi ), which has the largest e�ect when

the symbol yi is likely to occur.

Note that (7) is fully symmetric in the symbols and that it di�ers from Tardos' construction

even for q = 2. Note further that the Kronecker deltas in (7) reduce the symbol space into two

classes: Xji = yi and Xji 6= yi. In the latter case the accusation does not depend on the actual

value of Xji.

Attack model. As mentioned in Section 1.2, we use the marking assumption and we assume that the

restricted digit model holds. In addition, we make two assumptions on the attack strategy of the

colluders. First, we assume that all members of the coalition are equivalent. Hence, they base their

decisions only on the number of symbols they receive, and not on the identity of the members who

receive them. (Any deviation from this strategy will make it easier for the distributor to identify

a colluder). Second, we assume that the colluders' strategy applies to each watermark position

independently. This is not a restrictive assumption, since the columns of X are independent.
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3 Preliminaries

In order to facilitate our work in Sections 4 and 5, we introduce some notation and state a number

of lemmas.

3.1 Normalisation constant

The value of the normalisation constantNq�t in (5) is easily computed for t = 0, using the following

lemma (see e.g. [1]):

Lemma 1: Let v be a vector of length q with v� > 0 for 0 � � � q � 1. Then

Z
J(0;q)

dqp

q�1Y
�=0

p
�1+v�
� = B(v) :=

Qq�1
�=0 �(v�)

�(
Pq�1
�=0 v�)

:

The function B is the generalized Beta function, also referred to as the multinomial Beta function

or Dirichlet integral.

Proof sketch: For two components (q = 2) the lemma is true, as the integral yields the ordinary

Beta function. For higher q the lemma can be proved by induction. �
For t 6= 0, q = 2 the integral yields the so-called incomplete Beta function.

Applying Lemma 1 to the de�nition of Fq�t in (5), we compute the normalisation factor Nq�t
for t = 0 to be

Nq�0 = [�(�)]q

�(�q)
: (8)

Remark: The di�erence between Nq�t and Nq�0 is small. This is seen as follows. The integrand in

Nq�t is of the form
Q
� p

�1+�
� with � > 0. The primitive function near a pole at p� = 0 scales as

p��. Hence the contributions from the poles, present in Nq�0 and absent in Nq�t, are of order t�.
If � is not extremely close to 0, then t� � 1.

3.2 Collective accusation sum

Let C be the set of colluding users and XC the restriction of X to the rows received by the

colluders. From (7) we de�ne a useful quantity: the `collective accusation sum' AC , being the sum
of all individual accusation sums of the coalition members,

AC =
X
j2C

Aj =
mX
i=1

A(i)
C ; A(i)

C := b(i)yi g1(p
(i)
yi ) + [c� b(i)yi ]g0(p

(i)
yi ): (9)

Here b
(i)
� stands for the number of occurrences of the symbol � in column i of XC . These numbers

satisfy the constraint
Pq�1
�=0 b

(i)
� = c. The sum AC plays an important role in the FN error rate.

3.3 De�nition of averages

There are three stochastic processes involved in the creation of the �ngerprinting codewords and

the unauthorized copy: The distributor's choice of vectors p(i), his process of generating the

columns of X, and the coalition's choice of symbols yi. For each process we de�ne a separate

expectation value. Averaging over p is denoted as Ep . Within the i-th column this is de�ned as

Ep [�(p
(i))] :=

Z
J(t;q)

dqp �(p)Fq�t(p); (10)

for an arbitrary function �. Here Fq�t is the probability density function (5).
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We remind the reader that all the vectors p(i) are independent. We denote the codeword

received by user j as Xj . For given p, averaging over Xj is denoted as EXj
. We de�ne

EXj
[�(Xji)] :=

q�1X
�=0

�(�)p(i)� : (11)

In particular we have, for an innocent user j,

EXj
[Æyi;Xji

] = p(i)yi : (12)

For �xed p, averaging over XC is equivalent to averaging over the integers b (see Eq.9). The b
(i)
�

are distributed according to a multinomial distribution. We have

E b [�(b
(i))] :=

X
b

�(b)

�
c

b

� q�1Y
�=0

[p(i)� ]b� : (13)

The notation
�
c
b

�
stands for the multinomial c!=(b0! � � � bq�1!). The sum

P
b
stands for summation

over all q components of b, with the condition
P
� b� = c implicitly assumed,

X
b

�(b) =

cX
b0=0

� � �
cX

bq�1=0

Æc;b0+b1+���+bq�1�(b): (14)

Finally we have to deal with the stochastic strategy of the coalition. We introduce the notation

Pb(�) for the probability that the colluders output the symbol y = � in a certain position, given

that they received symbols according to b. Averaging over y is denoted as Ey ,

Ey [�(yi)] :=

q�1X
�=0

�(�)Pb(i) (�): (15)

The expectation value taken over all stochastic degrees of freedom is denoted as EyXp . It can be

computed by �rst taking the expectation value Ey (15) for �xed b, then for �xed p taking Eb (13)

and EXj
(11) for all innocent users j, and �nally Ep (10). Note that several orderings are possible.

For instance, the expectation EXj
(for innocent j) can be taken before Ey and E b , since y and b

do not depend on the codewords given to innocent users.

3.4 Statistical properties of the accusation sums

To facilitate the analysis in the coming sections we introduce `scaled' averages and variances,

de�ned such that they do not depend on m. For an innocent user j we de�ne

~�j =
EyXp [Aj ]

m
= EyXp [A(i)

j ] ; ~�2j =
EyXp [A2

j ]� E
2
yXp [Aj ]

m
: (16)

For the collective accusation we de�ne

~� =
EyXp [AC ]

m
= EyXp [A(i)

C ] ; ~�2 =
EyXp [A2

C ]� E
2
yXp [AC ]

m
: (17)

The column index i in A(i)
C in (17) and A(i)

j in (16) can be chosen arbitrarily; the result does not

depend on i. The quantites ~�j , ~�j and ~� are discussed below, whereas Section 5 is devoted to

computing ~�.

Lemma 2: For an innocent user j we have ~�j = 0.
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Proof: We evaluate the expectation EyXp by �rst computing the expectation EXj
. We apply (12)

to the de�nition of A(i)
j (7). This gives EXj

[A(i)
j ] = p

(i)
yi g1(p

(i)
yi ) + (1 � p

(i)
yi )g0(p

(i)
yi ) = 0. The

last equality follows from the de�nition (3) of g1 and g0. From EXj
[A(i)

j ] = 0 it follows that

EyXp [A(i)
j ] = 0. �

Lemma 3: For an innocent user j we have ~�j = 1.

Proof: Using the idempotency of the Kronecker deltas in the de�nition of A(i)
j in (7) we write

A2
j =

mX
i=1

(
Æyi;Xji

1� p
(i)
yi

p
(i)
yi

+ (1� Æyi;Xji
)

p
(i)
yi

1� p
(i)
yi

)
+

X
1�i;k�m

i6=k

A(i)
j A(k)

j : (18)

We evaluate EyXp by �rst computing the expectation EXj
. Using property (12) and independence

of the columns of X, we get

EXj
[A2

j ] =

mX
i=1

EXj
[1] +

X
i;k;i6=k

EXj
[A(i)

j ]EXj
[A(k)

j ] = m+ 0: (19)

Here we have made use of the property EXj
[A(i)

j ] = 0 (see proof of Lemma 2). From EXj
[A2

j ] = m it

follows that EyXp [A2
j ] = m. The de�nition of ~�j in (16) can be rewritten as ~�j = (1=m)EyXp [A2

j ]�
m~�2j . Substitution of EyXp [A2

j ] = m into this expression and application of Lemma 2 gives ~�j = 1.

�

Lemma 4: The mean ~� and variance ~� satisfy

~�2 + ~�2 < qc: (20)

Proof: From the de�nitions of ~�, ~� (17) and AC , A(i)
C (9) it follows that

~�2 = m�1
EyXp [A2

C ]�m~�2

= m�1

0
@ mX
i=1

EyXp [fA(i)
j g2] +

X
i6=j

EyXp [A(i)
j ]EyXp [A(k)

j ]

1
A�m~�2

= EyXp [fA(i)
C g2]� ~�2: (21)

Using the idempotency of the Kronecker delta, we write

fA(i)
C g2 =

q�1X
�=0

Æ�y[b�g1(p�) + (c� b�)g0(p�)]
2: (22)

We apply the total average EyXp as described in Section 3.3, by �rst performing Ey , then EX and

�nally Ep . We get

EyXp [fA(i)
C g2] =

q�1X
�=0

cX
b�=0

�
c

b�

�
�

Ep

h
pb�� (1� p�)

c�b�Ebnb� [Pb(�)] fb�g1(p�) + [c� b�]g0(p�)g2
i
: (23)

Here the notation Ebnb� indicates averaging over all degrees of freedom in b except b�. Note that
the expression in Ep [� � � ] is always nonnegative. So, using Ebnb� [Pb(�)] � 1 we can bound the
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r.h.s. of (23) by

EyXp [fA(i)
C g2] <

q�1X
�=0

Ep

"
cX

b�=0

�
c

b�

�
pb�� (1� p�)

c�b� fb�g1(p�) + [c� b�]g0(p�)g2
#

=

q�1X
�=0

Ep [c] = qc: (24)

The �rst equality is obtained by observing, as in [9], that the b�-sum represents the result of a

random walk consisting of c steps, each of which has zero mean and unit variance. (This follows

from Lemmas 2 and 3). �
Remark: In Section 5 it will be shown that ~� does not increase as a function of c. Lemma 4

then shows that ~� = O(pc) for c ! 1. This asymptotic behaviour of ~� will play an important

role in Section 6.

4 Lower bound on the code length in the proposed symmetric scheme

Here we analyze the symmetric scheme described in Section 2.2. We provide a lower bound on

the code length m, as a function of the maximum coalition size c0 and the maximum tolerable FP

and FN error probabilities "1, "2. We de�ne the following two properties:

Property 1: We say that a �ngerprinting scheme that generates a list � of accused users has

Property 1 for a certain �xed value "1 if, for all innocent users j, all coalitions C with j =2 C, and
all coalition strategies, the following holds:

P[False Positive] = P[j 2 �] < "1: (25)

Property 2: We say that a �ngerprinting scheme that generates a list � of accused users has

Property 2 for certain �xed values c0, "2, if, for all coalitions C of size c � c0, and all coalition

strategies, it holds that

P[False Negative] = P[C \ � = ;] < "2: (26)

Our bound on the code length is an asymptotic result for c0 � 1. We formulate it as follows:

Theorem 1: Let the code length m and the accusation threshold Z of our symmetric �nger-

printing scheme be chosen as

m = Ac20dln "�1
1 e ; Z = Bc0dln "�1

1 e (27)

with "1 2 (0; 1] a �xed parameter and

A = 4~��2(1 + Æ)2 ; B = 4~��1(1 + Æ); (28)

where ~� is de�ned in (17). Let "2 2 (0; 1] be a �xed parameter. For all Æ > 0 there exists a

suÆciently large c0 such that the symmetric �ngerprinting scheme has Property 1 for parameter

"1 and Property 2 for parameters c0; "2.

Thus, according to Theorem 1, for large c0 a code length

m > 4~��2c20dln "�1
1 e (29)

guarantees resistance against coalitions of size c � c0.
In Sections 4.1, 4.2 and 4.3 we present a proof of Theorem 1 following the approach of [7],

with minor modi�cations. First, conditions on A, B and c0 are derived for achieving Properties

1 and 2. Then the lowest value of A is identi�ed within the space of allowed parameters. The

value of ~� is determined in Section 5. At this point we already mention that 0 < limc0!1 ~� <1.

Hence (29) has the asymptotic behaviour m = O(c20).
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4.1 Conditions for satisfying Property 1

We consider a �xed innocent user j. We introduce an auxiliary variable �1 > 0 that allows us to

use the Markov inequality,

P[j 2 �] = P[Aj > Z] = P[e�1Aj > e�1Z ] � EXj
[exp(�1Aj)]
exp(�1Z)

: (30)

Due to the independence of the columns of X we can write EXj
[exp(�1Aj)] =n

EXj
[exp(�1A(i)

j )]
om

. In what follows, we will always restrict �1 such that �1A(i)
j � 1:7. This

allows us to use the following (easily veri�ed) inequality

eu < 1 + u+ u2 for u � 1:7; (31)

so that we can write

EXj
[e�1A

(i)

j ] < 1 + �1EXj
[A(i)

j ] + �21EXj
[fA(i)

j g2]: (32)

We enforce the restriction �1A(i)
j � 1:7 for all realisations of the stochastic p, X and y. For

negative A(i)
j all �1 > 0 are allowed. For positive A(i)

j we must have �1 < 1:7=g1(py). As g1 is a

monotonously decreasing function, the strongest restriction on �1 occurs for py = pmin = t=(q�1).

Hence we restrict �1 to the interval (0; 1:7=g1(
t

q�1
)].

From Lemmas 2 and 3 we know that EXj
[A(i)

j ] = 0 and EXj
[fA(i)

j g2] = 1 for innocent j; thus

(32) yields EXj
[e�1A

(i)

j ] < 1 + �21. Next we apply the inequality

1 + u < eu for u 6= 0 (33)

to write EXj
[exp(�1Aj)] < exp(m�21). Substitution into (30) gives

P[j 2 �] < min
�12(0;1:7=g1(

t
q�1 )]

e�1(m�1�Z): (34)

Filling in the explicit form for m and Z (27) into (34) we get

P[j 2 �] < min
�12(0;1:7=g1(

t
q�1 )]

"
c0�1(B�c0A�1)
1 : (35)

The minimum lies at ��1 = B=(2c0A), provided that the upper bound on �1 is large enough. The
condition 1:7=g1(

t
q�1

) � ��1 can be rewritten as

c0 �
"�

B

3:4 �A
�2

q � 1

T

# 1

2�a �
1� Tc�a0

q � 1

� 1

2�a

�
"�

B

3:4 � A
�2

q � 1

T

# 1

2�a

; (36)

where we have used the parametrisation t = Tc�a0 . Substituton of ��1 into (35) gives

P[j 2 �] < "
B2=4A
1 : (37)

Hence a suÆcient condition for Property 1 to be satis�ed is that (36) holds and that

B2=4A � 1: (38)
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4.2 Conditions for satisfying Property 2

We start with a lemma that helps us to upper bound the FN error rate.

Lemma 5: Let C be a coalition of size c � c0. We have

P[C \ � = ;] � P[AC < cZ] � P[AC < c0Z] (39)

Proof: The event C \ � = ; implies AC < cZ. �
Remark: AC < cZ does not imply C \ � = ;. It can happen that AC < cZ while somebody in

the coalition does get accused.

Next we introduce an auxiliary variable �2 > 0 that allows us to use the Markov inequality,

P[AC < c0Z] = P[e��2AC > e��2c0Z ] <
EyXp [exp(��2AC)]

exp(��2c0Z) : (40)

The columns of X are independently generated, and the colluder strategy is the same for each

column. This allows us to write EyXp [exp(��2AC)] = fEyXp [exp(��2A(i)
C )]gm. We restrict �2

such that ��2A(i)
C � 1:7, allowing us to apply inequality (31) to bound the exponential. This

gives

EyXp [e
��2A

(i)

C ] < 1 + �2~�+ �22(~�
2 + ~�2); (41)

where we have used the de�nitions (17). The restriction ��2A(i)
C � 1:7 holds for any realisation

of p and X. The smallest (most negative) achievable value of A(i)
C is c0g0(p

max
y ) = c0g0(1 � t) =

�c0
p
(1� t)=t. Hence the condition on �2 is satis�ed for

�2 � �max
2 = 1:7c�1

0

p
t=(1� t): (42)

From Lemma 4 we know that ~�2 + ~�2 < qc. Thus we have from (41)

EyXp [e
��2AC ] < (1� �2~�+ �22qc0)

m < e�m�2~�(1��2c0q=~�): (43)

In the last inequality we have made use of (33). Substitution of (43) into (40) and minimizing

over �2 gives
P[AC < c0Z] < min

�22(0;�max

2
]
e��2[m~�(1��2c0q=~�)�c0Z]: (44)

We choose m and Z such that m~�(1 � �max
2 c0q=~�) > c0Z. Hence the minimum in (44) occurs

at �2 = �max
2 . Substitution of (27) into (44) and evaluation at �max

2 gives

P[AC < c0Z] < "
1:7c0

p
t

1�t [A~�(1� 1)�B]

1 ; (45)

where we have introduced the notation  1 = 1:7
q

t
1�t

q=~�. To satisfy Property 2, (45) must not

be larger than "2. Hence Property 2 is satis�ed if

A~�(1�  1)�B �  2; (46)

where we have de�ned

 2 =

p
1� t

1:7c0
p
t
� ln "2
ln "1

: (47)

Note that the parameters  1 and  2 go to zero for c0 !1.
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4.3 Final step in the proof of Theorem 1

We use the results of Sections 4.1 and 4.2 to prove Theorem 1. The conditions (38) and (46) can

be rewritten as an interval for A such that Properties 1 and 2 are both satis�ed,

B +  2

~�(1�  1)
� A � B2

4
: (48)

A solution exists only if the r.h.s. is not smaller than the l.h.s. in (48). We wish to identify the

smallest value of A for with a solution exists. This occurs when the l.h.s. is equal to the r.h.s.

Solving the quadratic equation in B gives

B =
4

~�
(1 + �) with � :=

1 +
p
1 +  2~�(1�  1)

2(1�  1)
� 1 (49)

A =
B2

4
=

4

~�2
(1 + �)2: (50)

Finally, Theorem 1 follows by setting the parameter Æ in (28) equal to the expression � in (49),

which goes to zero in the limit c0 !1. �

5 The expectation of the collective accusation sum

As was shown in Section 4, the average collective accusation ~� plays a central role in determining

the code length m required for collusion resistance. In this section we compute the value of ~� in

the restricted digit model. (Other attack models are discussed in Section 7.2). Unfortunately the

computations are tedious. We �rst derive a general result in Section 5.1, for all alphabet sizes q,
all values of the steepness parameter � and all colluder strategies. This result takes the form of a

(q� 1)-dimensional sum over all possible symbol frequencies b received by the colluders. Then, in

Section 5.2 we investigate the special case (q = 2; � = 1
2
), precisely corresponding to the choice of

parameters of Tardos [9] (but not the same accusation method). It turns out that our symmetric

accusation method yields an improvement of a factor 4 in the code length. In Section 5.3 we study

the case q = 2 for arbitrary �. It turns out that for q = 2, the choice � = 1
2
is optimal, a result

that was obtained for the original Tardos construction in [7]. Finally, in Section 5.4, we come back

to the nonbinary case q > 2.

5.1 Sum representation of ~�

According to the de�nition (17), ~� is de�ned as the expectation value EyXp [A(i)
C ]. We follow

the procedure outlined in Section 3.3: We �rst compute the expectation value with respect to

the colluder strategy, then w.r.t. the matrix XC and �nally w.r.t. the vectors p(i). Since it is

understood that the results are identical for each column of XC , we will omit the column index i
on the quantities y, p and b for notational simplicity.

We regard y as a (possibly stochastic) strategy-dependent function of b =

(b0; � � � ; bq�1) only. The colluders' strategy � cannot depend on p, since they do not know p. We

assume that � is not in
uenced by the colluders' identities, i.e. their decisions are purely based

on how many instances of each symbol were received, not by whom they were received. Using the

notation introduced in (15), we have

Ey [A(i)
C ] =

q�1X
�=0

Pb(�) fb�g1(p�) + [c� b�]g0(p�)g =
q�1X
�=0

Pb(�)
b� � cp�p
p�(1� p�)

: (51)

Next we average over b and p. Applying (13) and (10) to (51), we obtain

~� =
X
b

�
c

b

� q�1X
�=0

Pb(�)

Z
J(t;q)

dqp F (p)

q�1Y
�=0

p
b�
�

b� � cp�p
p�(1� p�)

: (52)
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We further evaluate the integral
R
dqp for t = 0. As discussed in Section 3.1, the error resulting

from integration over J(0; q) instead of J(t; q) is small. Furthermore, we will see in Section 7.1 that

setting t = 0 is allowed for q � 3 in the Gaussian approximation. First we split the integration

into two parts: p� and the remaining q � 1 componentsZ
J(0;q)

dqp =

Z 1

0

dp�

Z 1�p�

0

dq�1
p Æ(1� p� �

X
� 6=�

p�): (53)

Note that the upper bound on the second integration interval is reduced from 1 to 1� p�. This
prevents us from directly applying Lemma 1. For all 
 6= � we write p
 = (1 � p�)s
 , with
s
 2 (0; 1) and

P

 6=� s
 = 1. This substitution has the following e�ect,

Z
J(0;q)

dqp =

Z 1

0

dp�(1� p�)
q�2

Z 1

0

dq�1
s Æ(1�

X

 6=�

s
)

F (p) = N�1
q�0 p

�1+�
� � (1� p�)

(�1+�)(q�1)
Y

 6=�

s�1+�



q�1Y
�=0

p
b�
� = pb�� (1� p�)

c�b�
Y
� 6=�

s
b�
� : (54)

Here we have used the property Æ(ax) = jaj�1Æ(x) for constant a 6= 0. Substituting (54) into (52)

and applying Lemma 1 to the q � 1 degrees of freedom s
 we obtain

~� = N�1
q�0

X
b

�
c

b

� q�1X
�=0

Pb(�)

Q

 6=� �(�+ b
)

�(c � b� + �[q � 1])

�
Z 1

0

dp� p
b��

3
2
+�

� (1� p�)
c�b��

3
2
+�[q�1](b� � cp�): (55)

Finally, the p�-integral is evaluated as well, yielding ordinary Beta functions,

~� =
�(�q)

[�(�)]q
c � c!

�(c+ �q)

X
b

[

q�1Y

=0

�(�+ b
)

�(1 + b
)
]� (56)

q�1X
�=0

Pb(�)
�(b� � 1

2
+ �)

�(b� + �)

�(c� b� � 1
2
+ �[q � 1])

�(c� b� + �[q � 1])

�
1
2
� �� b�

c
(1� �q)

�
:

Here we have used (8) for the normalisation constant Nq�0. Expression (56) is rather complicated.

One property of (56) can be seen easily, however: For c � 1, the leading order terms of ~� are of

order 1, and do not depend on c. This is readily seen by writing b
 = c � w
 , with w
 2 [0; 1],
then applying the Stirling approximation �(x + 1) � p

2�x(x=e)x to all Gamma functions and

collecting powers of c. For the quotients of Gamma functions appearing in (56) we have the

proportionality �(b� + v1)=�(b� + v2) / cv1�v2 and �(c � b� + v1)=�(c � b� + v2) / cv1�v2 for

constants v1; v2 � c. The sum
P

b
gives rise to a factor cq�1, since it can be approximated by

an integral
R c
1
dqb Æ(c �P� b�) � cq�1

R 1
0
dqw Æ(1 �P� w�). The corrections arising from the

summation terms where the condition b
 � 1 does not hold are negligible, since the support is

negligible compared to the full summation
P

b
.

The fact that ~� has a �nite value in the limit c!1 shows that the asymptotic behaviour of

(27) is given by m / c20, without further dependence on c0 arising from ~�.

5.2 The case q = 2, � = 1
2

This case corresponds to the probability density function in the original Tardos construction,

F (p0; p1) / (p0p1)
�1=2Æ(1�p0�p1). Note that for q = 2, � = 1

2
the factor between curly brackets
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in (56) vanishes. However, ~� does not completely vanish, since for (q = 2; b� = c) the expression
�(c� b� � 1

2
+ �[q � 1]) is divergent in the limit �! 1

2
. We have

lim
�!1=2

(� 1
2
+ �)�(� 1

2
+ �) = lim

�!1=2
�( 1

2
+ �) = 1: (57)

Hence, the only terms contributing in the b-sum in (56) are those where b� = c. Because of

the marking condition, Pb(�) = 1 for these terms, as the coalition only sees the symbol �. The

complicated expression (56) reduces to a constant:

~� =
�(1)

[�( 1
2
)]2

1X
�=0

1 =
2

�
: (58)

Substitution into (27,28) gives the following asymptotic bound on the code length,

m > �2c20dln "�1
1 e: (59)

This bound is 4 times lower than the bound obtained in [7] and 10 times lower than the bound

in [9].

5.3 The case q = 2, � 6= 1
2

Next we study how the symmetric binary scheme performs for � 6= 1
2
. Substitution of q = 2 into

(56) gives

~� =
�(2�)

[�(�)]2
( 1
2
� �)c

c� 1 + 2�

cX
b1=0

�
c

b1

�
B(b1 � 1

2
+ �; c� b1 � 1

2
+ �)

�
�
�1 + 2

c
[b1Pb(0) + (c� b1)Pb(1)]

�
; (60)

where B denotes the Beta function. From (60) we can identify which colluder strategy � forces

the content owner to use the longest possible code. We denote this `extremal' strategy as ��2. We

remind the reader that m / ~��2. Hence, in order to maximize m, the strategy ��2 has to minimize

the summand in (60) for each b. Note that the b1 = 0 and b1 = c contributions to the summation

are not a�ected by the strategy. For 1 � b1 � c� 1 the Beta function in (60) is positive. Hence,

the factor ( 1
2
��) in front of the summation determines the overall sign of the strategy-dependent

contributions. For � < 1
2
, this factor is positive, so the colluders wish to minimize the expression

[b1Pb(0)+(c� b1)Pb(1)]. They achieve this by choosing the symbol that appears most frequently,

i.e. by applying `majority voting' to the 0s and 1s that they receive in a column. For � > 1
2
, the

factor 1
2
� � has the opposite sign and the extremal strategy ��2 is minority voting.

Note that ��2 is not necessarily the strategy that the coalition actually applies. However, the

distributor has to take into account that the colluders could be using ��2, and he has to choose

his code length m accordingly. We are interested in this `extremal' strategy because our aim is to

derive a sharp lower bound on m.

Fig. 1 shows ~� as a function of � for the strategy ��2. The dashed line corresponds to the value

2=� obtained in the previous section. It is clear that � = 1
2
is the optimum. At the optimum we

have ~� = 2=�, independent of c. The part of the curve with � < 1
2
hardly depends on c. The part

with � > 1
2
becomes steeper with increasing c.

5.4 Non-binary alphabet

We now return to the general expression for ~� given in (56). We work in the restricted digit

model, where, at each position, the colluders can output only the symbols they have available. (In

Appendices A and B we discuss the unreadable digit and arbitrary digit model).
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Fig. 1: ~� as a function of � for q = 2, c = 80, given the `extremal' strategy ��2.

Note that the sum
P
� Pb(�)(� � � ) in (56) represents an average over �. We obtain a lower

bound for the sum from the fact that an average is at least as big as the smallest element in the

summation. Thus we have

~� � �(�q)

[�(�)]q
c � c!

�(c+ �q)

X
b

[

q�1Y

=0

�(�+ b
)

�(1 + b
)
] (61)

min
�jb� 6=0

�(b� � 1
2
+ �)

�(b� + �)

�(c� b� � 1
2
+ �[q � 1])

�(c� b� + �[q � 1])

�
1
2
� �� b�

c
(1� �q)

�
:

As we have assumed the restricted digit model, the minimum is taken only over those symbols

that the colluders have received.

Eq.(61) allows us to identify the `extremal' colluder strategy ��q , which forces the distributor

to use the largest code length m. For each b separately, the colluders choose � such that the

expression following `min�' is minimized.

For q � 10 and a �xed coalition size c = 20 we have numerically computed ~� as a function

of � for the ��q strategy, i.e. taking the equality in (61). For large q and c the numerics are

computationally expensive, since the number of terms in the b-summation is of order cq�1. Fig. 2

shows ~� as a function of the steepness parameter �. For q � 7 the maximum of the curve lies

slightly to the right of � = 1=q. For q � 8 an extra hump is visible. The hump is a `�nite c
e�ect'; it does not exist when the ratio q=c is small. Fig. 3 shows how ~� varies when c is increased:
The part of the curve at � < 1=q is una�ected, while for � > 1=q the curve goes downward and

converges to a �nite value.

We use the numerical results for ~� to estimate the required code length (m / ~��2). We give

estimates for the advantage that a q-ary code gives over the symmetric binary code with � = 1=2.
The comparison with the binary case can be done in several ways, depending on the details of the

watermark embedding. We give the two extreme comparison methods:

1. Counting the number of symbols. A q-ary symbol occupies as much space in the content as a

binary symbol, regardless of q. Fig. 4 shows the q�ary case
binary case

ratio for the number of symbols.

This ratio is given by 4=(�2~�2).

2. Counting the number of bits. A q-ary symbol occupies log2 q times more space in the content

than a binary symbol. In this case it is not fair to compare code length expressed in symbols.

One has to count bits. Fig. 5 shows the q�ary case
binary case

ratio for the number of bits. This ratio is

given by log2 q � 4=(�2~�2).
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Fig. 2: ~� as a function of � for several alphabet sizes q. The coalition size is c = 20. The colluders

employ the `extremal' strategy.
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p
log2 6. When ~� lies above this line, the

space (in bits) occupied in the q = 6 scheme is smaller than in the binary scheme.
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Fig. 4: Number of symbols in the codewords, relative to the binary case, for several alphabet

sizes q. The coalition size is c = 20. The colluders employ the `extremal' strategy.
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The coalition size is c = 20. The colluders employ the `extremal' strategy.



6 The Gaussian approximation 19

Type 1 is the most optimistic comparison possible, in the sense that it allows for the largest im-

provements w.r.t. the binary scheme. Type 2 comparison is the most pessimistic possible. Without

giving a full argument, we state that in the case of video watermarking type 1 is more appropriate,

even for large alphabets. When, for instance, symbols are embedded using a spread-spectrum wa-

termark, where each spreading sequence corresponds to a di�erent symbol in the alphabet, then

the segment length can be kept almost independent of q without decreasing detection performance.

For completeness we give the results for both comparisons. The horizontal dotted line in Fig. 2

indicates the threshold for comparison of type 1. When ~� rises above this threshold, the q-ary
scheme needs fewer symbols than the binary scheme. The thick piece of each curve indicates the

region where the q-ary scheme is better than the binary, using comparison type 2. Fig. 4 shows

the code length m (the number of symbols) as a function of �, for a number of q values, and Fig. 5

similarly shows m log2 q, the number of bits. Both graphs have their vertical axis normalised such

that lengths are divided by corresponding lengths in the binary scheme. In both graphs the �nite-c
humps are visible. Not taking the humps into account, we see that for 3 � q � 10 the number of

symbols is reduced by 40%{80% w.r.t. the binary case, while the reduction in the number of bits

is 11%{30%. Finite-c e�ects further improve these results. We conclude that in our symmetric

scheme it is advantageous to use the largest possible alphabet allowed by the watermarking method

employed.

6 The Gaussian approximation

6.1 Motivation

In this section we analyse the performance of the symmetric scheme using what we call the

`Gaussian approximation'. By this we mean the assumption that the accusation Aj for innocent
j has a Gaussian probability density function. The assumption is motivated by the Central Limit

Theorem (CLT): when a large number of i.i.d. variables are summed, the distribution of the sum

converges to the normal distribution. The CLT applies when the moments of the summands'

distribution meet certain conditions. The moments also determine the rate of convergence to the

normal form.

The accusation Aj is computed by taking the sum over m independent accusations, each of

which is based on a single symbol yi in the unauthorized copy. All the separate accusations

have the same probability distribution. The number of symbols, m, is large enough to guarantee

`suÆciently fast' convergence to the normal form. This informal statement is made more precise

in Appendix C, where we derive a lower bound on c0 as a function of q. When c0 is above this

bound, the deviations from the normal form become `small enough' in the central region of the

Aj-distribution function. It turns out that the bound approximately lies between c0 = 10 and

c0 = 20. Hence convergence is fast enough in many practical situations.

In Section 6.2 we analyse the symmetric scheme under the assumption that Aj has a Gaussian
distribution. We obtain a lower bound on m that is a factor 2 smaller than Theorem 1.

In the discussion of the CLT in Appendix C it turns out that for q � 3 the cuto� parameter

t can be sent to zero without causing any divergences. The cuto� parameter is discussed in

Section 7.1.

6.2 Lower bound on the code length

Theorem 2: Let Aj have a Gaussian probability density. For all Æ > 0 there exists a

suÆciently large c0 such that Property 1 is satis�ed for parameter "1 and Property 2 is satis�ed

for parameters c0; "2 when the code length is

m > 2~��2(1 + Æ)c20 ln "
�1
1 : (62)

Note that this code length is a factor 2 lower than the one in Theorem 1. We �rst give an informal

argument why a bound of the form (62) follows from the Gaussian probability density. Then we

give a formal proof.
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Fig. 6: Sketch of the probability density of Aj=
p
m (left) and 1

cAC=
p
m (right). The accusation

threshold Z and the error rates "1 and "2 are also shown.

Informal argument: If the probability density of Aj is known, then that knowledge allows us

to compute the FP and FN error rates as a function of ~�j , ~�j , ~�, ~�, m and Z. This is sketched in

Fig. 6. The left curve is the probability density of the quantity Aj=
p
m. It has mean ~�j = 0 and

variance ~�j = 1 (see Lemmas 2 and 3). The error rate "1 is given by the area to the right of the

(rescaled) threshold Z=
p
m. The right curve is the probability density of the quantity 1

c
AC=pm.

It has average 1
c
~�
p
m and variance ~�=c. The error rate "2 is given by the area to the left of

Z=
p
m. The horizontal axis is scaled such that the Aj-curve does not depend on c and m. If we

set ourselves the goal of having �xed error rates for arbitrary c, two observations can be made

from Fig. 6:

� In order to have a �xed "1 for all c, the threshold line Z=
p
m must not shift. Hence Z must

be chosen as Z / p
m as far as the dependence on c is concerned.

� When c increases, the rightmost curve becomes narrower and shifts to the left. In order to

prevent "2 from vanishing, m must be chosen proportional to c2.

From this informal argument we obtain the proportionality m / c20 in (62), but not the constants

and the logarithmic dependence on "1.
Proof of Theorem 2: Let �1 and �2 be the density functions ofAj andAC , respectively, rescaled

such that they both have zero mean and unit variance. We de�ne cumulative distributions in the

tails,

G1(x) =

Z 1

x

dx0 �1(x
0) ; G2(x) =

Z x

�1

dx0 �2(x
0): (63)

Lemma 6: In order to achieve a False Positive error rate � "1 and a False Negative error rate

� "2 against any coalition of size c � c0, it is suÆcient to set the code length m according to

m � c20

�
~�j

~�
Ginv

1 ("1)

�2�
1� ~�

c0~�j

Ginv
2 ("2)

Ginv
1 ("1)

�2

: (64)

Here the superscript `inv' denotes the inverse function.
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Proof: The proof is completely analogous to the derivation in Section 3.4 of [7]. �
Note that Ginv

2 ("2) < 0. Note further that the dependence of (64) on "2 vanishes in the limit

c0 ! 1. (Remember that ~�j = 1 according to Lemma 3 and that ~� = O(pc0) as a consequence

of Lemma 4). If Aj and AC have Gaussian distributions, then G1 and G2 are error functions
2 and

we have Ginv
1 ("1) =

p
2Erfcinv(2"1), G

inv
2 ("2) = �p2Erfcinv(2"2). Substitution into (64), using

~�j = 1, gives

m � 2

~�2
c20

h
Erfcinv(2"1)

i2(
1 +

~�

c0

Erfcinv(2"2)

Erfcinv(2"1)

)2

: (65)

In the regime "1 � "2, which is the relevant regime for e.g. movie distribution, the dependence of

(65) on "2 is rather weak even for �nite c0, since Erfc
inv("2) < Erfcinv("1). We use the asymptotic

form of the inverse error function for small arguments, Erfcinv(") =
p
ln "�1[1 � O( ln ln "�1

ln "�1
)], to

write

m � 2

~�2
c20 ln

1

"1

�
1�O( ln ln "

�1
1

ln "�1
1

)

�(
1 +O

 
1p
c0

s
ln "�1

2

ln "�1
1

!)
: (66)

For large c0 the result (62) follows
3. �

Hence for large enough c0 a code length m = 2~��2c20 ln "
�1
1 suÆces. This is shorter by a factor

2 than the result obtained in Section 4.

7 Discussion

7.1 The cuto� parameter t

In this section we discuss the the e�ects of the cuto� t = Tc�a0 introduced in Section 2.2. The

probabilities p� lie in the restricted interval [t=(q � 1); 1 � t]. It is clear from Section 4 that the

presented proof of Theorem 1 does not work for t = 0. In the limit T # 0, the allowed intervals

for the auxiliary variables �1 and �2 (34,42) vanish, while both intervals need to be �nite for the

proof that Properties 1 and 2 are satis�ed.

The speed of the convergence to the asymptotic result A = 4=~�2, B = 4=~� depends on the way

in which the parameters a 2 (0; 2) and T are chosen. The small parameters  1 and  2 (45,47)

asymptotically behave as

 1 � 1:7
q

~�

p
T

c
a=2
0

;  2 � ln "2

ln "1

1

1:7
p
Tc

1�a=2
0

: (67)

Furthermore, condition (36), necessary for Property 1 to hold, can be written as

c0 '

�
q � 1

T
(
~�

3:4
)2
�1=(2�a)

: (68)

For practical reasons, we wish both  1 and  2 to become small at a reasonably low value of c0,
while the bound (68) also should not be too high. However, in the limit T # 0, both the c0-bound
(68) and the expression for  2 in (67) diverge. Hence, when t tends to zero, the approach of

Sections 4.1{4.3, based on the Markov inequality, can prove Properties 1 and 2 only for extremely

large c0.
The role of the cuto� t is completely di�erent in the analysis using the Gaussian approximation.

2 To avoid ambiguities due to con
icting de�nitions in the literature, we mention that we use the de�nition

Erfc(x) = 1� (2=
p
�)

R x
0
e�u

2

du.
3 For proving Theorem 2 we do not have to assume that AC has a Gaussian form. The "2-term in (64) vanishes

for all functions Ginv
2 because of the factor ~�=c0 = O(1=pc0). However, the computation of AC involves even more

summed contributions than Aj , so it is safe to assume that when Aj is Gaussian, then AC is Gaussian as well.
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� The case q = 2. It was shown in [7] for the original Tardos scheme that the CLT can only be

applied if t > 0. The probability distribution of the accusation Ui (for innocent users) due
to the symbol yi is proportional to 1=(1 + U2

i )
2. The 3rd moment is zero. For distributions

with vanishing 3rd moment, the CLT only holds when the 4th moment does not diverge.

However, for t = 0 the 4th moment does diverge. Hence we need t > 0. Exactly the same

reasoning applies to the symmetric scheme with q = 2.

� The case q � 3. For q � 3, the 3rd moment of the probability distribution of A(i)
j (for

innocent j) is always nonzero, no matter what the value of t is. This is shown in Appendix C,
Eq.(74). Hence the CLT applies even if we set t = 0. In the Gaussian approximation, there

is no reason to have a cuto� t for q � 3.

7.2 Di�erent attack models

Up to this point we have only considered the restricted digit model. However, it is easy to obtain

results for the other attack models listed in Section 1.2. As can be seen from (64), the bound on

the code length is proportional to ~�2j =~�
2.4 The di�erences between the various attack models give

rise to di�erent values ~�j , ~�, but the form (64) is independent of the attack model. Hence, in

order to see the di�erences between the attack models, it is suÆcient to compare the ratio ~�j=~�.
The unreadable digit model is discussed in Appendix A. It is assumed that the colluders

output an erasure symbol `?' whenever they can, and that the distributor gives zero accusation

to locations with an erasure. It turns out that for large alphabets (q ' 7) the colluder strategy

of outputting erasures is good, and the distributor has to use longer codes than in the restricted

digit model. However, for small alphabets it is better for the colluders not to use an erasure at

each detectable position, as a `?' informs the distributor that the position is detectable.

Results for the arbitrary digit model are derived in Appendix B. Unsurprisingly, with this

attack model a nonbinary scheme always performs worse than the symmetric binary scheme;

the colluders have ample opportunity to incriminate innocent users while avoiding accusation

themselves.

8 Summary

In this paper we have proposed a new construction for a randomized digital �ngerprinting code,

which is similar to a recent construction by Tardos but can be used with arbitrary size alphabets.

We have analyzed the performance of our scheme, in the restricted digit model, in two ways.

First, we have proved a lower bound on the code length m such that the desired False Positive

and False Negative error probabilities are achieved against any coalition of size c � c0. Due to a

di�erent way of computing accusations, the proposed code allows for 10 times shorter codes (with

respect to [9]) in the case of a binary alphabet. Moving to a code over a q-ary alphabet allows a

further reduction of the code length of 35% at q = 3 and 80% at q = 10.

Second, we have analyzed our scheme under the assumption that the accusation sum Aj follows
a Gaussian distribution. This `Gaussian approximation' is valid at coalition sizes c0 of approxi-

mately 10{20 and larger. We have shown that, in this approximation, the collusion resistance of

the scheme is retained for a code length m that is twice as short as the bound obtained using no

assumptions.
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A Unreadable digit model

In this appendix we consider the case of the unreadable digit model. In this attack model, the

colluders are allowed to output the erasure symbol `?' in detectable positions. For simplicity we

make two assumptions: (i) The colluders generate an erasure whenever they can, and (ii) The

distributor gives zero accusation in case of an erasure symbol.

The quantities ~�j and ~� are both a�ected by these assumptions. They are easily computed,

since all detectable positions (leading to `?') are discarded by the distributor. This leaves only

the undetectable positions, characterized by vectors b that consist of q � 1 zero components and

one component equal to c. We have

~�2j =

q�1X
�=0

Z
J(0;q)

dqp F (p)pc� = q
�(�q)�(c+ �)

�(�)�(c+ �q)
(69)

and

~� =

q�1X
�=0

Z
J(0;q)

dqp F (p)pc� � cg1(p�) = cq
�(�q)�(c� 1

2
+ �)�( 1

2
+ �[q � 1])

�(�)�(�[q � 1])�(c+ �q)
: (70)

Recall from (64) that the required code length is proportional to ~�2j =~�
2. Using (69) and (70) we

obtain

~�2j

~�2
=

1

qc2
�(c+ �)�(c+ �q)

[�(c� 1
2
+ �)]2

�(�)

�(�q)

�
�(�[q � 1])

�( 1
2
+ �[q � 1])

�2

� c�1+�[q�1]

q

�(�)

�(�q)

�
�(�[q � 1])

�( 1
2
+ �[q � 1])

�2
: (71)
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The last expression is obtained using the Stirling approximation of the Gamma function for large c.
For � = 1=q the large q asymptotic behaviour is given by

lim
q!1

~�2j =~�
2 = 4=�: (72)

Note that the result does not depend on c. Consequently the asymptotic relation m / c20 holds not
only in the restricted digit model, but also in the unreadable digit model. Eq. (72) demonstrates

that it is unfavorable for the distributor to use a very large alphabet in the unreadable digit model,

since the code length in bits (m log2 q) then grows as log2 q.
A graph of the (normalized) code length in bits / log2(q)~�

2
j =~�

2, similar to the graphs in

Section 5.4, is shown in Fig. 7 for q = 3 and q = 7. The number of bits increases as a function of

q for the unreadable digit model, but it decreases in the restricted digit model. Apparently, the

colluder strategy of outputting erasures whenever possible makes sense for large alphabets (the

distributor has to use a longer code than in the restricted digit case), but not for small alphabets.

Depending on the employed value of �, the crossover value of q lies between approximately 5 and 8.
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Fig. 7: Code length in bits as a function of � in the unreadable digit model (solid lines), relative

to the q = 2 restricted digit model. The colluders output an erasure whenever allowed by

the marking condition. The dotted lines are the results for the restricted digit model (see

Fig. 5).

B Arbitrary digit model

In this appendix we consider the case of the arbitrary digit model. In this attack model, the

colluders are allowed to output any symbol y 2 f0; : : : ; q�1g (but not `?') in detectable positions.

This choice of attack model in
uences only ~�. The quantity ~�j is una�ected by going from the

restricted to the arbitrary digit model. We compute ~� from expression (61) with one modi�cation:

The minimisation `min�' now also includes symbols � for which b� = 0 (provided, of course, that

none of the other symbols occurs c times).

Numerical results are shown in Fig. 8. For each q, the ~� curve of the arbitrary digit model (solid

curves) always lies below the curve of the restricted digit model (dotted curves). Note further that

the nonbinary scheme is always worse than the binary in the arbitrary digit model. (The curves

lie below 2=�). Hence, if the arbitrary digit model applies, the distributor's best option is to use

the binary scheme of Section 2.2.
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Fig. 8: ~� as a function of � in the arbitrary digit model (solid lines). The dotted lines are the

results for the restricted digit model.

C Convergence to the normal distribution

In this appendix we study how fast (as a function of m) the distribution of Aj converges to the

normal distribution. We primarily study the case q � 3, since for q = 2 the analysis of [7] suÆces.

We set t = 0. We use a theorem from [2] that gives the width of the central region where the normal

form is a good approximation. This central region contains a fraction 1 � 2"1 of the probability

mass. By `good approximation' it is meant that the deviation from the normal form, everywhere

in the central region, is smaller than the value of the Gaussian at the edge of the central region.

Applied to our accusation sum Aj , the theorem gives the following width, expressed in standard

deviations,

#sigmas =

 
6~�3j
j�3j

!1=3

m1=6; where �3 := E [fA(i)
j g3]: (73)

Here E stands for averaging �rst over Xji, then y, then XC and �nally p. The third moment is

given by

�3 =
�(�q)

[�(�)]q

q�1X
�=0

X
b

Pb(�)

�
c

b

� Q
� 6=� �(�+ b�)

�(c� b� + �[q � 1])

�
Z 1

0

dp� p
b��1+�
� (1� p�)

c�b��1+�[q�1]

"
(1� p�)

3=2

p
p�

� p
3=2
�p

1� p�

#
: (74)

The integrals are all convergent5 if the inequality � > 1=[2(q�1)] holds. (We remind the reader that

b� � 1 due to the marking condition. Hence, the integrals always converge at p� = 0). From Fig. 2

we see that our region of interest lies at � > 1=q, which means that the inequality indeed holds.

Notice that for q = 2 the integral is antisymmetric under the mapping (p� ! 1�p�; b� ! c� b�),
yielding �3 = 0. Notice too that we have set t = 0 without running into any divergences. In the

proof of Theorem 1 it is impossible to set t = 0.

5 We also have E[jA(i)

j j3] < 1, and hence the Berry-Ess�een theorem holds, stating that there is uniform con-

vergence to a Gaussian distribution, with errors of order 1=
p
m = O(1=c0). Eq.(73) gives a sharper bound on the

width of the central region than the Berry-Ess�een theorem.
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If the `extremal' strategy of Section 5.4 is employed by the colluders, then (74) can be written

as

�3 =
�(�q)

[�(�)]q
c � c!

�(c+ �q)

X
b

[

q�1Y

=0

�(�+ b
)

�(1 + b
)
] (75)

�(by � 1
2
+ �)

�(by + �)

�(c� by � 1
2
+ �[q � 1])

�(c� by + �[q � 1])

�
1� 2by

c
+
�[q � 2]

c

�
:

Here y is a function of b, namely the symbol chosen by the colluders after they have observed b,

such that ~� is minimized. Notice that (75) has the same form as (61); the only di�erence lies in

the factor between the curly brackets. Numerical results for (75) are shown in Figs. 9 and 10. It

is clear from Fig. 9 that �3 hardly depends on c.
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Fig. 9: Third moment �3 as a function of � for various coalition sizes c, for q = 6. The colluders

employ the `extremal' strategy.

Finally we substitute some numerical values into (73). From Lemma 3 we have ~�j = 1. We

use the result (62), m = (2=~�2)c20 ln "
�1
1 . We set "1 = 10�15, corresponding to the probability of

an 8-sigma event. We wish the CLT to apply in a central region with #sigmas� 8. According to

(73), this requirement is satis�ed for c0 ' 10 � �3~�.
We use Fig. 10 to read o� the value of �3 at the �-value where ~� (61) is in the optimal range (as

shown in Fig. 2). Setting � slightly larger than 1=q, we see that j�3j < 1. Hence, for q � 10, given

the ~�-values plotted in Fig. 2, we conclude that the Gaussian approximation applies when the

code is built to resist coalitions of size c0 larger than some threshold lying between approximately

10 and 20. The larger c0, the better the Gaussian approximation.
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Fig. 10: Third moment �3 as a function of � for various alphabet sizes q, for c = 20. The colluders

employ the `extremal' strategy.


