High Efficiency Feedback Shift Register:
oc—LFSR*

Guang Zeng', Wenbao Han?, and Kaicheng He3

! Department of Applied Mathematics,
Institute of Information and Science ,
Zhengzhou 450002, PR.CHINA,
sunshine_zeng@sina.com
2 wb.han@263.net
3 hekaicheng_jxy@163.com

Abstract. We introduce a new kind of word-oriented linear feedback
shift register called c—LFSR which is constructed with the instructions
of the modern processor and have fast software implementation. We of-
fer an algorithm to search for good primitive c—LFSR. In particular, we
give two examples HHZ-1 and HHZ-2 and compare their efficiency and
security with those of the LFSRs appearing in stream ciphers such as
SNOW, SOBER and Turing. Our results show that replacing the LFSRs
in SNOW, SOBER and Turing with HHZ-1 will improve security and
the efficiency of fast software implementation.

Keywords. Linear Feedback Shift Register, Finite Field, Stream Cipher

1 Introduction

Linear feedback shift registers (LFSRs) over finite fields are widely exploited and
play a important role in cryptography and coding theory, see Golomb [1], Lidl
and Niederreiter [2] etc. Most LFSRs used in traditional stream cipher are based
on binary field Fs, which have good cryptographic properties but produce only
one bit per step. It is well-known that hardware implementations of traditional
binary LFSR are simple and efficient, but their software implementations are
inefficient for modern processors with word operations.

Generally, there are two principles to evaluate FSR sequences: 1). security;
2). efficiency and resource consumption. These two principles have same impor-
tance, in other words, if a FSR has extremely excellent cryptographic properties
but its implementation efficiency is low and resource consumption is large, their
application value is limited. In fact, modern computer processors provide many
fundamental word operations: a). logic operations such as Xor, And, Or, comple-
mentary operation, left shift, right shift, cycle shift etc; b). arithmetic operations
such as addition, substraction, multiplication, division etc. So it is interesting to

* This work is supported by NSF of China with contract No.19971096 and No.90104035

research on how to use the word operation above to design word-oriented feed-
back shift registers (FSRs) with good security, easy hardware and fast software
implementations.

In FSE of 1994, Preneel [3] set forth the following problem: how to design
fast and secure FSRs with the help of the word operations of modern
processors and the techniques of parallelism. In the stream ciphers such
as SOBER [4, 5], SNOW 6, 7], and Turing [8], word-oriented primitive LFSRs
over finite field were used, which were carefully chosen so that the Hamming
weights of the generating primitive polynomials of the component sequences are
large and have fast software implementation.

This paper is arranged as following. In section 2, we introduce the concept of
o—linear feedback shift register (c—LFSR) based on logic operations on words,
which is the generalization of TSR introduced by Tsaban and Vishne [9], and give
basic properties of c—LFSR. In Section 3, we discuss the 32-bit c—LFRS and
give an algorithm to search for the primitive c—LFRS with few logic operations
on words, as a result we give two examples: HHZ-1 and HHZ-2. In Section 4, we
compare HHZ-1 and HHZ-2 with the LFSRs appeared in SNOW1.0, SNOW2.0,
SOBER#t-32 and Turing by the point of view from security and efficiency of
software implementation.

2 Background of o—LFSR

2.1 Definition of c—LFSR

Let m be a positive integer, Fom the finite field with 2 elements, aq, ay, - - -,
Q-1 a basis of Fom over Fy. Let M,,(F2) denotes m x m matrix ring over Fy
and GL,(F2) C M,,(F3) the general linear group.

Let ¢ € Fam, then ¢ can induce a linear transformation C on vector space
Fom /Fo: C(a) = car, ¥ o € Fam. For convenience, we will use the same symbol
throughout the paper without distinguishing elements in finite field, induced
linear transformations and corresponding matrixes under the basis ag, ag, - - -,
Qm—1. So we have Fom C M, (F2).

Let A € M,,,(Fy), a € Fam, there exists vector (ag, a1, -, am—1) € F5* such
that o = Zﬁ_ol a;o;. We define linear transformation A induced by A as

m—1

Ala) = Z bia;, where (bo,b1, -+ ,bm—1) = (ag,a1, -+, am-1) - A € F3*
=0

Later, we denote A by A and A(«) is abbreviated to Aa for a € Fom.

Definition 1. Let n be a positive integer, Cy,C1,...,Cpn_1 € My, (Fa). If the
sequence s°° = sq, 81, -+ over Fom satisfies:

Sitn = —(Cosi + C18i41 + -+ + Cp_1Sign—1) fori=0,1,---, (1)

we call (1) o—linear feedback shift register (c—LFSR) of order n, s the se-
quence generated by the o—LFSR (1), matrixz polynomial

flx)=a"+ Chrogz™ '+ 4+ Clz+Cy € M, (F2)]
o—polynomial of o—LFSR (1).

The following figure is the model of c—LFSR

e T S Y
1 CVO
D

R

Fig.1. 0—LFSR over Fam

2.2 Basic Properties

It is easy to see that s> generated by c—LFSR (1) over Fom must be ultimately
periodic sequence, that is, there exists integers r > 0 and the least nonnegative
integer ng > 0 such that s, = s, for all n > ng, r is the so-called period and
ngo the preperiod of s*. If ng = 0, the sequence is periodic precisely. Similar to
linear recurring sequences in finite fields, we have

Theorem 1. [12] Let the sequence s> = sg,s1--- be generated by c—LFSR
(1). Then s> is periodic if and only if Coy € My, (F2) is invertible, that is
Coy € GLm(]FQ)

Theorem 1 is the generalization of traditional LFSR, same as the conclusion
of traditional LFSR over finite fields if all the coefficients in o—LFSR (1) are
in Fom. In research of stream cipher, it is familiar that using simple structure
to construct pseudorandom sequences with good cryptographic properties is of
vital significance. It is hopeful that c—LFSR can serve those good sequences.
Now we give the definition of primitive c—LFSR as following.

Definition 2. Let the sequence s = sg, 1 -+ be generated by o—LFSR (1). If
the period of s is 2™" — 1, we call o—LFSR (1) primitive o—LFSR and its
o—polynomial primitive o—polynomial.

We observe that the period of s with n—th ¢—LFSR (1) is < 2™" — 1, so
2™M™ — 1 is the possible maximal period, in fact it is.

Theorem 2. [12] Let the sequence s> = sg,s1 - - be generated by co—LFSR (1)
with o—polynomial f(z) = 2™ + Cp_12" 4 -+ 4+ Crz + Cy € M,,(F3)[z] where
Co € GLp(F2) and Cy = (¢ ymxm for1=0,1,---,n—1,

F(2) = (f9(2))mxm € Mm(F2[z])
be the corresponding polynomial matrixz of f(x) where

y . 1, i=7;
1) — St) .M 1) ? ’
Y (x) 633—1—50336]1?2) _{O,i;«éj.

Then c—LFSR (1) is a primitive co— LFSR if and only if the determinant |F(x)|
s a primitive polynomial of degree mn over Fs.

Theorem 2 gives a condition to determine whether c—LFSR is primitive or
not. We expect to find such primitive c—LFSR whose 0 —polynomial has simple
form and fast software implementation. For the number of primitive c—LFSR,
we did massive tests and find the following formula although we do not prove.

Congecture 1. The number of all n—th order primitive c—LFSR over Fom is

|GLm(F2)| (2™ —1) _gm(m—1)(n-1)
2m — 1 mn

Y(m,n) =

m—1
where G L,, (Fz) is the general linear group over F3 and |G L, (F2)| =] (2™ — 29).
i=0

By Conjecture 1, we conclude that the number of n—th order primitive
o—LFSR over Fym is much greater than £ e 1) , the number of n—th primitive
LFSR over Fom. This provides much broader space for choosing c—LFSR with
good cryptographic properties to satisfy different requirements.

Now we discuss the primitive problem on coordinate sequences of primitive
o—LFSR. Under the basis ag, g, -, @mym—1 of Fom /Fa, we can rewrite the se-
quence s generated by c—LFSR over Fom as follows:

§° =570+ s+ Sp_ Q1.

We call binary sequence s$° the i-th coordinate sequence of s> (0 < i <m —1).
Definition 3. Let f(z) € M,,(Fa)[z]. For 0 <i<m —1, define

G(f(z)) ={s* € Fga|s> is generated by c—LFSR with o—polynomial f(x)}
Gi(f(x)) = {s5° € F3°|there exists a s> € G(f(z)) such that s§° is the i-th

coordinate sequence of s}

Now we discuss the minimal polynomial of the binary sequences in G;(f(z))
when f(x) is a primitive c—polynomial.

Theorem 3. [12] Let f(x) € M,,(F3)[z] be a primitive o—polynomial of degree
n, F(x) the polynomial matriz of f(x). Then all the nonzero binary sequences
in G;(f(x)) fori=0,1,---,m — 1 is primitive linear recurrence sequences over
Fo with the minimal polynomial p(x) = |F(x)|.

Tsaban and Vishne [9] introduce the concept of TSR, discuss its basic prop-
erties and give an algorithm to search for primitive TSRs. Dewar and Panario
[10] further improve the algorithm. In fact, TSR is a special case of c—LFSR as
described in the following figure, where (ag, a1, -,an—1) € F5, T € GL,(F2).

4%314—77.—1-’—%31—0—71 2 32+1 s>

Fig. 2. Model of TSR

In fact, we have more general conclusion as following.

Corollary 1. (¢f.[9]) Let T € GL,,(F2), qr(x) = |xE + T| € Fylz] be the
characteristic polynomial of T, f(x) = wi(x)] + we(x)T € M, (Fo)[x] where E
is m xm identity matriz, wy(z), wa(x) € Falx] such that wa(x) # 0, degw; (x) =
n,degws(x) < n. Then o—polynomial f(x) is primitive < wq(x)™ qT(w;Ei;
a primitive polynomial over Fs.

) is

Proof. Let F(z) be the polynomial matrix of f(x), we have

wy (x) RN C))

By Theorem 2, we prove the corollary. O

|F ()] = [w1(2)] + w2 (2)T| = wa(x)™|

If wi(z) = 2™ in Corollary 1, then we obtain the conclusion of Tsaban and
Vishne[9]. Furthermore, Let m = 32 , T' € GL32(F2) the corresponding matrix
of linear transformation induced by a suitable primitive element of Fos2 under
the basis ag, aq, - -, asy of Fasz over Fs.

1. Let n = 17, wi(z) = 2'7 + 2! + 2%, wy(x) = 1, then the o—LFSR with
o—polynomial f(z) = wl() + wy(z)T appears in SOBER-t32 and Turing;

2. Let n = 16, wi(x) = 2% wa(z) = 2 + 23 + 1, then the c—LFSR with
o—polynomial f(x) = wl()T + wa(2)T is the part of SNOW1.0 where T is
the matrix of a primitive element of Fos2 under the basis ag, aq,- -+, as1-

In fact, the LFSR component of SNOW2.0 is also a simple c—LFSR, but
a little more complex than the examples above. In next section, we’ll discuss
o—LFSRs over Fys2 to obtain simple primitive o —LFSR with fast software im-
plementation, lower resource consumption and stronger security.

3 Software Oriented 32 bit c—LFSR

Traditional LFSR over Fom uses addition and multiplication over finite field
Fom, but multiplication reduces software implementation efficiency greatly. For
the sake of seeking for c—LFSR suitable for high speed implementation in soft-
ware, we use some special linear transformations, namely the word operations
provided by modern processor, such as, and operation, circular rotation opera-
tion, left(right) shift operation and left right shift combination operation.

For a € Fom, let o = sz:_ol a;a;, where a; € Fy for i =0,1,---,m — 1.

1. And Operation A,. Let v € Fgm, v = Z;’Z)l c;a;, where ¢; € Fy for

i=0,1,---,m — 1. For a € Fam we define A,(a) = Z:.i_ol a;c;o;. In fact,
linear transformation A, over Fom /5 is "and” operation of coordinates of
~ and a.
00---01
?é)”' 8 10---00
L
e o=| 0100 2)
00 ma1/ pum 00---10)

2. Circular Rotation Operation o. Defined in (2) as above, in fact, o is
right circular rotation, so left circular rotation is o~!. Let k be an integer,
a € Fom, we have

m—1
k
o"(a) = Z Gitk (mod m) %
=0

. . . m—1
If the basis ag, a1, -+, Q1 of Fam /Fy is a normal basis 3, 8%, ---, 8%,

then the linear transformation induced by o is the Frobenius automorphism
over Fam, that is o(x) = 22. Moreover, we have M,,(F3) = Fom[o], that is
why we name c—LFSR.

3. Left Shift Operation L and Right Shift Operation R. For a € Fom,
we define L(a) = " % ajair, R(a) =" aiia.

00---00 010---0
10---00 001---0
L= 01---00 R=1| :::-. :
RSN 000---1
00---10 000---0

mXxXm mXxXm

4. Left Right Shift Combination Operation Li;;, where s,t are positive
integers such that 0 < s,t < m. Define

Us: = L* + R!

In the linear transformations above, o is invertible; A, (y # Z?lBl o;), L, R

is noninvertible; for L+, we have
Lemma 1. Let 0 < s,t < m be positive integer, Us; is invertible < (s +t)|m.

Finite field with characteristic 2 is most convenient and widespread in practi-
cal application such as communication, cryptographic technique, etc. In addition,
we generally let m be consistent with the word size (such as 8, 16, 32 and 64 bit,
etc) of processor to exert the performance. For the sake of comparing o —LFSR
with the LFSR components of SOBER-t32, Turing, SNOW1.0 and SNOW2.0,
we concentrate on constructing software oriented 32 bit c—LFSR. It should be
noticed that the theory of c—LFSR and searching algorithm proposed in this
section also be applicable to any finite field and any word length processor.

Now we review some symbols before. Let Ms2(IF3) be the 32 x 32 matrix
ring over Fy, GL32(F2) the invertible matrix of Msz(Fs). Let f(z) = 2™ +
Cpo12" 1+ + Ciz + Cy € M,,(F3) is the o—polynomial of c—LFSR, where
Cn_1,Cph_o,---,Cy € Mgg(Fg) and Cy € Gng(IFQ).

As mentioned in Section 1, And Operation A,y € Fasz, Left (Right) Shift
Operation L*,0 < k < 32 (R*,0 < k < 32), Circular Rotation Operation
oF, —32 < k < 32 and Left and Right Shift Combination Operation Ll ;,0 <
s,t < 32 are all linear transformations over F32. Circular Rotation Operation
o is invertible operation, the corresponding matrix is a invertible matrix, totals
63. And Operation A,y € Fos2,y # Z?io a;, Left (Right) Shift Operation
are noninvertible operation, totals 232 4 60. For Left Right Shift Combination
Operation L ; there are 5 invertible and 416 noninvertible.

Now we define two sets W and V' as follows.

W = {A,,LF R¥ Uy |y € Fosz,y £ 0 or 3200 ay; 0 < kK s,t < 32} 3)
V={o" U] —32< k<32 0<s,t<32(s+1)32}

It is obvious that the primitive 0 —LFSRs of simple forms with coefficients in
W and V are suitable to fast software implementation. Therefor we try to find
primitive c—polynomial with few terms and coefficients in W |J V. On the other
hand, we observe that #W = 232 4 476, #V = 68, so we have rich space for
choosing good primitive o—polynomial.

By the previous results, we have the necessary condition to determine whether
o—LFSR is primitive so that we can give a (exhaustion) algorithm which need to
improve further in the future work. Now we give the search algorithm in detail:

Algorithm 1 (Searching for Simple Primitive c—LFRS).

1. Choose Coefficients of c—polynomial. First determine the number of
word states and nonzero coefficients of o—polynomial f(x), usually starting
from trinomial. The positions of nonzero coefficients are chosen randomly
and the constant term is from V', others from W JV.

2. Compute Determinant. Computing the determinant g(xz) = |F(x)| €
Folz], where F(x) is the characteristic polynomial matriz of f(x).

3. Determine Primitive. Check whether g(x) is a primitive polynomial of
degree mn over FFs.

By the searching algorithm above, we find massive primitive o —polynomials
with few terms. Consequently, one can further pick out good primitive o —polynomial
through software speed test and comparison of cryptographic properties. In this
paper, we give two examples HHZ-1 and HHZ-2 with figure below, which are
both primitive with 16 word states. HHZ-1 is a pentanomial with primitive
o—polynomial hi(z) = z'® + A, 2" 4+ La® + Ra® + 1 and HHZ-2 is a tri-
nomial with primitive o—polynomial hs(z) = ¢ + A,,2% + U3 1, in which
v1 = 0x5e8491£8, 79 = Oxbffffedf.

[TTTITTTTITTITITITIT] [TTTTITTTIT I]

ﬁé @ ®

&
Fig. 3. Model of HHZ-1(left) and HHZ-2(right)

4 Software Implementation and Comparison

4.1 LFSR Components of Four Stream Cipher

For the sake of comparison, we inspect four stream cipher SOBER-t32, Turing,
SNOW1.0 and SNOW2.0, whose LFSR components all come from primitive
LFSR over finite field. In fact, they are carefully selected with high software
efficiency and good cryptographic properties.

SOBER-t32 and Turing. SOBER-t32 is a candidate of NESSIE and its LFSR
is 17th-order primitive LFSR over Fos2 with the recurrence relation: s;y17 =
St415 D St+4 B asy where @ = 0xc2db2aa3, t = 0,1, Turing’s LFSR is based
on the foundation of SOBER-t32 which is identical with SOBER-t32 in form.
It adopts the design rationale of SNOW2.0 so that « is a root of irreducible
polynomial y* @ 0xDOy>® @ 0x2By? @ 0x43y @ 0x67 over Fg of degree 4.

WIIIIIIIIIIIIIIIH
%& & @

SNOW1.0 and SNOW2.0. SNOWI1.0 is also a candidate of NESSIE and
its LFSR is 16th-order primitive LFSR over Fas2 with the recurrence relation:
St416 = (St10 D 8443 B 8¢) x where t = 0,1,---, a = 0x20108403.

WIIIIIIIIIIIIIII\
CHEED S

SNOW?2.0 is a new version of SNOW1.0. The designer declared SNOW2.0
overcome certain latent weakness in the design and become more secure and
faster in software. It’s new recurrence relation is:

—1
St416 = @ St411 D St B asy £ =0,1, ..

where « is a root of x4 + 32323 + 24522 + 3481 + 3239 € GF(2%)[x], B is a root
of 28 + 27 4+ 25 + 23 + 1 € Fy[z] and figure is below.

HEENEEENEEEENEN
@

4.2 Implementation

Fast software implementations. Software implementation of LFSR is very
simple, but still has some skills to speed up. We describe two implementations
of LFSR [6] and take SNOW1.0 as example to explain. Let R[0], R[1],-- -, R[15]
be the 16 word states.

— Basic Mode: We simply calculate the feedback value, shift all the other values
of states and then renew last state. The code is as below:

new = (R[0]®R[3|DR[9])*c; R[0] = R[1]; ---; R[14] = R[15]; R[15] = new;

The advantage of this mode is the compact, clear and perspicuous code; the
shortcoming is low efficiency since most time is consumed on state shift.

— Fast Mode: We use position shift to implement sequence generation. This
mode is the fastest, but increase the size of code. We'll illustrate the mode
as follows:

R[0] = (R[0] ® R[3] @ R[9]) * «;
R[1] = (R[1] ® R[4] @ R[10]) * o;

Software implementations of detail. In fact, the difference of code will have
great influence on the efficiency for a concrete algorithm. LFSRs of the four
stream ciphers involves multiplications = - o over Fos2, where « is fixed. In
SNOW2.0 and Turing, table look-up is used to implement the multiplication,
that is - @ = (¢ < 8) @ table[r > 24] where table is uniquely decided by
a. In SOBER-t32 and SNOW1.0, = - a can be implemented in three kinds of
methods. The first uses branch sentence, namely if((x > 31) ==1) x-a =
(x<1)®a; else x-a=(x<1). The second uses shift and multiplication,

10

that is x - = (x < 1) ® ((x > 31) *). And the third is table look-up, let
table[0] = 0, table[l] = a, so - a = (x K 1) @ table[x > 31]. But in the modern
processor, there still exists other skills to improve the speed in software, that is,
if the size of table is not large, it may be completely placed in cache of processor
so that it is not necessary to visit the memory each time, as a result the third
way is quicker than the second way.

For our 0 —LFSRs only involved Xor, And, Shift, Circular Rotation, etc which
are the fundamental machine instructions, their software implementations are
sure to be simple and fast with little resources. In fact, the hardware implemen-
tations of the our c—LFSR is also easy.

4.3 Cryptographic Properties of c—LFSR

LFSRs used in stream ciphers are generally primitive sequences so that they
have pseurandom properties including the maximal period, same distributions
of element frequency within a block and good autocorrelation properties, etc. In
addition, in order to resist some cryptanalysis such as correlation attack, etc,
the generating polynomial of LFSR is required to be selected carefully. However,
complicated generating polynomial of LFSR will inevitably lead to decrease the
efficiency in software. Designers must carefully take care of the balance between
efficiency and security. In fact SNOW2.0 is a extremely splendid model in the
design and has obtained a desirable result.

Divisibility. In order to resist correlation attack [14] and distinguishing attack
[13], the minimal polynomial of bitwise primitive sequence should not be a divisor
of a polynomial with few terms and low degree. SNOW2.0 uses a inverse element
a1 as coefficient to strengthen the resistance against certain correlation attack,
as discussed in [14], but the speed of software slows down half of SNOW1.0.
SOBER-t32 and Turing haven’t solved this problem since the designers think
that the two kinds of attacks have practical significance only when the correlation
of nonlinear function cannot be neglected.

In HHZ-1 and HHZ-2, because the Left Shift and Right Shift Operations

are noncommutative and the two operations at different positions so that the
coefficients of the primitive o—polynomials hj(x), ho(x) are noncommutative.
As a result, it is difficult to find a multiple polynomial with few terms divis-
ible by hi(z), ho(x) separately. So we give a solution to resist correlation and
distinguishing attacks.
Weight of minimal polynomial. Weight of minimal polynomial is defined as
the number of nonzero terms in minimal polynomial except the highest degree
item. It is the best choice that the weight of the minimal polynomial is about
half of the polynomial degree because this can achieve maximal confusion effect
and resistance to correlation attack. Weight of SNOW2.0, SOBER-~t32, Turing
and HHZ-1 are all about half of degree which achieved the best effect on security.
SNOW1.0 and HHZ-2 are not, but have excellent efficiency. Therefore HHZ-2 is
also a pretty choice in the circumstance that speed is of specially importance.

11

4.4 Comparison Result

For the six c—LFSRs above, we used the standard C language programming to
carry on the speed test in basic mode and fast mode. Test machine is Pentium IV
1.5G CPU with 256 M memory, Microsoft Windows 2000 Professional operation
system, VC6.0 compiler system and iterative step is 239 = 1073741824. Testing
results come from Table 1.

Algorithm|Order| Memory | Weight |Divisible|Fast Speed|Speed Ratio|Basic Speed
(Gbits/s) (Mbits/s)

Snowl.0 | 16 (16+3)*4 | 82/512 Y 11.38 100 587
Snow2.0 | 16 [(16+512)*4(250/512 N 7.21 63 587

Sober-t32| 17 | (17+2)*4 [272/544 N 10.07 88 599
Turing | 17 |(17+256)%4|266/544] Y 9.84 86 599
HHZ-1 16 16*4 256/512 N 11.45 101 599
HHZ-2 16 16*4 74/512 N 13.13 115 603

Table 1. Test Result

Speed is scaled with throughput, every clock c—LFSR, outputs 32 bit. So
in fast mode, fast speed=iteriative step x32x state order/(time consuming); in
basic mode, basic speed=iteriative step x32 /(time-consuming). For convenience
of comparison, using SNOW1.0 as standard, speed ratio is the percentage of
respective speed division by speed of SNOW1.0. Memory refers to the need of
every algorithm in implementation.

From Table 1, we see that the memories of SNOW2.0 and Turing are larger,
2112 byte and 1092 byte respectively. Certainly, several thousands byte memory
in modern computer are not a problem; but in embedded systems or chips, it is
necessary to take into account the resource consumption.

As a result, HHZ-1 achieves the best feature in divisibility and weight of
minimal polynomial. Moreover, it is much faster than SNOW2.0. In security
and efficiency, HHZ-1 is superior to SOBER and Turing. Although HHZ-2 does
not achieve best weight of minimal polynomial, its speed holds the obvious su-
periority.

5 Conclusions

We introduce the concept of c—LFSR, a word oriented LFSR, which can be
used in the design of modern stream cipher. We offer an algorithm to search
for primitive c—LFSR and obtain many primitive c—LFSRs such as HHZ-1
or HHZ-2, etc, which use less memory and computer instructions. In addition,
some o —LFSRs buildup the ability against fast correlation attack and distinguish
attack and have fast software implementation so that they could be used as the
LFRS component in many cryptographic schemes based on software.

12

References

1. S.W. Golomb, Shift Register Sequences. Holden-Day, San Francisco, 1967.

2. R. Lidi and H. Niederreiter, Finite Fields, in: Encyclopedia of Mathematics and its
Applications 20 (1983), Cambridge University Press.

3. B. Preneel, Introduction to the Proceedings of the Fast Software Encryption 1994
Workshop (Ed. Bart Preneel), LNCS 1008 (1995) 1-5

4. P. Hawkes and G.G. Rose, Primitive Specification and Supporting Documentation
for SOBER-t16 Submission to NESSIE, Proceedings of the first NESSIE Workshop
(2000)

5. P. Hawkes and G.G. Rose, Primitive Specification and Supporting Documentation
for SOBER-t32 Submission to NESSIE, Proceedings of the first NESSIE Workshop,
(2000)

6. P. Ekdahl and T. Johansson, SNOW — a new stream cipher, Proceedings of the first
NESSIE Workshop, (2000)

7. P. Ekdahl and T. Johansson, A New Version of the Stream Cipher SNOW, Selected
Areas in Cryptography, LNCS 2595 (2002) 47-61

8. P. Hawkes and G.G. Rose. Turing: A Fast Stream Cipher, Fast Software Encryption,
LNCS 2887 (2003) 24-26

9. B. Tsaban and U. Vishne, Efficient Linear Feedback Shift Registers with Maximal
Period, Finite Fields and Their Applications 8(2) (2002) 256267

10. M. Dewar and D. Panario, Linear transformation shift registers, IEEE Transactions
on Information Theory 49(8) (2003) 2047-2052

11. K. Chen, W. Millan and L.R. Simpson, Perspectives on Word Based Stream Ci-
phers, Cryptographic Algorithms and their Uses (2004) 14-27

12. Guang Zeng, Kaicheng He and Wenbao Han, Word-oriented Feedback Shift Reg-
isters: c—LFSR. (to appear)

13. P. Ekdahl and T. Jonhansson, Distinguishing Attacks on SOBER-t16 and t32, Fast
Software Encryption, LNCS 2365 (2002) 210-224

14. P. Hawkes and G.G. Rose, Guess-and-Determine Attacks on SNOW, Selected Areas
in Cryptography, LNCS 2595 37-46

15. A. Klimov and A. Shamir, A New Class of Invertible Mappings, Cryptographic
Hardware and Embedded Systems, LNCS 2523 (2002) 470-483

16. A. Klimov and A. Shamir, Cryptographic Applications of T-Functions, Selected
Areas in Cryptography, LNCS 3006 (2003) 248-261

A Minimal Polynomial of HHZ-1 and HHZ-2

HHZ-1 is equivalent to 32 parallel binary LFSRs with minimal polynomial p; (z),
as shown in binary, with the first bit being the leading term and decreasing ex-
ponent:

1000001000001000001001101001001001101011000111101001011101101011000110
0110011111000000101000101100110111000101000111100101001100011000111101
1010110001001000100100001111000000010111010101100101010001101001000111
0111011011110101000010101100011110001111110000101000101100111100111111
1110111010111000110001010011010111011101110000011001000011100101111111
1011110110111101111100111010001110011100110100110100011110101011010110
1101111100011101010101100010011111110000111000101001100100000110001000

11100000000110000000001

That is, py (z) = 2712 + 2596 4 £500 4 494 .. 4 231 4 430 4 426 | 222 4 21 4

220 + 2™ + 219 4 1. This polynomial has 257 nonzero terms.

HHZ-2 is equivalent to 32 parallel binary LFSRs with minimal polynomial ps(z):

1000000100000010000001000000000000000000000000000000000010000001100000
1100000110000001000000100000010000001000001100000100000010100001000000
0000000000000000000000010000101000011100001100000110100001010000101000
0100000010100001010000001000001100000010000001100000110000010000011100
0011000001110000010000000100000000000001000001000000010000000000000110
0000000000010000001000000000000000100000010000001000001000000010000001
0000001000

00000000000000000000001

That iS, pz(l‘) — $512 + LESOS + 1.498 + 1.491 4+t 55144 + IE128 + (L’121 + LE114 +

2108 4 100 4 293 4 286 1 1. This polynomial has 75 nonzero terms.

B Some Experiment Results

Here we list some results of experiments in finding HHZ-1 and HHZ-2.

o—polynomial Weight||oc—polynomial Weight
21 + 522 + A0x5437af%ex” + 02| 66 21 + 6223 + N0x5437ad31z’ + 0| 38
2% + oa® + N0x5437d77f2% + 02| 76 |[x'° + o2 + A0x5437b48dx” + 0| 44
2% + oa® + AN0x5437b1482% + 02| 48 |[z'® + 0%z + A0x5437adadz? + 0| 58
21 + 522 + A0x5437b89cz? + 02| 58 21 + 6%2% + N0xb43Tafclz’ + o| 64
2% + oa® + N0x5437af9ex” + o | 62 |[[z'° + o%x> + A0x5437b4c8xz” + | T4

Table 2. Primitive c—LFSR 1

o—polynomial

W

o—polynomial

16 1 N0x5e8491f82° + Lz’ + Ra® + 1

256

16 4 AOxfe8492adz® + L1325 + Ra® + 1

164

16 1 A0xfe84a29bz® + La® + Ra® + 1

230

16 1 A0xfe8493012° + L32° + Ra® + 1

176

224

16 4 A0x5e8491c62® + L3z° + Rz® + 1

176

16 L A0xfe84a2ddz® + La® + Ra® + 1

x
x
x
x

180

16 4 A0x5e84914bz® + L°z° + Rz® + 1

126

xr
X
215 + AOxfe84a4a2s® + La® + Ra® + 1
xr
xT

16 1 A0xfe84a6b7z® + La® + Ra® + 1

232

210 + AOxfe84a27azr® + Lz® + Ra® + 1

222

Table 3. Primitive c—LFSR 11

o—polynomial Weight||oc—polynomial Weight
2% + AOx7ceabddfz’ + Uya| 124 218 + AOx7ceabfax® + Ui 100
210 4 NOxffffffbex’ + 11| 80 ||z'° + AOxbffffedfs’ 4+ Lz,| 74
1% + NOxbffffeas8z” + 1| 68 |[[2'0 + AOxff££££812° 4 Us 1| 54
2% + AOxbfffffaca’ + Usz| 40 ||z'® + AOxffffff13z° + U7 | 42
'8+ AOxff££11132” + Us 3| 34 |[[2'0 + AOxfffff162” + Uis,1| 24

Table 4. Primitive c—LFSR III

