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0. Introduction

This paper is a continuation of [7], in which split graphs with a regular endomorphism

monoid are characterized explicitly (Theorems 2.13 and 3.3 in [7]). In this paper, we will further

characterize split graphs with a complete regular endomorphism monoid (Theorems 2.14 and

2.18). The complete regularity of the full transformation semigroup T (X) is also investigated as

a special case (Corollary 2.19).

It seems to be generally agreed that one of the most important semigroups associated with a

graph is the endomorphism monoid. Quite a few research papers have been devoted to this theme.

For a survey see [6] and [11]. The researches in these lines are motivated by the applications of

semigroup theory to graph theory. Just as pointed out in [3], the class of regular semigroups is

much more extensive than the class of groups, which is certainly a class of regular semigroups,

and the most coherent part of semigroup theory at the present time is the part concerned with

the structure of regular semigroups of various kinds. Since regularity and complete regularity

are among those concepts of basic importance in semigroup theory, it seems reasonable to make

some investigations to them in the endomorphism monoid of a graph.

The question, for which graph G is the endomorphism monoid of G regular, was posed

in [10]. The characterization of all graphs with a regular or completely regular endomorphism

monoid seems difficult. In [9], a regular endomorphism of a graph is characterized by means of

idempotents. In [12], connected bipartite graphs with a regular endomorphism monoid are found.

Split graphs may be regarded as the graphs between bipartite graphs and their complements[1,4].

Hopefully, the main idea (Proposition 2.4) to derive the characterization of a split graph with a

Received date: 2003-08-20



254 Journal of Mathematical Research and Exposition Vol.26

completely regular endomorphism monoid can also be used for the investigation of other classes

of graphs.

1. Basic notions

The graph we consider in this paper are finite undirected graphs without loops and multiple

edges. If G is a graph, we denote by V (G) (sometimes simply G) and E(G) its vertex set and

edge set, respectively. A graph H is called a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

Moreover, if for any x, y ∈ V (H), {x, y} ∈ E(G) implies {x, y} ∈ E(H), then H is called an

induced subgraph of G. We denote by Kn a complete graph with n vertices, and Kn an empty

graph with n vertices. A complete subgraph of G is called a clique of G. Let G be a graph and let

H be a clique of G. If H has the maximal order of all the cliques of G, i.e. |V (A)| ≤ |V (H)| for

any clique A of G, then H is called a maximal clique of G. A stable set of G is a set of pairwise

non-adjacent vertices and a complete set of G is a set which induced a clique. Let v ∈ G. Denote

N(v) := {x ∈ G|{x, v} ∈ E(G)}, called the neighborhood of v in G, and d(v) := |N(v)|, called

the degree of v (in G).

A graph G(V, E) is called a split graph if its vertex-set can be partitioned into two disjoint

(non-empty) sets K and S, i.e. V = K ∪ S (K, S 6= ∅), such that S is a stable set and K is

a complete set (cf. [1,4]), that is, the subgraph of G induced by K is Kn if |K| = n and the

subgraph induced by S is Km if |S| = m. (Note: the partition is not necessarily unique, and the

clique induced by vertex-set K is also denoted by K.) A complete split graph is a split graph

such that every vertex of S is adjacent to every vertex of K.

Let G and H be graphs. A homomorphism f : G → H is a vertex-mapping V (G) → V (H)

which preserves adjacency, i.e. such that for any a, b ∈ V (G), {a, b} ∈ E(G) implies {f(a), f(b)} ∈

E(H). Moreover, if f is bijective and its inverse mapping is also a homomorphism, then we call

f an isomorphism from G to H , and in this case we say that G is isomorphic to H (under

f), denoted by G ∼= H . A homomorphism from G to itself is called an endomorphism of G.

A bijective endomorphism of G is called an automorphism of G. An endomorphism f is said

to be half-strong (cf. [5]) if {f(a), f(b)} ∈ E(G) implies that there exist c ∈ f−1(f(a)) and

d ∈ f−1(f(b)) such that {c, d} ∈ E(G). By End(G), hEnd(G) and Aut(G) we denote the sets

of endomorphisms, half-strong endomorphisms and automorphisms of G respectively. It is well-

known that End(G) is a monoid (a monoid is a semigroup with an identity element) and Aut(G)

is a group with respect to the composition of mappings. Let f ∈ End(G) and let a ∈ G. Denote

f−1(a) := {x ∈ V (G)|f(x) = a}. If A is a subgraph of graph G, we denote by fA the restriction

of f on A and f(A) := {f(x)|x ∈ V (A)}.

Let f ∈ End(G). A subgraph of G is called the endomorphic image of G under f , denoted

by If , if V (If ) = f(G), and {f(a), f(b)} ∈ E(If ) if and only if there exist c ∈ f−1(f(a)) and

d ∈ f−1(f(b)) such that {c, d} ∈ E(G), where a, b, c, d ∈ V (G) (cf. [9] for the reasonableness of

this definition).

Let G(V, E) be a graph. Let ρ ⊆ V × V be an equivalence relation on V . Denote by [a]ρ
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the equivalence class of a ∈ V under ρ. A graph, denoted by G/ρ, is called the factor graph of

G under ρ, if V (G/ρ) = V/ρ and {[a]ρ, [b]ρ} ∈ E(G/ρ) if and only if there exist c ∈ [a]ρ, d ∈ [b]ρ

such that {c, d} ∈ E(G). Let f be an endomorphism of G, by ρf denote the equivalence relation

on V (G) induced by f , i.e. for a, b ∈ V (G), (a, b) ∈ ρf if and only if f(a) = f(b). The graph

G/ρf is simply called the factor graph of f . Define a mapping if : V (G/ρf ) → V (If ) with

if ([x]ρf
) = f(x) for x ∈ V (G). We now quote some concerned statements which will be used

later.

Proposition 1.1[8] Let G be a graph and let f ∈ End(G). Then the mapping if is an isomor-

phism from G/ρf to If .

Remark 1.2[8] Let f, g ∈ End(G). If ρf = ρg . then G/ρf = G/ρg. By Proposition 1.1,

G/ρf
∼= If under the isomorphism if and G/ρg

∼= Ig under the isomorphism ig. Thus If
∼= Ig .

We denote if,g := igi
−1
f and ig,f := if i−1

g . Then if,g (ig,f ) is an isomorphism from If to Ig (from

Ig to If ) and i−1
f,g = ig,f .

The following definitions are based on the book[3]. Let S be a semigroup. An idempotent

is an element e of S such that e2 = e. (In this paper we denote by Idpt(G) the set of all the

idempotents in End(G).) An element a of a semigroup S is called regular if there exists x in S

such that axa = a. A semigroup S is called regular if all its elements are regular. The concept

of regularity was introduced by von Neumann (1936) in ring theory, where it has also played an

important role. An element a of a semigroup S is called completely regular if there exists an

element x ∈ S such that axa = a and ax = xa. (Trivially, an idempotent is completely regular,

and a completely regular element is regular.) A semigroup S is called completely regular if all

its elements are completely regular. Define a relation L on S such that (a, b) ∈ L if S1a = S1b

(S1 is the semigroup obtained from S by adjoining an identity if necessary); similarly, define a

relation R on S such that (a, b) ∈ R if aS1 = bS1. L and R are equivalence relations on S. L

and R commute with each other. Define H := L ∩ R. These equivalence relations are called

Green’s relations on the semigroup S.

We will just say monoid instead of endomorphism monoid for a graph later on. If a graph G

possesses a (completely) regular monoid, we also say G is (completely) endomorphism-regular.

For any graph and semigroup theoretic concepts mentioned which are not defined here, please

refer to usual books on graph theory and semigroup theory, eg. [2] and [3]. The following

statements quoted from the references will be used later.

Proposition 1.3[8] (1) Let f, g ∈ End(G), then (f, g) ∈ L if and only if ρf = ρg and there

exist h, k ∈ End(G) such that hIg
= ig,f , kIf

= if,g .

(2) Let f, g ∈ End(G), then (f, g) ∈ R if and only if If = Ig and there exist u, v ∈ End(G)

such that for any a ∈ If (= Ig), u(f−1(a)) ⊆ g−1(a), v(g−1(a)) ⊆ f−1(a).

Lemma 1.4[7] Let G be a graph and let f ∈ End(G).

(1) f ∈ hEnd(G) if and only if If is an induced subgraph of G.
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(2) If f is regular, then f ∈ hEnd(G).

2. Characterization of split graphs with completely regular monoids

In this section, we will give the main results of this paper, namely, Theorems 2.14 and 2.18.

First, we need some precedent statements.

Lemma 2.1 Let G be a graph and let f, g ∈ End(G). Suppose f and g are regular.

(1) If ρf = ρg , then there exist u, v ∈ End(G) such that uIf
= if,g , vIg

= ig,f .

(2) If If = Ig , then there exist u, v ∈ End(G) such that for any a ∈ If (= Ig), u(f−1(a)) ⊆

g−1(a), v(g−1(a)) ⊆ f−1(a).

Proof (1) Since f is regular, there exists h ∈ End(G) such that fhf = f . Thus fh is an

idempotent and so fh is regular. Then by Lemma 1.4 Ifh and If are both induced subgraphs of

G. As fh(G) ⊆ f(G) and f(G) = fhf(G) ⊆ fh(G), fh(G) = f(G). Therefore Ifh = If . Now

define u := if,gfh. As ρf = ρg, u is well defined by Remark 1.2. Let x, y ∈ G with {x, y} ∈

E(G). Then fh(x), fh(y) ∈ Ifh with {fh(x), fh(y)} ∈ E(G). As Ifh is an induced subgraph,

{fh(x), fh(y)} ∈ E(Ifh) = E(If ). So {u(x), u(y)} = {if,g(fh(x)), if,g(fh(y))} ∈ E(Ig) ⊆ E(G).

Thus u ∈ End(G). Let a ∈ If . Then a = f(b) for some b ∈ G and so fh(a) = fhf(b) = f(b) = a.

Hence u(a) = if,g(fh(a)) = if,g(a), which implies uIf
= if,g. By symmetry, the existence of v

can be similarly proved;

(2) Since g is regular, there exists k ∈ End(G) such that gkg = g. Clearly, kg(a) = kg(b) ⇔

g(a) = g(b) for any a, b ∈ G and so ρkg = ρg . So, by Remark 1.2 ig,kg is an isomorphism

from Ig to Ikg . Now set u := ig,kgf . We see u is well defined since If = Ig . Let x, y ∈ G

with {x, y} ∈ E(G). As If is an induced subgraph, {f(x), f(y)} ∈ E(If ) = E(Ig). Thus

{u(x), u(y)} = {ig,kg(f(x)), ig,kg(f(y))} ∈ E(Ikg) ⊆ E(G), i.e. u ∈ End(G). Now, let a ∈ If

and let b ∈ f−1(a). Since If = Ig , a = g(c) for some c ∈ G. So, u(b) = ig,kgf(b) = ikgi
−1
g f(b) =

ikgi
−1
g (a) = ikgi

−1
g g(c) = ikg([c]ρg

) = ikg([c]ρkg
) = kg(c). Noticing gkg(c) = g(c), we have

kg(c) ∈ g−1(g(c)), and so u(b) ∈ g−1(g(c)) = g−1(a). Thus u(f−1(a)) ⊆ g−1(a). Also by

symmetry, the existence of v can be proved in a similar manner. 2

Theorem 2.2 Let G be a graph. Suppose f, g ∈ End(G) are regular. Then

(1) (f, g) ∈ L ⇔ρf = ρg ;

(2) (f, g) ∈ R ⇔If = Ig ;

(3) (f, g) ∈ H ⇔ ρf = ρg and If = Ig .

Proof (1) {(f, g) ∈ L ⇒ρf = ρg} follows from Proposition 1.3(1); {ρf = ρg ⇒ (f, g) ∈ L}

follows from Lemma 2.1(1) and Proposition 1.3(1).

(2) {(f, g) ∈ R ⇒ If = Ig} follows from Proposition 1.3(2); {If = Ig ⇒ (f, g) ∈ R} follows

from Lemma 2.1(2) and Proposition 1.3(2).

As H = L ∩ R, (3) follows immediately from (1) and (2). 2

Proposition 2.3[3] The following conditions on an H-class H of a semigroup S are equivalent:
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(1) H contains an idempotent;

(2) Every element of H is completely regular;

(3) H contains a completely regular element.

Now, using the above two statements, we can deduce the following proposition which will

be the main idea for the further proofs.

Proposition 2.4 Let G be a graph. Suppose f ∈ End(G) and f is regular. Then the following

four statements are equivalent:

(1) f is completely regular;

(2) Idpt(G) ∩ [f ]H 6= ∅;

(3) There exists g ∈ End(G) such that g2 = g, If = Ig and ρf = ρg;

(4) There exists g ∈ End(G) such that g2 = g, f(G) = g(G) and ρf = ρg.

Proof (1)⇒ (2). Since [f ]H contains a completely regular element f , then by Proposition

2.3(1,3) [f ]H contains an idempotent, and so Idpt(G) ∩ [f ]H 6= ∅.

(2)⇒ (3). Let g ∈ Idpt(G) ∩ [f ]H. Clearly, g ∈ End(G) and g2 = g. Then, as f and g are

both regular and f, g ∈ H, by Theorem 2.2(3) If = Ig and ρf = ρg.

(3)⇒ (4). This is clear.

(4)⇒ (1). Since f and g are both regular, by Lemma 1.4 If and Ig are induced subgraphs.

Hence If = Ig follows from f(G) = g(G). Then f, g ∈ H by Theorem 2.2(3), i.e. [f ]H contains

an idempotent g. Then by Proposition 2.3(1,2), f is completely regular. 2

Theorem 2.5[7] Let G(V, E) be a connected split graph with V = K ∪S and |K| = n. Then G

is endomorphism-regular if and only if there exists r ∈ {1, 2, · · · , n} such that d(x) = r for any

x ∈ S; or there exists a vertex a ∈ S with d(a) = n and there exists r ∈ {1, 2, · · · , n − 1} such

that d(x) = r for any x ∈ S \ {a} (if S \ {a} 6= ∅).

Lemma 2.6[7] Let G(V, E) be a connected split graph with V = K ∪ S and |K| = n. Let

f ∈ End(G). If maxx∈S d(x) ≤ n − 2, then fK ∈ Aut(K).

Lemma 2.7 Let G(V, E) be a connected split graph with V = K ∪ S such that |S| = 1. Let

x ∈ G and f ∈ End(G). If x 6∈ f(G), then f(G) = G \ {x}.

Proof Let |K| = n. Noting K is a complete set, we have |f(K)| = |K| = n, and so since

f(K) ⊆ f(G) ⊆ G, n = |f(K)| ≤ |f(G)| ≤ |G| = |K| + |S| = n + 1. Because x 6∈ f(G), we see

|f(G)| = n and f(G) = G \ {x}. 2

The idea for the proof of the next Proposition is mainly based on Proposition 2.4(1,4).

Proposition 2.8 Let G(V, E) be a connected split graph with V = K ∪ S such that |S| = 1.

Then End(G) is completely regular.

Proof Since |S| = 1, End(G) is regular by Theorem 2.5. We further show End(G) is completely

regular. Suppose S = {a}, |K| = n and f ∈ End(G). We consider three cases as follows:
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Case 1. d(a) = n. In this case, trivially G = Kn+1 and so End(G) = Aut(G) is a group. Thus

End(G) is completely regular.

Case 2. d(a) = n − 1. Clearly, there exists a unique vertex b ∈ K such that {a, b} 6∈ E(G).

First assume |f−1(f(a))| = 1. Then f−1(f(a)) = {a} and so f(x) 6= f(a) for any x ∈ K.

For any x, y ∈ K, f(x) 6= f(y) because {x, y} ∈ E(G). Thus f is bijective as G is a finite graph,

which implies f ∈ Aut(G). Hence f is completely regular.

Now assume |f−1(f(a))| 6= 1. For any x ∈ K \ {b}, f(x) 6= f(a) because {x, a} ∈ E(G), and

so x 6∈ f−1(f(a)). Then b ∈ f−1(f(a)), because otherwise |f−1(f(a))| = 1. Hence f−1(f(a)) =

{a, b}. We further consider the following two possibilities:

(1) a ∈ f(G). Let g be a mapping from V (G) to itself such that g(b) = a and g(x) = x

for any x ∈ G \ {b}. Let {x, y} ∈ E(G). If b 6∈ {x, y}, clearly, {g(x), g(y)} = {x, y} ∈ E(G); if

b ∈ {x, y}, say, x = b and y 6= b. Since {b, a} 6∈ E(G), y 6= a and so y ∈ G\{a, b} = K \{b}. Thus

{g(x), g(y)} = {a, y} ∈ E(G). So g ∈ End(G). It is easy to check g2(x) = g(x) for any x ∈ G,

i.e. g2 = g. Now we show ρf = ρg. Let f(x) = f(y) for some x, y ∈ G. Then {x, y} 6∈ E(G)

and so {x, y} = {a, b}, say, x = a and y = b, which implies g(x) = g(a) = a = g(b) = g(y).

Now let g(x) = g(y) for some x, y ∈ G. Then {x, y} 6∈ E(G) and so {x, y} = {a, b}. Noting that

f−1(f(a)) = {a, b} implies f(a) = f(b), we have f(x) = f(y). Hence ρf = ρg .

Since a ∈ f(G), then b 6∈ f(G) (because otherwise, there exist x, y ∈ G with f(x) = a and

f(y) = b. Since {a, b} 6∈ E(G), {x, y} 6∈ E(G) and so {x, y} = {a, b}. Thus, as f(a) = f(b),

f(x) = f(y), i.e. a = b, which is a contradiction). Then by Lemma 2.7, f(G) = G \ {b}. On

the other hand, by the definition of g, g(G) = G \ {b}, and so f(G) = g(G). Therefore, by

Proposition 2.4(1,4) f is completely regular.

(2) a 6∈ f(G). Let g be a mapping from V (G) to itself such that g(a) = b and g(x) = x for

any x ∈ G \ {a}(= K). Let {x, y} ∈ E(G). If x, y ∈ K, {g(x), g(y)} = {x, y} ∈ E(G); if x = a

and y ∈ K, then y 6= b and so {g(x), g(y)} = {g(a), g(y)} = {b, y} ∈ E(G). So g ∈ End(G).

It is easy to check g2 = g. Let f(x) = f(y) for some x, y ∈ G. Then {x, y} 6∈ E(G) and so

{x, y} = {a, b}. Since g(a) = b = g(b), g(x) = g(y). Now let g(x) = g(y), then {x, y} 6∈ E(G)

and so {x, y} = {a, b}. So, recalling f(a) = f(b), we have f(x) = f(y). Hence ρf = ρg . Since

a 6∈ f(G), by Lemma 2.7 f(G) = G \ {a} = K. It is easy to see that g(G) = K, and so

f(G) = g(G). Then f is completely regular by Proposition 2.4(1,4).

Case 3. d(a) ≤ n − 2. In this case, we consider the following two possibilities:

(1) f(a) ∈ K. By Lemma 2.6 fK ∈ Aut(K). Thus |f−1
K (f(a))| = 1, and we may let

f−1
K (f(a)) = b with b ∈ K. So f(b) = fK(b) = f(a). Define a mapping g from V (G) to itself

such that g(a) = b and g(x) = x for any x ∈ K. Let {x, y} ∈ E(G). If x, y ∈ K, clearly

{g(x), g(y)} = {x, y} ∈ E(G); otherwise, we may let x = a and y ∈ K, and so {g(x), g(y)} =

{b, y}. Noting f(a) = f(b), we see {a, b} 6∈ E(G) and so y 6= b. Thus, {b, y} ∈ E(K) ⊆ E(G),

i.e. {g(x), g(y)} ∈ E(G). Hence g ∈ End(G). It ie easy to check g2 = g.

Let x, y ∈ G with f(x) = f(y). Then {x, y} 6∈ E(G), and so we may set x = a and

y ∈ K. Thus f(a) = f(x) = f(y) = fK(y) and then y = f−1
K (fK(y)) = f−1

K (f(a)) = b. So
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g(x) = g(a) = b = g(b) = g(y). Now let x, y ∈ G with g(x) = g(y). Then {x, y} 6∈ E(G),

and we may also suppose x = a and y ∈ K. Thus g(x) = g(a) = b and g(y) = y. So y = b

and f(x) = f(a) = f(b) = f(y). Hence we have ρf = ρg . As fK ∈ Aut(K) and f(a) ∈ K,

f(G) = f(K) ∪ f(a) = fK(K) ∪ f(a) = K ∪ f(a) = K. By the definition of g, g(G) = K and so

f(G) = g(G). Therefore, by Proposition 2.4(1,4) f is completely regular.

(2) f(a) 6∈ K, i.e. f(a) = a. As fK ∈ Aut(K) by Lemma 2.6, we have f ∈ Aut(G). Thus f

is also completely regular. 2

Proposition 2.9 Let G(V, E) be a connected split graph with V = K ∪ S and |K| = n. If

|S| = 2 such that S = {a, b} with max{d(a), d(b)} = n, then End(G) is completely regular.

Proof We may suppose d(a) = n. Let K0 = K ∪ {a} and S0 = {b}. Then G = G(V, E) is a

connected split graph with V = K0 ∪ S0, where K0 is a complete set with |K0| = n + 1 and S0

is an stable set with |S0| = 1. then by Proposition 2.8, End(G) is completely regular. 2

Remark 2.10 Let G be a graph and f ∈ Idpt(G). then for any x ∈ If , f(x) = x.

Proof Since x ∈ If , there exists y ∈ G such that f(y) = x. Noting f 2 = f , we see f(x) =

f(f(y)) = f(y) = x. 2

Lemma 2.11 Let G(V, E) be a connected split graph with V = K ∪ S such that |K| = n and

|S| ≥ 2. Suppose there exists r ∈ {1, 2, · · · , n−1} such that d(x) = r for any x ∈ S, then End(G)

is not completely regular.

Proof By Theorem 2.5, End(G) is regular. We now show there exists f ∈ End(G) such that f

is not completely regular.

Let S = {a1, a2, · · · , am} (m ≥ 2). Then N(a1), N(a2) ⊆ K and |N(a1)| = |N(a2)| =

r. So we may let ϕ1 be a bijection from N(a1) to N(a2), and let ϕ2 be a bijection from

K \ N(a1) to K \ N(a2). Further, let ϕ be a mapping from K to itself such that ϕN(a1) = ϕ1

and ϕK\N(a1) = ϕ2. Noting ϕ is a bijection on K, ϕ ∈ Aut(K). Since |K| = n, K \ N(ai) 6= ∅

for any i ∈ {1, 2, · · · , m}, and so we may select ki ∈ K \ N(ai). Construct a mapping f from

V (G) to itself in the following way: f(x) = ϕ(x) if x ∈ K; f(a1) = a2; f(ai) = ϕ(ki) if

i ∈ {2, 3, · · · , m}. It is easy to see f is well defined. Let x, y ∈ G such that {x, y} ∈ E(G). If

x, y ∈ K, {f(x), f(y)} = {ϕ(x), ϕ(y)} ∈ E(K) ⊆ E(G); if x = a1 and y ∈ K, then y ∈ N(a1)

and so f(y) = ϕ(y) = ϕ1(y) ∈ N(a2). Thus {f(x), f(y)} = {f(a1), f(y)} = {a2, f(y)} ∈ E(G);

now if x = ai for some i ∈ {2, 3, · · · , m} and y ∈ K. Then y ∈ N(ai). Since ki ∈ K \ N(ai),

{ki, y} ∈ E(K) and so {f(x), f(y)} = {f(ai), ϕ(y)} = {ϕ(ki), ϕ(y)} ∈ E(K) ⊆ E(G). Hence

f ∈ End(G).

Suppose there exists g ∈ End(G) such that g2 = g, ρg = ρf and Ig = If . By Proposition

2.4(1,4), we only need to yield a contradiction. As a2 ∈ If = Ig , by Remark 2.10 g(a2) = a2.

Noting f(a2) = ϕ(k2) = f(k2) and ρf = ρg, we see g(a2) = g(k2) and so g(k2) = a2. However, on

the other hand, since k2 ∈ K and ϕ ∈ Aut(K), ϕ−1(k2) ∈ K and so f(ϕ−1(k2)) = ϕ(ϕ−1(k2)) =
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k2, which implies k2 ∈ If = Ig . Thus by Remark 2.10 g(k2) = k2 6= a2, which yields a

contradiction. 2

Proposition 2.12 Let G(V, E) be a connected split graph with V = K ∪ S, where |K| = n

and |S| = 2 such that S = {a, b} with max{d(a), d(b)} ≤ n − 1. Then End(G) is not completely

regular.

Proof If d(a) = d(b), then by Lemma 2.11, End(G) is not completely regular; if d(a) 6= d(b),

then by Theorem 2.5, End(G) is not regular, and so is not completely regular. 2

Proposition 2.13 Let G(V, E) be a connected split graph with V = K ∪ S such that |S| ≥ 3.

Then End(G) is not completely regular.

Proof Clearly, we only need to consider connected split graphs G(V, E) with V = K ∪ S such

that End(G) is regular and |S| ≥ 3. Let |K| = n. Then, by Theorem 2.5 there are two cases to

be considered:

Case 1. There exists r ∈ {1, 2, · · · , n} such that d(x) = r for any x ∈ S. If 1 ≤ r ≤ n − 1, the

conclusion follows from Lemma 2.11. Now we suppose r = n. Let a ∈ S, and then d(a) = n. Let

K1 = K ∪ {a} and S1 = S \ {a}. Then G(V, E) is a connected split graph with V = K1 ∪ S1

such that |K1| = n +1, |S1| ≥ 2 and d(x) = n for any x ∈ S1. So by Lemma 2.11, End(G) is not

completely regular.

Case 2. There exists a ∈ S with d(a) = n and there exists r ∈ {1, 2, · · · , n−1} such that d(x) = r

for any x ∈ S \ {a}. Also let K1 = K ∪ {a} and S1 = S \ {a}. Then G(V, E) is a connected

split graph with V = K1 ∪S1, where |K1| = n + 1, |S1| ≥ 2 and there exists r ∈ {1, 2, · · · , n− 1}

such that d(x) = r for any x ∈ S1. Then using Lemma 2.11 once more, we see End(G) is not

completely regular. 2

Now we are in the position to present the following characterization of a connected split

graph with a completely regular minoid.

Theorem 2.14 Let G(V, E) be a connected split graph with V = K ∪ S where |K| = n.

Then End(G) is completely regular if and only if either |S| = 2 such that S = {a, b} with

max{d(a), d(b)} = n or |S| = 1.

Proof Sufficiency is just due to Propositions 2.8 and 2.9. Necessity follows from Propositions

2.12 and 2.13. 2

The next corollary follows immediately from the above theorem:

Corollary 2.15 Let G(V, E) be a complete split graph with V = K ∪ S. Then End(G) is

completely regular if and only if |S| = 1 or |S| = 2.

We now further consider complete endomorphism-regularity of non-connected split graphs.

An isolated vertex of a graph G is a vertex x with d(x) = 0 in G. First we quote some results

from the references for further use:
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Proposition 2.16 (1) [7, Theorem 3.3] A non-connected split graph G is endomorphism-regular

if and only if G exactly consists a complete graph and several isolated vertices.

(2) [7, Lemma 2.3(1)] Let G be a graph with a unique maximal clique K. Then for any

f ∈ End(G), fK ∈ Aut(K).

Lemma 2.17 Let G(V, E) be a split graph with V = K ∪ S such that d(x) = 0 for any x ∈ S.

Let f ∈ End(G). If f(S) ⊆ K, then f is completely regular.

Proof By Proposition 2.16(1), End(G) is regular. We consider two cases:

(1) |K| = 1. Let K = {k}, and so f(S) = {k}. If f(k) = k, then clearly f is an idempotent,

and so f is completely regular. Now we suppose f(k) 6= k, then f(k) ∈ S. Let g be a mapping

from V (G) to itself such that g(x) = f(k) for any x ∈ S and g(k) = k. It is easy to see g is

well defined. Noting E(G) = ∅, g ∈ End(G). Since f(k) ∈ S, g(f(k)) = f(k). So, for any

x ∈ S, g2(x) = g(f(k)) = f(k) = g(x); Obviously, g2(k) = g(k). Thus g2 = g. Now we show

f(G) = g(G) and ρf = ρg . f(G) = f(S)∪{f(k)} = {k, f(k)}; g(G) = g(S)∪{g(k)} = {f(k), k}.

So f(G) = g(G). Let x, y ∈ G (x 6= y). It is routine to check that f(x) = f(y) ⇔ {x, y} ⊆ S ⇔

g(x) = g(y), which implies ρf = ρg. Therefore, by Proposition 2.4(1,4) f is completely regular.

(2) |K| ≥ 2. Noting in this case K is a unique maximal clique of G, fK ∈ Aut(K) by

Proposition 2.16(2). Define a mapping g from V (G) to itself in the following rule: g(x) = x for

any x ∈ K; g(x) = f−1
K (f(x)) for any x ∈ S. As f(x) ∈ K, |f−1

K (f(x))| = 1 for any x ∈ S and

so g is well defined.

Let x, y ∈ G with {x, y} ∈ E(G). Clearly x, y ∈ K and so {g(x), g(y)} = {x, y} ∈ E(G), i.e.

g ∈ End(G). Since g(x) ∈ K for any x ∈ G, g(g(x)) = g(x), i.e. g2 = g. Since fK ∈ Aut(K),

fK(K) = K. So f(G) = f(K) ∪ f(S) = fK(K) ∪ f(S) = K ∪ f(S) = K; on the other hand, as

g(x) = f−1
K (f(x)) ∈ K for any x ∈ S, g(S) ⊆ K, and so g(G) = g(K) ∪ g(S) = K ∪ g(S) = K.

Hence f(G) = g(G).

Now we show ρf = ρg . Let x, y ∈ G with f(x) = f(y). As f ∈ End(G), it is impossible that

x, y ∈ K with x 6= y. If x ∈ S and y ∈ K, then g(x) = f−1
K (f(x)) = f−1

K (f(y)) = f−1
K (fK(y)) =

y = g(y); if x, y ∈ S, g(x) = f−1
K (f(x)) = f−1

K (f(y)) = g(y). Now let g(x) = g(y). Similarly,

we only need to consider two possibilities: if x ∈ S and y ∈ K, then f(x) = fK(f−1
K (f(x))) =

fK(g(x)) = fK(g(y)) = fK(y) = f(y); if x, y ∈ S, then f(x) = fK(f−1
K (f(x))) = fK(g(x)) =

fK(g(y)) = fK(f−1
K (f(y))) = f(y). Therefore, by Proposition 2.4(1,4) f is completely regular.2

Now we can characterize a non-connected split graphs with completely regular monoid as

follows:

Theorem 2.18 Let G(V, E) be a non-connected split graph with V = K ∪ S. Then End(G) is

completely regular if and only if S = {a} for some a ∈ G and d(a) = 0.

Proof Necessity. By Proposition 2.16(1), d(x) = 0 for any x ∈ S. Assume |S| ≥ 2, say,

S = {a1, a2, · · · , am} (m ≥ 2), and we will find a contradiction. Define a mapping f from V (G)

to itself in the following rule: f(x) = x if x ∈ K; f(ai) = a1 if i ∈ {2, 3, · · · , m}; f(a1) = k0 for

some k0 ∈ K. Clearly, f is well defined. Let x, y ∈ G with {x, y} ∈ E(G). Then x, y ∈ K, and
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so {f(x), f(y)} = {x, y} ∈ E(G). Thus f ∈ End(G), and so f is completely regular. Then, by

Proposition 2.4(1,4) there exists g ∈ End(G) such that g2 = g, f(G) = g(G) and ρf = ρg. Since

g(G) = f(G) = K ∪ {a1}, by Remark 2.10, g(a1) = a1 and g(x) = x for any x ∈ K. Clearly,

g(a2) ∈ K ∪ {a1}. If g(a2) = a1, g(a2) = g(a1) and so f(a2) = f(a1) because ρf = ρg. Thus

a1 = k0, which is a contradiction; if g(a2) 6= a1, then there exists k ∈ K with g(a2) = k. So,

g(a2) = g(k), which implies f(a2) = f(k). Thus a1 = k, still a contradiction.

Sufficiency. By Proposition 2.16(1), End(G) is regular. Let f ∈ End(G). We show f is

completely regular. We consider two cases: (1) |K| = 1, say K = {k}. If f(a) = k, using Lemma

2.17 we see f is completely regular; if f(k) = a, noting G = K2, similarly we see f is completely

regular; if f(a) = a and f(k) = k, trivially f is completely regular. (2) |K| ≥ 2. By Lemma

2.16(2) fK ∈ Aut(K). If f(a) ∈ K, by Lemma 2.17, f is completely regular. Now assume

f(a) 6∈ K, and then f(a) = a. Take g as the identity function of G (i.e. g(x) = x for any x ∈ G).

Clearly g ∈ Idpt(G) and f(G) = f(K) ∪ {f(a)} = fK(K) ∪ {a} = K ∪ {a} = g(G). We further

show ρf = ρg. Let x, y ∈ G with g(x) = g(y), then x = y and so f(x) = f(y); Now let x, y ∈ G

with f(x) = f(y). Then {x, y} 6∈ E(G). Thus, if x 6= y, we may suppose x = a and y ∈ K. So

f(x) = f(a) = a and f(y) = fK(y) ∈ K, which contradicts f(x) = f(y). Hence x = y and so

g(x) = g(y). Therefore, by Proposition 2.4(1,4), f is completely regular. 2

Note. The above theorem can also be proved directly without using Lemma 2.17. However,

since Lemma 2.17 gives a large class of completely regular endomorphisms of a non-connected

split graph, it would be appropriate to derive the result independently as a lemma.

The full transformation semigroup T (X) consists of all mappings from a set X to itself

with respect to the composition of mappings. It is well known that T (X) is regular (cf. [3, p54,

Exercise 9]), however, T (X) is not completely regular except for trivial cases. By Theorem 2.18,

this may be derived easily as follows:

Corollary 2.19 Let X be a finite set and denote by T (X) the full transformation semigroup

of X . Then, T (X) is completely regular if and only if |X | ≤ 2.

Proof Let |K| = 1. Then the assertion follows from Theorem 2.18 immediately. 2
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