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ABSTRACT

Recent observations suggest that the space-time spectrum of near-inertial motions is strongly modulated by
ocean fronts and geostrophic shear. This paper postulates a mechanism that may be responsible for generating
much of this variability in the vicinity of fronts. The effective inertial frequency is variable because of gradients
in the mean flow associated with a front. As a result, phase differences accumulate in inertial oscillations over
short length scales of order tens of kilometers. Inertial pumping ensues, and near-inertial waves propagate away
from the front in various directions. Inertial energy in the mixed layer disperses more rapidly in the vicinity of
the front, and the mixed layer depth assumes strong across-front variations. In the thermocline, scattered internal
waves develop a modulated pattern of amplitude, within the front and in its vicinity.

In order to investigate this mechanism, a two-dimensional numerical model is developed. The model simulates
a mixed layer sitting over a stratified interior, and a barotropic jet. Solutions are suggestive of patterns of

variability that have been observed in the ocean.

1. Introduction

Much of the energy in the near-inertial frequency
band is known to result from wind-induced surface
forcing. It is puzzling, then, that so many investigators
have found that the horizontal coherence scale of near-
inertial waves is much smaller than typical storm scales.
Length scales on the order of a few tens of kilometers
are typical (Webster, 1968; Schott, 1971; Pollard, 1980;
Fu, 1981). It is important to understand the mecha--
nisms that produce these shorter scales, because small
horizontal scale inertial waves transfer energy much
more rapidly than do large scale waves.

Weller (1982) analyzed the inertial oscillations ob-
served in the mixed layer during the Joint Air-Sea In-
teraction project of 1978. He showed that oscillations
measured by two moorings were not laterally coherent.
According to Weller, this spatial variability was caused
by horizontal shears associated with the mean flow.
Mean flow that has vorticity will shift the effective in-
ertial frequency. Mean flow that is convergent or di-
vergent will cause inertial oscillations to grow or decay.

The question that arises is how spatial variability—
arising from mean flow in the mixed layer—affects the
transfer of near-inertial energy to the thermocline.
There is some evidence for strong spatial variability of
inertial waves in the vicinity of a mesoscale front
(Kunze and Sanford, 1984, Mied et al., 1985). How-
ever, the evidence is still meager, largely because most
observations of near-inertial waves are made using
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current meters, which are not well-suited to the mea-
surement of horizontal variability.

Kunze (1985) and Kunze and Sanford (1984) pre-
sented the results of a ray tracing study. They allowed
inertial waves of the prescribed frequency and wave-
number to propagate from the surface and to interact
with a model front and an associated baroclinic jet.
Rays that originated over the warm side of the front
were trapped in a trough of negative vorticity. Rays
originating outside the front or over the cold side were
either refracted or reflected. The results suggest signif-
icant spatial variability, although the amplitude could
not be predicted. In forcing their model, Kunze and
Sanford chose initial vertical and horizontal wave-
lengths of 100 m and 40 km, respectively. These scales
are comparable to the respective length scales of the
model front. It might have been more realistic to have
used larger initial wavelengths—especially a larger
horizontal wavelength—in order to simulate the length
scales appropriate to atmospheric forcing. However,
the inhomogeneity scales would then have been much
smaller than the wave scales, and the ray tracing ap-
proach would have been invalid.

In addition, it is not clear how small horizontal-scale
inertial waves might be generated in the first place. In
Section 2 of this paper, we discuss the interaction of
near-inertial oscillations with a mesoscale flow field in
the mixed layer. A model shows how, several inertial
periods after the passage of a storm, inertial pumping
might be produced over short length scales. Although
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the model is rather simple, it sheds light on a physical
process that may have great import on the mechanism
of energy transfer in the ocean.

In Section 3 we present the equations for a new dy-
namical model, and we outline the numerical method
of solution. The model treats the mixed layer as a ver-
tically homogeneous slab, sitting over an inviscid strat-
ified interior. Accompanying an ocean front, a baro-
tropic jet is prescribed as a mean flow. Near-inertial
oscillations in the mixed layer are initially homoge-
neous. As time elapses, these oscillations interact with
the mean flow. Inhomogeneities develop, and inertial
pumping induces internal waves. In Section 4 we an-
alyze the interactions between near-inertial waves and
a mean flow. We discuss these results and their impli-
cations in Section 5.

2. The effect of mean flow on inertial oscillations in
the mixed layer

We begin by considering the mixed layer response
to the passage of a synoptic-scale atmospheric front.
The along-front length scale is on the order of hundreds
or thousands of kilometers, but the across-front length
scale is several tens of kilometers. If the front propa-
gation is fast, that is, if the wind veering is sufficiently
sudden with respect to an inertial period, then inertial
oscillations with significant amplitudes may be gen-
erated. Most of the near-inertial energy is initially ex-
cited in the ocean mixed layer. The horizontal wave-
length of these oscillations is equal to the distance tra-
versed by the storm in an inertial period. This distance,
at midlatitudes, is typically on the order of hundreds
of kilometers.

This simple scenario becomes more complicated by
the introduction of a mean flow with spatial variability
in the mixed layer. We consider a mean flow with a
scale of variability on the order of tens of kilometers.
Because the initial wavelength of the inertial oscillations
is much longer than this scale, we assume that the initial
wavelength is infinite. In other words, a storm traveling
exceedingly fast deposits momentum essentially si-
multaneously everywhere in the vicinity of the mean
flow. Therefore our initial condition is a homogeneous
wind-induced flow A(ity, Do) in the mixed layer. The
overbars denote depth-averaged quantities, and 4 is the
mixed layer depth.

We consider a mean flow in geostrophic balance

fV =Py, Q.1

to be a basic state, where V is a function of x only.
The equations for small disturbance flows #(x, ) and
#(x, ?) in a shallow surface layer of depth A(x, ) are

—f0=0,
o+ fi+ iV, =0,

h, + uh, = —hii, (2.2a-c)
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where the overbars denote values in the layer. In a
deep unstratified ocean of total depth D, the flows below
the surface layer are smaller by a factor 4/D, and vanish
in the limit as D goes to infinity. Thus the horizontal
pressure gradient is negligible in the surface layer. By
linearizing (2.2a, b) we are able to compute analytic
solutions for i and 0. We retain nonlinear terms in
(2.2¢) because £ is a passive variable, and a numerical
solution of (2.2¢) shows some extremely interesting ef-
fects. These equations are discussed here primarily for
illustrative purposes. A more complete justification
would use the equations of Section 3, for the special
case of an unstratified interior, and in the limit of in-
finite D.
The solution for ¥ is

v(x, ) = T cosfot — (fo/f )ito sinfel,
) = LAS+ V12 (2.4

is an effective inertial frequency. For realistic mean
flows in midlatitudes, |V, < f; therefore fo = f+ § Vx.
Figure 1 shows a model sinusoidal jet

—Vo[l + cosax/N)], Ixl < N2
Vi) = { ol Qrx/N], Xl <M 2.5)
0, Ix| = M2, :
where ¥, = 15 cm s~! and A = 80 km, and the asso-
ciated function f/x)/f, where f = 10~* s™'. Using this
function, the solution (2.3), (2.4) was computed for
(o, To) = (0, 20) cm s™'. Figure 2 shows this solution -
at periodic intervals. )

The regime of the jet has a variable f, so that as
time elapses a phase difference accumulates. This phase
accumulation has no upper bound. As a result, after
the passage of a storm the @ and ¥ variations take on
progressively smaller length scales.

From the one-dimensional version of Lighthill’s
(1978) equation

2.3)
where

ok w0k ow

o okdx  dx

for wavenumber k and frequency w, we find that

(2.6)

t
k=—7Vu

3 2.7

In other words, the wavenumber amplitude increases
linearly with time. _

We computed the solution to (2.2c) numerically.
Figure 3 shows contours of mixed layer depth pertur-
bations A(x, f) — H, where H = 50 m is the initial
depth. The character of this solution is striking. In the
mean flow region, advection i 8h/dx results in a ten-
dency for |A| to increase. The nonlinear advection also
carries the variability in 7 out 10 km beyond either
side of the mean flow region. Whereas the wavelength
of the f(x) distribution is 80 km, significant variability
in 4 is generated over a 40 km wavelength.



JANUARY 1986

DAVID M. RUBENSTEIN AND GLYN O. ROBERTS

123

1.05

fo/t

1.00

0.95

0.90 4

x (km)

FIG. 1. A model jet in the mixed layer, and the associated effective inertial frequency
given by f, = [Af+ V]2

Trial computations were also performed with various
initial mixed layers, H = 25 and 100 m. Keeping in
mind the conservation of momentum, the initial ve-
locity perturbations for these cases were Uy = 40 and
10 cm s™!, respectively. Because the solutions are qual-
itatively similar, they are not displayed here. The ini-
tially deeper mixed layers develop variability at a slower
rate. In quantitative terms, the degree of variability
achieved in Fig. 3 for H = 50 m after 5 inertial periods
is achieved after about 3 and 7 inertial periods for

H = 25 and 100 m, respectively. The point to keep in
mind is that these cases continue to accumulate vari-
ability indefinitely.

In the real ocean, of course, this proliferation of scales
cannot continue indefinitely. Before nonlinear effects
become important, divergence of the # field produces
inertial pumping. Vertical motions over small hori-
zontal length scales excite near-inertial internal waves
that are free to propagate down into the thermocline.
In this manner, energy radiates out of the mixed layer,

Viems 1

T

40:‘_\/\/—

20
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FIG. 2. The model solutions for ¥ given by (2.3). The initial condition is ¥ = 20 cm s™!. Solutions
are shown at 4-inertial-period intervals, and are successively displaced by 40 cm s™. Note that as

time elapses, the significant length scales decrease.
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FIG. 3. Mixed layer depth perturbations A(x, f) — H, where H
= 50 m. Contour increment is 6 m. Dashed curves denote negative
perturbations. The thick curves denote zero contours, In this solution,
for an unstratified interior, variability increases indefinitely.

suppressing gradients in # that might otherwise con-
tinue to grow. We will look at this mechanism in more
detail in Section 4..

3. Internal wave model

a. Model equations

We wish to study several aspects of the inertial waves/
frontal interaction problem. In Section 2, we showed
that inertial oscillations in a surface mixed layer interact
with a mean flow through a proliferation of ever-
decreasing wavelengths. When we dynamically couple
the mixed layer with a stratified interior, inertial waves
disperse into the interior and retard this proliferation
of length scales.

In order to study this coupling mechanism, we for-
mulate a model with a well-mixed surface layer of
varying depth 4, and a stratified interior with no tur-
bulent mixing. Figure 4 schematically portrays the
model configuration. We measure z downwards from
the surface, and we confine attention to two spatial
dimensions, with all functions independent of y. We
assume a flat bottom at z = D and arigid lid at z = 0.

We scale out a reference density and hydrostatic
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pressure gradient from the vertical momentum equa-
tion, and assume a hydrostatic balance,

d__

9z ’

where b is the upward buoyancy acceleration. The full
Boussinesq equations for the surface mixing layer are

h(a—u+ﬁ%—fﬁ+2‘2)=7},
X X,

3.1

ot 0. i)
I 1)) -
h(6_t+ ua+fu) =7,
ob _ab
h(-a—t + 1 3 ) = B;. (3.2a-¢)

Here, overbars indicate depth-averaging over the mixed
layer. The surface wind stress has components 7, and
7y, and B is the surface buoyancy flux due to net heat-
ing and net rainfall, always taken as zero. From the
hydrostatic condition, :

p=p(h) + (h— 2)b. (3.3)
Therefore the depth-averaged pressure gradient is
§£=__ap(h)+ﬁ%+5§£.

ox dx 2 dx ax G4

The layer thickness changes with the divergence of
momentum transport within the layer,

(3.5)
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FIG. 4. Schematic diagram of the computational domain of the
numerical model. The components are not drawn to scale. The thick
solid curve represents the base of the mixed layer. The thin solid
curves take on similar shapes, and represent some of the { levels.



JANUARY 1986 DAVID M. RUBENSTEIN

ot ox 0z ’
du  ow _
dx 9z ’
3
a—” =—b  (3.6a-¢)

The required boundary conditions are pressure con-
tinuity at the interface z = A, and

w=0

at the bottom. The continuity of w at the interface is
ensured by the condition of zero total flux in the

x-direction, -
it |
h

This condition determines the interface pressure dis-
tribution p(x, A, ?), apart from an arbitrary added func-
tion of time.

udz = 0. 3.7

b. Initial steady state

We assume an initial steady-state solution repre-
senting a frontal jet near x = 0. This solution is denoted
using upper case variables. We take the steady-state
interface depth

H = constant, (3.8)
and zero current in the x-direction
U=U=0. 3.9

We use a barotropic (depth independent) formula-
tion for the frontal jet, V(x) = V(x), given by (2.5) and
shown in Fig. 1. In the interior, the steady-state mo-
mentum and hydrostatic relations are

arP
arP
B=- % 3.11)
Therefore,
P = Py2) +ff Vdx, (3.12)
__4h
B= Fa (3.13)

For simplicity, we take a uniform Viisild frequency
No. By definition,
4B

2 . 22
No % (3.14)
and combining (3.13), (3.14) we get
2
Poz) = N& % : (3.15)
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For the surface layer,
Po(0) — Po(H) _ 1

H 2
The implication of (3.16) is that B is constant in time
and space.

B= No’H. (3.16)

¢. Equations for a small disturbance

We assume a small disturbance to the basic state
solution and replace v in the equations by V' + v. We
replace the other equations similarly, except for A, for
convenience. We then selectively drop nonlinear terms.

We do not explicitly include wind stress or surface
buoyancy flux. Therefore, we let 7, = 7, = B, = 0.
From (3.2c¢) it follows that b is constant in space and
time, and (3.4) becomes

p _dp(h) o oh

. 17
Ix dx ox (3.17)
In the mixed layer,
oi .. op
——fU=—-=, 3.18
ot fo ox ( )
av _ . _a
5;+fu+ua =0 (3.19)
The equation for the interface is
oh Jd -
Frie a—(u ) (3.20)
In the interior,
ou ap
——fo=-— 21
ot ax’ 3.21)
ov Vv
3—5 +futu Ex— =(, (3.22)
ab dB
5 +w 5 =0, (3.23)
ou ow
— 4 —= 24
x 0z. 0, (3.24)
dp _
Pyl (3.25)
In addition,
w=0 at z=D, (3.26)
" )
uh+ J; udz =0 (3.27)

d. Method of solution

We solve the model equations numerically, using a
finite difference scheme. We introduce computational
boundaries at x = + X, and apply the artificial boundary
conditions
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db ob

—te—=

ot ax
with corresponding conditions for 4. Here c is a nom-
inal phase speed for the waves reaching the boundary,
and is positive on the right, and negative on the left.

(3.28)

This method was applied successfully by Price v

(1983). There is a problem though, in that the phase
speed c is not constant in time. Different vertical modes
arrive at the side boundaries with different phase
speeds. The lowest mode arrives at the sides most
swiftly, with the fastest phase speed. We set ¢ approx-
. imately equal to the phase speed of the lowest vertical
modes. Higher mode waves have slower phase speeds,
and therefore are not handled well by (3.28).

To alleviate this problem, a sponge was implemented
along both of the side boundaries. We added the terms
—o,u, —o,v, and —apb to the prognostic equations for
u, v, and b (3.21, 3.22, 3.23), respectively. The for-
mulations for ¢, and o, are

{ou(r)

ox(r)

where r is the lateral distance from a side wall and T'
characterizes the thickness of the porosity distribution.
This formulation was also used by Rubenstein (1983).
This sponge technique reduces the energy of higher
modes of internal waves. The higher modes propagate
slowly, and therefore spend more time in the porosity
distribution, becoming extinguished. This method,
therefore, complements the radiation boundary con-
dition technique, which is tuned to the lowest modes.

We transform z, in the interval A(x, f) to D, to the
variable ¢, in the interval from 0 to M. We then take
finite differences with unit spacing to represent deriv-
atives with respect to {. The transformation is defined
by the equation

} = {Z"} exp[—sinh(sinhr/T)], (3.29)
b

= = Bla + )2, (3:30)

6§
which we regard as optimal, where o= 1 is a constant
used to control the relative spacing near the interface,
D—-h

and
ﬁ - [(a + M)3/2 3/'2} .

The required dependence on « + ¢ was derived on
theoretical grounds that are not presented here in detail.
Briefly, the vertical group velocity decreases with the
vertical length scale, so that the shortest length scales
can only propagate a short distance into the interior
during our computational period. For the computa-
tions discussed here, M = 35. For longer computations,
larger values of M should be used, with values of a up
to order M.

In the equations, the derivatives with respect to x
and ¢ are at constant z. The required transformations
for a function f{(x, z) to (x, ¢) coordinates are

3.31)
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a;f 8f a¢ af

ot at at’

¥ af s
ox ax dx o¢’
if [:8 8f

dz 0z 8&‘

The finite difference grid is staggered in space. In
the vertical, w and b are defined at integer values of ¢,
and u, v, and p at half-integer values. In the horizontal,
u and v are defined along the columns »ndx, where
n=1,2,-++, L, and w, b, and p along the columns
(n+1/2)éxforn=0,1,2,- - -, L. Spatial derivatives
are center-differenced.

Durmg each time step, the followmg integration al-
gorithm is performed:

1) The new mixed layer depth is computed using
(3.20).

2) The vertical coordinate ¢ and its derivatives
a{/0z, d¢/dx, 9¢/0t are computed.

3) The hydrostatic Eq. (3.25) is integrated for pres-
sure.

4) The continuity Eq. (3.24) is integrated for w, us-
ing the boundary condition (3.26).

5) Mixed layer variables #, U are stepped forward
using (3.18), (3.19).

6) Interior variables u, v, b are stepped using (3.21)-
(3.23).

7) A pressure adjustment Ap(x) is computed, in or-
der to satisfy the constraint in (3.27).

The first time step is performed using a simple Euler
step, and succeeding steps use a leap-frog scheme. The
time step is 300 s for all model runs. In order to avoid
time splitting, a special precaution is taken. At each
time step, the maximum amplitude of |3%u/d¢?| is cal-
culated. When this amplitude changes by more than
50% with respect to the previous time step, then two
pairs of succeeding time steps are averaged. Then the
leap-frog scheme is resumed.

e. Model parameters

The values of model parameters are as follows:

1) Initial values

H=50m
u=v=b=w=0
i=b=0
7=20cms!

2) Ocean front parameters
A=80km

Vo=15cms™
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3) Model geometry
f=10"*s"
No=3cph
D =4km
Total extent — X < x < X; X = 300 km
ot=300s
Horizontal grid = 62 points
Vertical grid M = 35 points
4) Porosity distribution
oy =0p=12X107%s"!
I' =150 km.

4. Model results

In this section we solve the model equations pre-
sented in Section 3. We initialize the numerical inte-
gration with a homogeneous perturbation flow (i, ¥)
= (0, D) in the mixed layer.

In analyzing near-inertial oscillations from current
meter observations, it is often desirable to perform a
complex demodulation. This technique is useful for
interpreting model results, as well. In essence, complex
demodulation involves multiplying a complex-valued
time series u(f) + iv(¢) by a unit-magnitude complex
vector exp(ift), and then applying an appropriate low
pass filter. By computing the amplitude of the resultant
complex time series, we obtain the time-dependent
amplitude, or speed, of the near-inertial oscillations.

Figure 5 shows the speed of the near-inertial oscil-
lations in the mixed layer. Most of the variability occurs
inside or near the ocean front region, 40 € x < 40 km.
Inside this region oscillations decay quite rapidly. The
near-inertial energy in the frontal region is associated
with short horizontal wavelengths, and therefore is able
to propagate rapidly into the interior. The initial am-
plitude is 20 cm s~'. Within ten inertial periods, at
X ~ 15 km, the inertial amplitude decays to less than
3 cm s7!, and then increases again. On the negative
vorticity (left) side of the ocean front, the inertial am-
plitude initially increases to 21 cm s™!, and then decays
to less than 6 cm s™!, but at a slower rate than on the
positive vorticity side.

The decay of inertial amplitude is more rapid on
the positive vorticity (right) side of the front, than on
the negative vorticity side. This asymmetry results from
the more rapid internal wave dispersion for waves
originating on the positive vorticity side. To understand
this argument, we use a qualitative ray tracing ap-
proach. From (3.21)-(3.25), the dispersion relation is

2
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FIG. 5. Speed of inertial oscillations in the mixed layer. The contour
increment is 3 cm s~*. Initial speed is 20 cm s~.

where w is angular frequency, f; the effective inertial
frequency, and k, and k, are the horizontal and vertical
wavenumbers, Lighthill (1978) showed that, in the ab-
sence of an explicit time dependence, frequency is con-
stant along the ray traced by a propagating wave. In
our present case, N is a constant, and f{x) is given by
(2.4), (2.5), and shown in Fig. 1. Therefore k, varies
along a propagation ray, while k, is constant. As we
follow a wave originating at the peak in f, (at x = 20
km), its wavenumber k, increases to balance out the
decrease in f,. Therefore, the magnitudes of both the
horizontal and vertical components of group velocity,

NV k, ky
(CX’ Cz) - (E) -Q—) (17 kz) bl

increase along the ray. In contrast, the magnitudes of
the group velocity components decrease following a
wave originating at the trough of £, (at x = —20 km).
Figures 6a, b show the inertial amplitudes at 200
and 800 m depth. Each successive depth exhibits
weaker and more dispersed structure. At both of these
depths, most of the energy is distributed on the negative
vorticity (left) side of the front. These results are similar
to theoretical results reported by Kunze (1985) and
Kunze and Sanford (1984). They found a tendency for
near-inertial waves to reflect or refract away from the
positive vorticity side of an ocean front. Also, certain
waves were trapped within the negative vorticity side
of a front. Our results also show a tendency toward

(4.2)
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FIG. 6a. Speed of inertial oscillations at the depth z =200 m.
Contour increment is 1 cm s~

trapping, especially in the upper 400 m of the ther-
mocline. However, the trapping is only partial; much
of the inertial energy escapes from the negative vorticity
trough. This can be seen more clearly in Fig. 7, which
shows a cross section of u(x, z) in the upper 800 m,
after 13.3 inertial periods. There is a relative concen-
tration of energy density in the negative vorticity region
and a relative depletion in the positive vorticity region.

Figure 8 shows contours of mixed layer depth per-
turbations A(x, f) ~ H. The amplitudes of these per-
turbations increase at a slower rate than those shown
in Fig. 3. The perturbation amplitude in the negative
vorticity region —40 < x < 0 km increases at half the
rate as in Fig. 3, while the perturbation amplitude in
the positive vorticity region 0 < x < 40 km increases
much more slowly. As a result, there is a marked asym-
metry present in Fig. 8.

Moreover, the mixed layer depth perturbations do
not increase indefinitely, as they do in Fig. 3. The dis-
persion of inertial energy reduces the gradients of mo-
mentum transport in the mixed layer. From (3.20),
therefore, variability in /4 increases at a slower rate.
The asymmetry in Fig. 8 results from the faster dis-
persion of waves originating in the positive vorticity
region.

5. Summary and discussion

The purpose of this paper is to suggest a possible
mechanism for the scattering of near-inertial internal
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waves by an ocean front. The scattering mechanism
depends on the existence of a mean flow that may ac-
company a front. The vorticity of this mean flow alters
the effective inertial frequency. Even if inertial oscil-
lations in the vicinity of the front are initially coherent,
they eventually lose their coherence, due to local vari-
ability of the effective inertial frequency. The oscilla-
tions gradually accumulate a phase shift across the
front, resulting in strong horizontal gradients in the
horizontal velocity, and strong inertial pumping. The
inertial pumping has spatial scales on the order of half
the frontal width—a few tens of kilometers—and gives
rise to the following three effects:

a. Inertial amplitudes

Inertial pumping generates internal waves that
propagate downward and away from the front. Radia-
tion damping selectively removes near-inertial energy
from the front and its vicinity. Within ten inertial pe-
riods, the inertial amplitude can decrease by 85% in
the positive vorticity region of the mixed layer.

b. Wave dispersion

In the thermocline, inertial energy rapidly disperses
away from the positive vorticity side of the front. Waves
disperse more slowly from the negative vorticity side,
and have shorter horizontal wavelengths. There is a
tendency toward partial trapping in the thermocline,
above 400 m.
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FIG. 6b. As in (a) but at z = 800 m.
Contour increment is 0.12 cm s™'.
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FIG. 7. Cross section of model prediction of u(x, z) at time ¢ = 13.3 inertial periods. Only the
upper 800 m are shown. Solid (dashed) curves denote positive (negative) velocities. The thick
curves denote zero contours. The contour increment is 1 cm s~

¢. Mixed layer depth

Inertial pumping causes the mixed layer depth to
oscillate. Nonlinear advection becomes important if
inertial oscillations in the mixed layer are sufficiently
strong (so that a fluid element traverses across a sig-
nificant fraction of the horizontal scale of variability
within an inertial period). Then the mixed layer depth
alters cumulatively. The net result is a strong cross-
front variability in mixed layer depth. The variability
is particularly strong in the negative vorticity region,
where the layer can deepen from 50 to 78 m within 16
inertial periods.

Some of the theoretical findings are suggestive of the
observations made by Kunze and Sanford (1984). They
found strong variability of near-inertial energy across
the North Pacific Subtropical Front. A sharp peak in
downward propagating energy was observed on the
warm side of the front, some four times stronger than
the background level. Kunze and Sanford computed
the dropped, rotated, horizontal coherence magnitude
and phase versus horizontal separation for the 128
m vertical wavelength, clockwise-with-depth Fourier
component. Oscillations in the real part of the coher-
ence, and three consecutive zero-crossings of the phase
were suggestive of cross-frontal variability, with a 30
km wavelength. By excluding different parts of the
dataset and recalculating the coherence, they found that
the wavelike structure was limited to the negative vor-
ticity side of the front.

This structure resembles the model result shown in
Fig. 6b. Most of the variability occurs on the (left) neg-
ative vorticity side of the front. This asymmetry results
from the shorter horizontal wavelengths—and hence
the slower energy propagation—of waves originating
in the negative vorticity region of the front.

The results of this study are consistent with obser-
vations in the California Current system by Pinkel
(1983) and by Weller (1985). Using a Doppler sonar
instrument deployed from FLIP, Pinkel found that on
average, near-inertial energy propagation was predom-
inantly downward. In addition, he observed at least
three distinct wave packets. Two of these packets were
propagating downward, and one upward. Vertical
wavelengths ranged from 125 to 500 m, and horizontal
wavelengths from 8.5 to 25 km. These horizontal
wavelengths are smaller than expected from wind gen-
erated waves in a horizontally uniform ocean. Weller
(1985) analyzed data from current meters deployed
from FLIP concurrently with Pinkel’s Doppler sonar
experiment. Using a simple model, Weller showed that
local meteorological forcing alone could not explain
the strength and variability of the observed near-inertial
velocity variability in the mixed layer. He attributed
much of this apparent temporal variability to small
scale spatial variability of the fields through which FLIP
drifted. He noted that horizontal shears in the region
are known to be quite strong—comparable 1o those of
our model front. In addition, three periods of inten-
sified inertial amplitude were associated with regions
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FI1G. 8. Mixed layer depth perturbations A(x, r) — H, where H = 50 m. The contour increment
is 8 m. The thick curves indicate zero contours. Dashed curves denote negative perturbations.

of horizontal shear and rapid temperature changes.
However, a fourth period of inertial amplification was
not associated with a large temperature change. This
finding is consistent with our model results. Inertial
energy tends to be partly scattered away from a front,
in addition to being partly trapped. Therefore, we may
expect to find regions of inertial intensification not only
inside the negative vorticity trough of a front (as dis-
cussed by Kunze and Sanford, 1984) but also away
from, but in the vicinity of a front.

Rubenstein (1983) and Gill (1984) showed that the
rate of inertial energy dissipation in the mixed layer
depends strongly on the horizontal scales of the waves.
For a wave that is periodic in space, Gill found that
the time scale over which a vertical mode separates in
phase by 90° from a pure inertial oscillation is ap-
proximately proportional to its horizontal wavelength,
squared. However, due to the beating of modes and
pure inertial oscillations, the amplitude in the mixed
layer does not dissipate monotonically. Inertial energy

periodically returns to the mixed layer. For a spatially

-.periodic wave, vertical dispersion is not particularly

efficient for radiating energy. This is the case for mo-
tions induced by a synoptic-scale storm over a ho-
mogeneous ( f~plane) ocean.

In contrast to periodic waves, laterally bounded
waves radiate energy more efficiently. Lateral disper-
sion allows energy to radiate away, never to return.
Gill (1984) showed that the time scale for a wave mode
to propagate across a bounded storm track is propor-
tional to its wavelength, squared. The waves simulated
in the present study are similar, in the sense that their
source is bounded. Lateral dispersion reduces the in-
ertial energy in the mixed layer, primarily in the front,
but also in regions just adjacent to it. This reduction
occurs on both sides of a mean flow, especially on the
side of positive vorticity. Because near-surface fronts
are ubiquitous in many ocean regions, the mechanism
postulated in this paper may have profound implica-
tions for the distribution of near-inertial energy.



JANUARY 1986

Acknowledgments. The authors wish to thank Mrs.
Sharon Rubenstein and Mrs. Amy Morris for their
careful preparation of the manuscript and the figures.
This study was supported by the Office of Naval Re-
search, under contract N00014-84-C-0221.

REFERENCES

Fu, L. L., 1981: Observations and models of inertial waves in the
deep ocean. Rev. Geophys. Space Phys., 19, 141-170.

Gill, A. E., 1984: On the behavior of internal waves in the wakes of
storms. J. Phys. Oceanogr., 14, 1129-1151,

Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear.
J. Phys. Oceanogr., 15, 544-565.

——, and T. B. Sanford, 1984: Observations of near-inertial waves
in a front. J. Phys. Oceanogr., 14, 566-581.

Lighthill, J., 1978: Waves in Fluids. Cambridge University Press,
504 pp.

Mied, R. P, C. Y. Shen, C. L. Trump, and G. J. Lindemann, 1985:

DAVID M. RUBENSTEIN AND GLYN O. ROBERTS

131

Internal-inertial waves in a Sargasso Sea front. Submitted to J.
Phys. Oceanogr.

Pinkel, R., 1983: Doppler sonar observations of internal waves: Wave-
field structure. J. Phys. Oceanogr., 13, 804-815.

Pollard, R. T., 1980: Properties of near-surface inertial oscillations.
J. Phys. Oceanogr., 10, 385-398.

Price, J. F., 1983: Internal wave wake of a moving storm. Part I
Scales, energy budget and observations. J. Phys. Oceanogr., 13,
949-965.

Rubenstein, D. M., 1983: Vertical dispersion of inertial waves in the
upper ocean. J. Geophys. Res., 88, 4368-4380.

Schott, F., 1971: Spatial structure of inertial-period motions in a two-
layered sea, based on observations. J. Mar. Res., 29, 85-102,

Webster, F., 1968: Observations of inertial-period motions in the
deep sea. Rev. Geophys., 6, 473-490.

Weller, R. A., 1982: The relation of near-inertial motions observed
in the mixed-layer during the JASIN (1978) experiment to the
local wind stress and to the quasigeostrophic flow field. J. Phys.
Oceanogr., 12, 1122-1136.

——, 1985: Near surface velocity variability at inertial and subinertial
frequencies in the vicinity of the California Current. J. Phys.
Oceanogr., 15, 372-385.



