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ABSTRACT

Analytical solutions are found for topographic waves propagating over steep bottom slopes in a two-layer
infinite channel. From the inviscid unforced long-wave equation for a two-layer fluid on an £plane, it is shown,
under the assumption of a relatively thin upper layer, that barotropic waves force a baroclinic response through
topographic coupling, resulting in surface intensified motion. Solutions are found with and without the small
slope approximation. It is shown that the small slope approximation underestimates the frequency of low-
frequency topographic waves, even when the slope is small. The theory is compared with observations from the
Strait of Georgia and with a numerical model of the St. Lawrence estuary.

1. Introduction

The nature and origin of low-frequency subinertial
motions observed in some semi-enclosed coastal basins,
in particular the Strait of Georgia (Chang et al., 1976)
and the St. Lawrence estuary (El-Sabh et al., 1982)
continue to remain unexplained. Such motions ac-
count for up to 50% of the horizontal Kinetic energy
measured in those basins; they are characterized by
their low-frequency (periods from 5-100 days) and
short horizontal scale (a few km). The motions are also
surface-intensified and appear uncorrelated with local
wind or pressure systems. Attempts to describe their
properties in terms of wave propagation have hitherto
remained unsuccessful (Helbig and Mysak, 1976;
Schott and Mysak, 1980), and it has been suggested
that these motions might partake more of the nature
of large scale turbulence than of wave motion, resulting
perhaps from an energy cascade originating with fort-
nightly tidal forcing (LeBlond, 1983). Consideration
of the wave theories shows, however, that they are
mostly limited to gently sloping topographies; such a
weak slope assumption is clearly invalid in the situa-
tions considered above as well as on many continental
shelves. In this paper, we consider subinertial wave
propagation in channels with steeply sloping topog-
raphy, in the presence of rotation and stratification.
Although the stratification will be approximated by a
two-layer fluid, the results should be relevant to the
low-frequency dynamics of the coastal basins men-
tioned above as well as to the theory of continental
shelf waves.

This work extends earlier studies of vorticity wave
propagation along sloping oceanic boundaries, arising
from Robinson’s (1964) first analysis of continental
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shelf waves. Mysak (1980) has recently reviewed the
subject. Of actual and theoretical coastal slope profiles
considered, only the simplest (such as the exponential
depth profile of Buchwald and Adams, 1968) allows
solutions and dispersion relations to be expressed by
analytical expressions. The combination of stratifica-
tion and bottom relief gives rise to complications which
are best understood for weakly sloping ocean models
or linear beaches (see, for example, the review by Hen-
dershott, 1981). Our interest focuses on steeply sloping
bottoms. As in Allen (1975) we will work with a two-
layer model. We will formulate the problem in terms
of a pair of coupled partial differential equations, for
the mass-transport stream function and interfacial dis-
placement respectively but will not follow Allen’s path
in decoupling the equations. We do not assume that
the offshore baroclinic scale (the internal Rossby radius
of deformation) is much smaller than the topographic
scale (the shelf width); our pair of equations remain
coupled. The one fundamental approximation which
we invoke to simplify the problem consists of assuming
that the upper layer is relatively thin. The coupling is
then only one-way: the barotropic motions force an
interfacial oscillation which provides a surface-inten-
sified structure to vorticity waves whose horizontal
scales are those of barotropic modes. We thus discuss
neither free interfacial modes nor Kelvin waves, which
have already been thoroughly explored, but focus our
attention on modes which are barotropic in their dy-
namics, but which produce significant interfacial mo-
tion via bathymetric coupling.

We define and formulate the problem in section 2,
obtaining the pair of partial differential equations re-
ferred to before and the boundary and matching con-
ditions which they must satisfy. The simplifying as-
sumption of a thin upper layer is introduced and its
consequences discussed in section 3. Solutions for
channels of linear and parabolic profiles are obtained
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in the following sections; the influence of slope steep-
ness on the solutions and on the dispersion relation
are also discussed. Applications to specific basins and
channels are considered in section 7.

2. General formulation of the problem

In order to examine the coupling of interfacial mo-
tion to bottom slopes, we consider a two-layer model.
The upper layer and lower layer densities p; and p, are
near enough that

0<j=(p2—p)lp2< L.
The geometry of the problem is illustrated in Fig. 1a.

The oceanic fluid has an equilibrium depth H(x, y) -

divided in upper and lower layers of thickness H,(x,
y) and H(x, y) respectively; H, + H, = H. Since H,,
H, and H are generally varying, we shall use D, D,,
D = D, + D, as constant scale depths to represent
typical values of H;, H,, H. Displacement of the ocean
surface and interface from equilibrium levels are re-
ferred to as n,(x, y, t) and 7,(x, y, £). Velocity compo-
nents u, v in the x, y directions respectively bear sub-
scripts 1 and 2 in the upper and lower layers. The mo-
tion in each layer is governed by the linearized
momentum and volume continuity equations for an
inviscid fluid on the f~plane (LeBlond and Mysak, 1978,
p134). Thus,
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u, —for+gm,=0 (1a)

vy, + fuy +gm, =0 (1b)

(Hiu)x + (Hv)y = (2 —m)  (1¢)

Uy, — for+ &2 — M)+ 8gm, =0 (2a)
vy, + fip + &'tz —m)y + gy, =0 (2b)
(Haup)x + (Havo)y = —ma,. (20)

Differentiation with respect to time (¢) and spatial co-
ordinates (x, y) has been denoted by subscripts; g’
= gjis the reduced gravity. The mean upper thickness
H, is assumed uniform in the present context. This
system of equations has been applied to basins and
channels by Gratton (1983); only channels with axis
along the y-coordinate and lateral scale 2L are consid-
ered here. The channel geometry is shown in Fig. 1b.
A long-channel scale for the motion shall be A, a wave-
length. For horizontal scales of motion short compared
to the external Rossby radius (gD)'/2/f, the upper sur-
face (z = n,) may be considered rigid (Pedlosky, 1979).
This approximation filters out surface waves. Neglect-
ing 7, in (1c) allows the introduction of the mass-
transport stream function v, related to the vertically
integrated transport via

+L

v
X

®

FI1G. 1. Coordinate system and variables.
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¥x = (Hv, + Hyvy),
¥y =

(3a)

—(Hu, + Hyu,). (3b)

Following Allen (1975), it is then possible to reduce
the basic equations (1) and (2) to the coupled second-
order system for Y and n = 7, (the subscript becomes
superfluous):

(Hvz\l/ - Hx x Hy‘py)l +f(Hx y — Hy\bx)

= _ngl(Hynx - Hxny) (4)
. H B H2M<n)]
[HV n H, (Hmy + Hy'ny) g'Hle t
fHi _ - _
+ H, (Hxny Hyﬂx) g’H2 [M(‘px)Hy M(‘py)Hx]
(5)

Here M(=) stands for the differential operator 82 + %
H,, = (H, + Hy),, = Hzxy. These equations are di-
mensional equivalents to Eqs. (2.17a, b) of Allen
(1975). In the absence of bottom slopes the inhomo-
geneous terms coupling (4) and (5) vanish and the sys-
tem (4)-(5) describes independent barotropic and
baroclinic modes, characterized respectively by the
variations in the transport stream function ¥ and the
interfacial displacement 5. Although purely indepen-
dent modes are no longer possible in the presence of
bottom slopes we shall continue, for convenience, to
refer to those components of the motion associated
with Y and 7 as barotropic and baroclinic respectively.

We now restrict our attention to low-frequency mo-
tions, for which M =~ f?, in a channel oriented along
the y-axis, in which H, = H,(x) only. The governing
equations (4)-(5) reduce to

(Hvz\b - Hx¢x)t +fo y = g,Hle‘ny 6)
H, H*? ]
HV?y +— Han, — —
|: 7 gHH," \
f2
+leHx77y ==y Hx\&y- (7)

g'H,

The velocity components in each layer are related to
¥ and 5 through

e N I
R R ) IS
Huy =~ 0y + £ (g + o) 80)
o=t S -] s
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3. A thin upper layer

When considering wave propagation along the
channel axis, (6) and (7) are reduced to coupled ordi-
nary differential equations by the carrier wave trans-
formation

Y(x, y, 1) = Re[F(x) - exp(iky — iwD)] (9a)

n(x, y, 1) = Re[G(x) - exp(iky — iwt)] (9b)

where w > 0.

Allen (1975), following Buchwald and Adams
(1968), considered an exponential depth of the form
H, ~ exp(x/L) which ensures that the coupled ordinary
differential equations for F(x) and G(x) have constant
coefficients. On the continental shelf, the situation
considered by Allen, L ~ 100 km, the width of the
shelf, which is also the offshore length scale of baro-
tropic shelf waves. Baroclinic Kelvin waves (the other
mode) are trapped within one internal Rossby radius
of the coast [Ri = (g'D, D, /f2D)'"?}, with Ri ~ 15 km.
Under these circumstances, Allen introduced the small
parameter ¢ = Ri/L < 1 and sought solutions for F(x)
and G(x) such that for scales of motion larger than
o),

Fix) = 20 €'Fy(x) = O(1)

n=0
G(x) = O(&),

corresponding to an O(1) shelf wave coupled to an O(¢?)
baroclinic motion. Similarly, an O(1) baroclinic Kelvin
wave would then be coupled to an O(¢) barotropic mo-
tion. For lengths shorter than O(L), the shelf wave and
the Kelvin wave are fully coupled. At very short wave-
lengths, Allen found that the motion is bottom trapped.

For the narrow channels in which we are interested,
of width L = O(Ri), an expansion in a power series of
¢ = Ri/L is clearly not indicated. Similarly, the scaling
L/\ € 1 used by Allen and Romea (1980) to describe
waves of horizontal long-channel scales much larger
than the channel width is not applicable here. We shall
choose a scaling based on different circumstances, as
follows. We first introduce the nondimensional vari-
ables

s=wff, KK=kL, x'=x/L, t'=1tf

u;' = ui/U, UII = vi/U’ h = H/Ds h2 = HZ/DZ

G' =GN, F = F/Q. (10)
The scales Q and N will be specified later, but are cho-
sen so that G = O(F) = O(1); U is the horizontal ve-
locity scale. Substituting for  and 7 in terms of (9) in
(6) and (7), we find, after dropping the primes, the pair
of coupled ordinary differential equations in nondi-
mensional coordinates
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hx kh g’H;Nh k
Foo—2F, —|k2+ 2 |p= 800 A K
h [k * ah]F f Oh aG
(11a)
H, h, I*h  H k h
G + 2L 5 2 _z
D, ih O~ [k L RE Dzahhz]
SO h K
2D N o 1 (11D

For the chosen scaling, all four terms on the left-
hand side of (11a) are of the same order. The first and
the third arise from local changes in the vertically in-
tegrated vorticity; the other two result from vortex
stretching related to the bottom slope. In order to be
of comparable significance, the inhomogeneous cou-
pling term must be of similar order; comparing it with
the last term on the other side of (11a), this will be so
whenever g’'H, /f = Q/N. A similar argument applied
to the second equation requires that g'D, /f = Q/N for
full coupling. Thus, both coupling terms are of similar
significance only when H; = O(D,), i.e. when both lay-
ers are of comparable thickness.

In many coastal environments, the density stratifi-
cation naturally separates the water column into a rel-
atively thin (20-50 m) upper layer overlying a signif-
icantly deeper denser layer. In this case, the one of
interest here, only one of the equations (11) has an
O(1) coupling term. Given H,/D, < 1, it now remains
to choose a consistent scaling for Q and N, whose ratio
will determine the relative importance of the inho-
mogeneous terms in (11). The two possible choices for
the ratio Q/N are

Q/N = g'Dy[f (12a)

Q/N = ¢g'Dy/f. (12b)

The first choice yields an O(1) coupling term in (11b)
and a small, O(H, /D,) inhomogeneous term in (11a).
The system of equations then describes a free ‘“baro-
tropic” mode (11a), which forces a baroclinic response
through the effect of vortex stretching in the topo-
graphic coupling term in (11b). The other choice of
Q/N, as we shall see, is inconsistent with the scaling
chosen. The “thin upper layer” approximation was also
invoked by Allen and Romea (1980) in a model ob-
eying L/\ < 1 of waves over an exponential bathym-
etry.

A reasonable scaling for Q, representmg the inte-
grated mass-transport stream function, is Q = DUL.
Two possible choices of N follow from (12). In the first
case, N = Qf/g'D,, and the equations (11) become

(—) (13a)
D,
L? k

H,
24 = = -
(k + )G g — hF + O(Dz) (13b)

hFxx—hxe—(k2+kh)
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Correspondingly, the velocity components are ex-
pressed as
hu, = [kF — hy(—oG, + kG)] sin(ky — ot)

v, = [Fx + ho(Gx — koG)] cos(ky — at)

(14a)
(14b)

huy = [kF - Zﬁ (—aGy + kG)] sin(ky — ot)  (l4c)
2

hvz—[

Since A, ~ O(1), whereas H,/D, < 1, the upper layer
motions may depart significantly from the barotropic
solution (with the possibility of surface intensification
if the signs are right), whereas the lower layer flows
do not. .

For the other choice of Q/N, given by (12b), a similar
analysis leads to velocity components of the form

(G - koG):I cos(tky — at).  (14d)

i = [KF + B (<0G + kG) | sinthy = o),
1

i.e., u; = O(D,/H,) > 1, in contradiction to the scaling
which started with non-dimensional velocity compo-
nents as O(1) variables. The scaling to be adopted for
H, /D, < 1 must then be that leading to (17)-(19). The
uncoupled barotropic wave described by (13a) depends
on the form of the bottom profile A(x); the coupled
interfacial motion which it drives through the coupling
term in (13b) will be described by the latter’s particular
solution: :

1
G(x) = 2 {eR = I(x)] + e™[S — JX)]} (15)
where |

¥? = (k* + LYR{) (16a)

s [TkhFE
Ix) = o h h evtdt (16b)

__[Fkh F®) p—

J(x) ok h dt (16¢)

and where the constants R and S are determined from
the conditions that the normal velocity components
#,(x) and u,(x) vanish on the boundaries at x = +1:

_ -1 {[1 = k/va]
" 2sinh(2y) |[1 + k/vo]

() - J(=1)]

+ [I(1)e > — 1(—1)e2*]} (17a)

_ -1 {[1 + k/vol
"~ 2 sinh(2y) {1 — k/va]

+ [J(1)e* — J(——l)e‘z“’]} . (17b)

u — 1(-1)
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The problem thus consists in solving for F(x) given
a depth profile A(x). The other part of the solution,
G(x) then follows from the preceding relations. We do
not consider internal Kelvin wave modes. With the
parameter range we are using, their speed is of O(1),
always larger than the speed of the topographic modes.
Therefore no modal splitting can occur, since the dis-
persion curves never intersect.

4. Linear bottom profile

We obtain solutions of (13a) for two specific depth
profiles: an asymetric V-shaped channel with linear
slopes described by

h(x) = 1 — s||x| (18)

where s = 5, for x = 0, 5, for x < 0, and a symmetric
parabolic profile given by

h(x) =1 — sx% 19)

In all cases 0 < s < 1 to ensure that 0 < A(x) < 1 within
the channel.

The walls of the channel are located at x = *1; the
normal velocity component u must vanish there in both
layers. Pressure and normal transport must remain
continuous in each layer at the discontinuity in bottom
slope found on the channel axis (x = 0) for profile (18).
We shall extend the analysis to strong bottom slopes,
with s = O(1). This will allow us to examine the range
of validity of the commonly used ‘“small-slope” ap-
proximation, wherein A(x) is assumed constant except
when differentiated.

a. Small slope approximation

For s < 1, substitution of (18) in (13a) yields, to
O(s),

Fro+ siFf + (sikjo — kDHFt =0, x=0 (20a)

Fo— F; + (—=s:kjo — kHF~ =0, x<0. (20b)

Solutions satisfying the boundary and matching con-
ditions are

F*(x) = —F sinh(3) sin[0(x — 1)]e™**? (21a)
F~(x) = E sin(f) sinh[5(x + 1)]e*>*? (21b)

where E is an amplitude constant and # and 4, defined
by

0% = s,kjo — k2 — s5,2/4 (22a)
8% = sk/o + k2 + s5,2/4, (22b)

are related through the dispersion relation
() + 52)/2 + 6 cot(d) + 6 coth(d) = 0. (23)

For k > 0, 8 > 0, 6% > 0 is also required to satisfy
boundary conditions. In that case, waves travel in the
positive y-direction and exhibit oscillatory behavior on
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the right-hand side of the channel (x > 0) and are ex-
ponentially decaying on the other side. This behavior
is reversed for waves traveling in the other direction.
Dispersion curves for the first three cross-channel
modes are shown in Fig. 2a for s; = s, = 0.26 (for
which the small slope approximation should be
valid) and in Fig. 3a for s; = 5, = 0.75 (for which it
should not).

b. Large bottom slope

When s = O(1), A(x) can no longer be approximated
by some constant value. The governing equation (13)
can be transformed into a pair of confluent hypergeo-
metric equations by defining the new variables

q'(2) = (F(x)e*®/h?, z, =2k(l — 5,xX)/s;, x=0
(24a)

q7(2) = (Fx)e™?)/1?,
Zy = =2k(1 — $:x)/s2, x<0. (24b)

We shall consider oniy the case 5, = 5, = §, correspond-

ing to z; = —z, = z, for which

z2gh+(3—2)qf —(3/2—1/2¢)g* =0, x=0,
(25a)

2+ B+ 2)g —(B/2—1/20)¢g =0, x<O0.
(25b)

The general solution of (25a) is expressed in terms of
the linearly independent Kummer functions M and U
(Abramowitz and Stegun, 1974, p504):

q(z) = A-Mla; b; z] + B- Ula; b; 2] (26)
where

a=(3/2-1/20), b=3. 27

Since b is an integer, U has a logarithmic singularity
at z = 0. However z > 0 everywhere within the channel
(z represents the depth times a positive constant), so
that Ula; b; z] remains analytic everywhere within the
domain of interest. The function M[a; b; z] has oscil-
latory or exponential character depending on the sign
of a. M[a; b; z] has zero crossings (required to satisfy
the wall boundary conditions) only if @ < 0. There is
thus an upper bound to the frequency of the waves
considered, given by

o0 < 1/3 (a must be negative). (28)

. This agrees with Reid’s (1958) short-wave limit for sec-

ond class barotropic edge waves in a wedge and with
Ou’s (1980) barotropic limit for coastally trapped waves
in a stratified wedge.

For x < 0, the solution of (25b) is

g (2) = C-Mla; b; =z} + D- Ula; b, —z]

which may be rewritten, using Kummer’s transfor-
mation, as
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FIG. 2. Dispersion diagrams for the four bottom profiles studied. The nondimensional slope is s = 0.26. Small
linear (parabolic) topography refers to results obtained following the approximate method of sections 4a and
5a; large linear (parabolic) topography results are obtained, for the same bottom slopes, by the more precise

method of sections 4b and 5b.

g (z) = e?{C-M[3 — a; 3; z]
+D-U[3—a;3;z]}. (29)

For very low frequencies, a is large and negative; (3
— a) is large and positive. When both z and (3 — a)
are large and positive, there is no known asymptotic
form for M and U (Abramowitz and Stegun, 1964,
p512) and the series representation converges very

slowly. We have taken advantage of the fact that the
solutions F(x) are always analytic inside the channel
boundaries to expand in Taylor series about the regular
point x = 0, rather than in a Frobenius series (the
Kummer functions M and U) around the singular point
z = 0. Dispersion curves for the first three modes are
shown in Figs. 2b and 3b for s = 0.26 and 0.75, re-
spectively.
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FI1G. 3. As in Fig. 2 but for s = 0.75.

5. Parabolic bottom profile

The analysis of the propagation of coupled bathy-
metric-stratification waves in a channel with a parabolic
bottom profile described by (19) follows that described
for the linear profile: results are obtained first under
the small-slope approximation, followed by the exact
solutions. In this case, analytic expressions for F(x)
may be found in terms of parabolic cylinder functions
under the small-slope approximation and of general-
ized spheroidal wave functions (Wilson, 1928) other-
wise. That representation is given in Gratton (1983),
where it is also shown that for the range of parameter

values of interest eigenfunctions and frequencies are
more conveniently computed through Taylor function
expansions.

a. Small-slope approximation

Substitution of (19) into (17a) yields
Fyx + 25xFy + 2ksx/o — k)F = 0. (30)
The solution which satisfies the boundary conditions
is (cf. Appendix)

F(x) = Ap+SPC(s, x) + By - SPD(s, x)

(31)
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F1G. 4. Cross-channel structure of the interface elevation over a parabolic bottom with the small slope
approximation. (a) s = 0.26 and (¢) s = 0.75; without the small slope approximation (b) s = 0.26 and (d)

s=0.75. L/Ri = 10.

where SPC and SPD (SP = “Small Parabolic” slope)
are the two orthogonal infinite ‘series solutions. The
coefficients 4, and By are given by 4o = SPD(s, 1); By
= SPC(s, 1), and the dispersion relation is expressed
as
By SPD(s, —1) — 4o-SPC(s, —1) = 0.  (32)
Dispersion curves are shown in Figs. 2c and 3c. They
resemble those obtained in the linear case; for a given
wavenumber, the eigenfrequencies lie between those
obtained for the small and large linear slopes.

b. Large bottom slope

For strong parabolic slopes, the solution of (13a) be-
comes, using the method discussed in the Appendix

F(x) = h*}[A4o - LPC(s, x) — By-LPD(s, x)] (33)

where LPC and LPD (LP = “Large Parabolic” slope)
are the two orthogonal series solutions and the coeffi-
cients Ao and B, are given by 4y = LPD(s, 1); By
= LPC(s, 1). The dispersion relation is written as

By-LPD(s, —1) — 4o-LPC(s, —1) =0  (34)
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and dispersion curves are shown in Figs. 2d and 3d.
Their shapes are similar to those found earlier. For
each wavenumber the frequency is higher than that
obtained using the small-slope approximation, the dif-
ferences varying from 5% for s = 0.1 to 30% for s
= (.8. Moreover, at each wavenumber, the frequencies
are lower than those given by the large linear slope
model. This result is consistent with the fact that the
cutoff frequency is lower for a large parabolic profile
(%) than for large linear profiles ('3). The cutoff fre-
quency is obtained by manipulating (13a) into a gen-
eralized spheroidal wave equation (Wilson, 1928). The
upper bound for the frequency is then derived from
the requirement that the solution must be oscillatory
to satisfy the wall boundary conditions.

6. Discussion

The solutions obtained in the previous section rep-
resent topographic waves propagating in an axisym-
metric channel with strong linear and parabolic bottom
slopes. Because of the uncoupling hypothesis, based on
H, /D, < 1, the propagation is unaffected by the strat-
ification. The interface couples to the basic barotropic
mode through the inhomogeneous term in (13b), with
solutions G(x) given by (15)-(17). The total field of
motion then consists of a linear superposition of the
two modes, G(x) and F(x), with horizontal velocity
components given in (14).

The structure of the eigenfunctions is illustrated in
Fig. 4, for the parabolic bottom profile. Flow patterns
in each layer are shown in Fig. 5. The flows are surface-
intensified because of the nature of the baroclinic com-
ponent which equilibrates horizontal transports be-
tween a thin upper layer and a thick deeper layer with
appropriately stronger flows in the former. The behav-
ior of the cross-channel dependence is oscillatory on
the side of the channel which is to the right of the
direction of wave propagation, and decaying on the
other side, where the slope changes side. The rotary
current pattern does not change direction with depth.

The influence of the bathymetric shape and of the
strength of the bottom slopes on the dispersion curves
is seen in Fig. 2 (for which s = 0.26) and Fig. 3 (s
= 0.75). In all cases, the waves are nondispersive at
very low frequencies; there is also in every case a wave-
number at which the group velocity vanishes. Figure
6 shows how the frequency varies with the strength of
the slope for a choice of three wavenumbers (1.5, 3.0,
6.0) for each model considered. The frequency ratio
plotted is equal to the frequency normalized by its value
at s = 0.1 for each model. The curves k = 3.0 and 6.0
are displaced upwards by one and two units respectively
to distinguish them from the k = 1.5 curve and from
each other. A few nonnormalized frequency values are
also given in Table 1. We note that the frequency grows
a bit faster with s over a linear than over a parabolic
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EULERIAN FLOW PATTERN
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FI1G. 5. Eulerian flow in both layers corresponding
to the first mode of Fig. 4a.

profile. We also notice that the small-slope approxi-
mation systematically underestimates the frequency.
The error grows with s and may reach up to 80% when
s = 0.8, depending on the wavenumber.

Table 2 gives values of the frequency and wavenum-
ber at which the group velocity of the first mode van-
ishes. Both grow with s. Stronger slopes (larger s) thus
generally stiffen the system and displace the dispersion
curve towards higher wavenumber and frequencies.
Thus, for instance, over a parabolic profile with s
= (.7 in a channel of width 20 km, the shortest wave
period is about 4 days, with a wavelength of about
20 km.

The shape of the eigenfunctions is also sensitive to
the value of the bottom slope. As seen in Fig. 4, for
both methods of calculation, it is clear that larger bot-
tom slopes increase the interfacial displacement ob-
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6.0).

served at the right-hand boundary compared to its
midchannel maxima. The effect of the small-slope ap-
proximation is also strikingly evident (compare Figs.
4a with 4b and 4c¢ with 4d) in its underestimation of
the strength of interfacial oscillations on the right-hand
side of the channel. Similar results prevail over the
linear bottom profiles.

Our results clearly show the inadequacy of the small-
slope approximation as soon as s exceeds about (.2.
Keeping the full cross-channel dependence in 4 of
course complicates matters and, except for a few special
profiles, makes it impossible to express F(x) in terms
of known analytical functions. Our experience with
the linear and parabolic profiles has shown, moreover,
that for the range of parameters of interest, it was sim-
pler to work with Taylor series solutions than to try
and estimate the higher transcendental functions in-

volved. In channels where the depth does not vanish,
no singularities are found within the boundaries, and
solutions of (13a) may be obtained by Taylor expan-
sions about the channel axis (x = 0). This method may
be trivially extended, for axially unbounded rectilinear
channels to depth profiles of the form

N
h(x) = e (1 ~ 3 a,x"). (35)

n=0

1t should thus be possible to model more closely the
bathymetry of long channels and obtain solutions for
wave propagation, using the method described in the
Appendix, without need for the small-slope approxi-
mation.

Our solutions are of course appropriate only for a
two-layer fluid, and rely on assuming that the upper
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TABLE 1. Frequencies computed with the small linear (SLT), large
linear (LLT), small parabolic (SPT), and large parabolic (LPT) to-
pography models, at the same wavenumber (k = 1.6). All variables
are dimensionless.

§

0.20 0.50 0.80
First mode
SLT 0.0356 0.0869 0.1352
LLT 0.0389 0.1096 0.1977
SPT 0.0320 0.0768 0.1178
LPT 0.0344 0.0920 0.1538
Second mode
SLT 0.0096 0.0237 0.0376
LLT 0.0106 0.0317 0.0652
SPT 0.0084 0.0207 0.0327
LPT 0.0091 0.0263 0.0508
Third mode
SLT 0.0041 0.0102 0.0163
LLT 0.0046 0.0139 0.0298
SPT 0.0036 0.0090 0.0143
LPT 0.0040 0.0116 0.0236

layer is thin compared to the subjacent one. The par-
tially uncoupled problem solved is the first-order so-
lution in a regular perturbation series in H;/D,. The
error is of course worst near the boundaries, where the
depth profile ratio is largest. A precise estimate of the
error associated with the inequality H,/D, < | not
being satisfied in relatively narrow nearshore strips
would require a comparison with fully coupled solu-
tions of (13a)-(13b), as in the numerical model of Wang
(1975). Comparison of our solutions with those ob-
tained numerically by Lie and El-Sabh (1983) for the
St. Lawrence estuary has shown the usefulness of the
thin-upper-layer approximation used here.

7. Applications
a. The Strait of Georgia

This study was originally motivated by the need to
explain the nature of low-frequency variability observed
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in the Strait of Georgia (Chang et al., 1976; Yao et al.,
1982). Earlier analysis (Helbig, 1978; Helbig and My-
sak, 1976), based on a very small slope approximation
and the absence of coupling between stratification and
bathymetry yielded bottom-trapped motions with long-
channel scales much too large to fit into the Strait of
Georgia for the range of periods observed (5-50 days).
Further examination of the available current data
(Schott and Mysak, 1980) has failed to reveal any ev-
idence of phase propagation. Although current thought
(LeBlond 1983) seems to lean towards an interpretation
of the low-frequency motions in terms of quasi-geo-
strophic turbulence, it is instructive to examine the
nature of the low-frequency waves predicted by our
model.

The general bathymetry of the central Strait of
Georgia is shown in Fig. 7. A bathymetric section along
line H is illustrated in Fig. 8, together with the fits used
in our model (solid line) and in that of Helbig and
Mysak (1976) (dashed line). The origin of our coor-
dinate system is set at the point of maximum depth (D
= 375 m). Side boundaries are situated near Sturgeon
bank (x = L, = 16 km) and Valdes Island (x = —L,/
2). The actual geometrical slopes are s¥ = 1.35 X 1072
and s¥ = 2.3 X 1072 on the x > 0 and x < 0 sides of
the channel respectively. In the nondimensional form
(18), with respect to the appropriate width on each side
of the channel (so that ||x|| = 1 on each side), the scaled
slopes entering the bilinear profile (18) are respectively
s, = 0.6 and 5, = 0.5. The Coriolis parameter, f; is 1.2
X 107 and the internal Rossby radius is 8.1 km.

Dispersion curves for the right-bounded and left-
bounded waves are shown in Fig. 9; the asymmetry of
the channel is reflected in the difference between the
dispersion curves for left-bounded and right-bounded
waves. Dispersion curves for symmetric channels with
slope s = 0.5, 0.6 are also shown for comparison; they
are of course the same for both directions of propa-
gation. A glance at Table 3 shows that the shortest
possible periods (at the peak of the o(k) curve for the
first mode) are about 5 days for right-bounded waves
and 6 days for left-bounded waves, corresponding to
wavelength of about 36 km and 17 km, respectively.

TABLE 2. Frequency and wavenumber at which the group velocity of the first mode vanishes.

SLT LLT SPT LPT
s o k 7 o k ' k
0.1 0.0191 23 0.0199 2.4 0.0180 2.8 0.0188 2.8
0.2 0.0381 24 0.0417 2.4 0.0358 2.8 0.0389 29
0.3 0.0569 24 0.0654 2.4 0.0534 2.9 0.0605 3.1
0.4 0.0754 24 0.0914 2.5 0.0706 2.9 0.0840 3.2
0.5 0.0938 2.4 0.1203 2.6 0.0876 3.0 0.1096 3.4
0.6 0.1119 2.5 0.1526 2.7 0.1033 3.0 0.1381 3.7
0.7 0.1299 2.5 0.1893 2.8 0.1208 3.0 0.1699 39
0.8 0.1476 2.5 0.2317 30 0.1370 3.1 0.2070 4.7
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F1G. 7. Bathymetric contours (in meters) of the Central Strait of
Georgia. Location of moorings line H is also shown.

A model which includes g significant bathymetric
influence on interfacial motion, i.e., a forcing of the
baroclinic mode by a traveling barotropic wave, repro-
duces the surface intensified flow observed at low fre-
quencies in the Strait of Georgia; it also yields hori-
zontal scales of motion which fit readily in the Strait
for the observed range of periods and are more in keep-
ing with the short correlation scales (L, =~ 5 km) ob-
served. It is imaginable that superpositions of a few
modes traveling in each direction might, if they were
uncorrelated with each other, be consistent with the
available observations. A much more ambitious sam-
pling program, now in progress, may yet reveal some
phase propagation through a large array located in the
central Strait, for which the waves discussed here would
provide an improved model.

b. The Saint Lawrence estuary

The bathymetry of the lower St. Lawrence estuary
consists of a deep channel (Fig. 10) in which there has
also been observed a subinertial current variability (El-
Sabh et al. 1982). Lie and El-Sabh (1983) have pre-
sented a numerical model of wave propagation in a
two-layer channel with bottom profile

Hy(x) = Hy — sin[(107/4)(1 + x)] exp(—2x),
0<x<0.5 (36a)
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Hy(x) = Hy — (H, — Hp)[1 — sin(x)],
0.5<x<10 (36b)

where H, is the thickness of the bottom layer at the
southern shore (Matane). We have chosen to model
the bathymetry with the parabolic profile shown in Fig.
10, with s = 0.6; the profile given by (36) is also shown.
For the cross section considered the following param-
eter values hold:

D, =300m, H,=45m, H,/D,=0.18
f=10"s"", j=438X1073, L =23km.

The internal Rossby radius is 13 km. Because of the
difference in bathymetric profiles, we expect our results
to differ slightly from those of Lie and El-Sabh (1983).
Table 4 presents frequencies for a nondimensional
wavenumber k£ = 1.6 (corresponding to waves of length -
twice the channel width; our scaling differs from that
of Lie and El-Sabh: our k = 1.6 corresponds to their k&
= 7). For the homogeneous model, the two sets of fre-
quencies are within 10% of each other, a difference
which might be attributed to the difference in bathy-
metric profiles. The difference is more pronounced in
the two-layer model. This is expected since the inclu-
sion of stratification increases the frequency. To give
closer results, the first-order correction to the frequency
should be included. The calculations of Lie and El-
Sabh (1983) are not subject to the H, /D, < 1 approx-
imation, and the difference which they find between
the eigenfrequencies of the two- and one-layer models
is an indication of the cross-coupling between (13a)
and (13b), which has been eliminated by our thin-upper
layer approximation.

8. Summary and conclusions

Low-frequency topographic waves have been known
for some time. Lamb (1932, §192, 212) already dis-
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FIG. 8. Bathymetric section along line H (see Fig. 7, for location).
The solid line is the fit used in our model and the dashed line is the
fit used by Helbig and Mysak (1976). Modified from Helbig (1978).
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propagating over the bottom profile shown in Fig. 8. The two other curves (upper and lower right) are for waves
propagating over the corresponding axisymmetric bottom profiles.

cussed some of their properties. Simple analytical so-
lutions have been found only for special bottom profiles
in a homogeneous fluid and especially in the presence
of density stratification. For channels and basins, there
has been no simple model which represents topo-
graphic-mode solutions on a basin-wide scale in a
stratified fluid.

We have introduced a different approximation
method, applicable to two-layer stratification with a
relatively thin upper layer (a not uncommon situation),
which allows partial decoupling of topographic and

stratification effects. Two bathymetric profiles (linear
and parabolic) have been examined in detail and so-
lutions using a small-slope approximation have been
compared to more precise results where this approxi-
mation was not used. We found that the small-slope
approximation consistently underestimated the fre-
quency of the waves. A Taylor series expansion method
was used to obtain streamfunction solutions in the se-
lected profiles; this method was also shown to be ap-
plicable to a wide variety of bathymetries (for which
the depth never vanishes) obviating the need for the



JOURNAL OF PHYSICAL OCEANOGRAPHY

164
TaBLE 3. Correspondence between the dimensional and
nondimensional wavenumbers and frequencies.

k 2n/k km o 2x/a days
2.5 25L 0.02 36.4
3.0 2.1 L 0.07 10.4
3.5 1.8 L 0.17 6.1
4.0 1.6 L 0.17 4.3
45 14L 0.22 33

small-slope approximation or the evaluation of higher
transcendental functions in untabulated ranges of pa-
rameter.

The solutions of the model yield surface intensified
sub-inertial motions similar to those observed in the
Strait of Georgia (Chang et al., 1976; Yao et al., 1982)
and the St. Lawrence estuary (El-Sabh et al., 1982). A
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TABLE 4. Frequencies computed by Lie and El-Sabh (1983) and
with the large parabolic topography model. The wavelength is twice
the channel width (k = 1.6).

Lie and El-Sabh (1983) LPT
Modes One-layer Two-layer s = 0.60 5s=0.75
1 0.1248 0.1426 0.1126 0.1438
2 0.0368 0.0456 0.0334 0.0459
3 0.0168 0.0214 0.0149 0.0211

comparison to a numerical model of low-frequency
motion in the latter estuary (Lie and El-Sabh, 1983)
shows good agreement with our approximate semi-an-
alytic solutions.

Such surface-intensified topographic waves also ap-
pear to exist in small stratified lakes (Saylor et al., 1980;
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FIG. 10. Location and bathymetry of the Matane-Pointe a la croix section. The
dashed line is the fit used by Lie and El-Sabh (1983) and the solid line is the fit
used in our model. Modified from Lie and El-Sabh (1983).
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Mysak et al., 1983). The analysis was extended to cir-
cular lakes by Gratton (1983) and to elliptical lakes by
Mysak (1985). This latter model has been successfully
used to explain the low-frequency temperature fluc-
tuations observed during the summer of 1979 in Lake
of Lugano, Switzerland (Mysak et al., 1984). Topo-
graphic waves account for the period, propagation am-
plitude and structure of the observed thermocline os-

cillations. |
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APPENDIX
Taylor Series Solutions
The fundamental equation is
hF — hoFy — [k? + (k/o)h]JF = 0.  (13a)

For large, O(1), slopes, it is convenient to first trans-
form (13a) into

Mg + 3hugy + [2hu — k2h — (k/0)hig = 0

where

(A1)

q(x) = K*F(x).

This transformation greatly simplifies the evaluation
of (15).

1. Large linear topography (LLT)
Upon substitution of (18), (A1) becomes
(1 = 2)q: — dg. + (a’z + b)g = 0,

where s = s; when x > 0 and s = —s, when x < 0. The
constants a, b, and d are given by

a=k/s, b=a(l/oc—a), d=3.
The Taylor series solution is \

zZ=8X

q(z)=A > Cpz"+ B >, D,z".
0 0

The C; and the D, are given by
Co=1, Dy=0
C; =0, D =1
C,=-b/2, D,=dJ2
Co={l(n— D)(n—2)+ dn— 1]Cp
— bCpey — a2Cos}/n(n — 1)
Dy = {l(n — )(n —2) + dn — DICy,
— bD,_, — a’D,_3}/n(n — 1).
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To standardize the notation, let

LLC(s, x) = > C,s"x"
0

[}
LLD(s, x) = >, D,s"x".
0

The two characters LL stand for “Large Linear”. Sim-
ilarly, SP and LP will stand for “Small Parabolic” and
“Large Parabolic” respectively. Once the matching
conditions are satisfied at the slope discontinuity (x
= (), the solution becomes

gt (x) = By[AoLLC(sy, x) — A,LLD(s;, x)], x>0
q~(x) = Ag[BoLLC(—s$3, x) — B,LLD(—s3, x)], x <O0.
The A; and the B; are given by
Ao = LLD(s;, 1), A; = LLC(s{, —1)
By = LLD(—s5,, 1)}, B; = LLC(—s;3, —1)
provided that the dispersion relation
52A0(By + 2Bg) + s1Bo(A) + 24p) = 0

is satisfied.

2. Small parabolic topography (SPT)
Substitution of (19) into (13a) yields
Fo+dF.+(ax+ bF=0
where a 2sk/o, b = k?, and d = 2s. The Taylor series
solution is

Fx)=A2 Cyx"+ B Y D,x"
0 0

= ApSPC(s, x) + BySPD(s, x).
The C; and the D, are given by
Co=1, Dy=0
Ci=0, D=1
C,=b/2, D,=0
Gy = {lb — (n — 2)d1Cp-z — aCys3}/n(n — 1)
D, = {[b— (n — 2)d1Dy—z — aDnos}/n(n — 1).

3. Large parabolic topography (LPT)

Upon substitution of (19) and using z = s"%x, Eq.
(A1) becomes

(1 — z¥q,, ~ dzg, + (@*z2*+ bz + c)g=0

where a? = k¥/s, b = 2a/a,¢c = —(4 + a*),and d = 6.
The Taylor series solution is
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g) = A'S Cus™x" + B S, Dys™?x"
0 0

= AoLPC(s, x) + BoLPD(s, x).
The C; and the D; are given by

GCo=1, Dy=0
C, =0, D =1
C,=-¢2, D;=0
Cy = =b/6, D;=(d— )6

Co={l(n —Dn—3) + (1 = b — ICns

— bCh3 — a*Cps}/n(n — 1)
D, = {[(n — 2)(n — 3) + (n — b — D

— bD,_3 — a*D,_4}/n(n — 1).
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