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ABSTRACT

On ocean general circulation scales, vertical velocity w is extremely small, O(10~%) smaller than the horizontal
velocity in scale. Nevertheless, it is of great importance to advective-diffusive and vorticity balances. In order
to better understand the relationship between the cross-isopycnal (diapycnal) velocity, the mixing, and w, in a
nonideal ocean in which some mixing and density sources are present, the velocity vector is decomposed into
isopycnal and diapycnal components. Applying this decomposition to the exact continuity (mass conservation)
equation, it is shown that while the diapycnal divergence is in principle the first correction to the isopycnal
divergence for general circulation scales, the observational uncertainties in the isopycnal velocity are large
enough that the diapycnal divergence cannot in practice be determined. Using these results, the horizontally
averaged near-vertical (diapycnal) velocity computed by Wunsch et al. in a model of the South Pacific (28-
43°S) is reconsidered. It is shown that the calculation of diapycnal velocity from isopycnal mass convergence
is not consistent with uncertainties in the isopycnal velocity and that the implied mixing cannot be accounted
for with simple diffusion models and salt-fingering alone.

1. Introduction

What is the precise relationship between the vertical
velocity (normal to geopotentials) and the cross-iso-
pycnal (diapycnal) velocity in the large-scale time-mean
ocean general circulation?

One extreme possibility is that they are completely
unrelated. For example, in the S-spiral method of
Stommel and Schott (1977) in its simplest form, dia-
pycnal flow is assumed to be identically zero. Then, if
the relative vorticity is small compared to the planetary
vorticity, a small, nonzero vertical velocity divergence
must be present to provide vortex stretching wherever
the fluid moves across planetary vorticity contours, in
order to conserve absolute vorticity.

The other extreme possibility is that the vertical and
diapycnal velocities are nearly equal. This was assumed
by Wunsch et al. (1983; hereafter referred to as WHG),
in their application of inverse methods to the Scorpio

trans-Pacific sections at 28 and 43°S. Having made

this assumption, they compute a horizontally averaged
near-vertical velocity w that is downward throughout
the water column.

How are the isopycnal velocity and mass flux diver-
gences related to the diapycnal velocity and mass flux
divergences and to the potential density sources, e.g.,
mixing? The answer to this question bears upon the
computation of the diapycnal velocity from the iso-
pycnal mass flux divergence, as was done in WHG.
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The decomposition of the velocity u into an isopyc-
nal component u, and a diapycnal component u, (@
for “along,” ¢ for “cross™) is a natural one in the ocean
since the physics (scales and momentum balances) and
magnitude of u, and u, are quite different. Typically
u, is associated with potential density-conserving large-
scale dynamical balances, e.g., the wind-driven circu-

- lation, while u, is associated with small-scale mixing

processes such as internal wave breaking, salt-fingering,
lateral (isopycnal) mixing and the resulting cabbeling,
and convection. These mixing processes vary in inten-
sity from place to place in the ocean; isopycnals are
thought to leak most in such special subregions of the
ocean as surface, side, and bottom boundary layers,
density fronts, mode and deep water formation sites,
outflows from marginal seas, and near strong currents
(e.g., the Pacific Equatorial Undercurrent).

Away from such special regions (and sometimes
within them), in the ocean interior, u. is indeed much
smaller than u,. The canonical scale for diapycnal flow
is O(1073 cm s™!) (Munk, 1966; Worthington, 1969;
Carmack and Foster, 1975; reviewed by Gargett, 1984),
while u, even in the deep ocean is O(1 cm s™!).

An informal decomposition of u into isopycnal and
diapycnal components was first used by Wiist (1935,
p. 3), who noted the similarity of the temperature—
salinity (7-S) relationship across the horizontal free
surface to the 7-S relationship across the vertical span
of the thermocline and deep water. He took this as
evidence for advection predominantly along density
surfaces and attributed variations in density along pre-
sumed flow paths to mixing.
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Analysis of hydrographic data on the basis of flow
along isentropic (constant potential density, isopycnal)
surfaces was subsequently introduced by Montgomery

(1938), in an extension of Shaw’s (1930, pp. 259-264) -

introduction of isentropic weather maps as a meteo-
rological tool.

The idea of strong isopycnal flow, accompanied by
weak diapycnal flow (which can therefore be neglected
in some contexts), is by now a common one in general
circulation oceanography. The recent thermocline the-
ories of Luyten et al. (1983) and Rhines and Young
(1982), for example, are founded on this premise.

Recently, investigators interested in the effects of
mixing on seawater have made use of a local isopycnal
coordinate system. Redi (1982) used a local coordinate
rotation to relate an isopycnal diffusivity tensor K’ with
only diagonal terms to a geopotential [x, y, z(p)] tensor
K& with nonzero off-diagonal terms. McDougall (1984)
derived an equation for the rate of change of potential
temperature on a potential density surface from the
potential density equation in isopycnal coordinates; this
equation may be rewritten in terms of a relationship
between the diapycnal velocity and the mixing.'

A local isopycnal coordinate system based on a ro-
tation of coordinate axes does not, however, lead to
expressions for the gradient, divergence, and curl op-
erators. These operators have terms proportional to
the variation in length (%, /,,, A,) of the local isopycnat
orthogonal basis vectors (x/, ¥, r'). The length variation
arises from the global (meso- or general-circulation
scale) properties of the coordinate system such as the
variation of isopycnal tilt and static stability from place
to place.

To illustrate the effect of variations of A, consider
the variation of 4, for cylindrical (7, ¢, z) coordinates.
The azimuthal basis vector ¢ has length 4, = r, where
r is the distance from the origin, and the gradient op-
erator in cylindrical coordinates reflects this:

grad = r1/rd/dr + ¢ 1/rd/dér + kd/dz 1)

where carets indicate unit vector. An accurate expres-
sion for the divergence operator is necessary if the net
flux into a volume is to be related to the net flux out
of it.

2. Isopycnal and diapycnal components of velocity

The velocity u may be formally decomposed into
isopycnal and diapycnal components.
First define the following density parameters:

! The diapycnal velocity used by McDougall is defined locally at
each point [x, y, p(2)] as the velocity normal to surfaces of constant
o,r, potential density referenced to a pressure p,, with p, = p. Diapycnal
velocity as defined below in this paper, is normal to surfaces of con-
stant o,,, p, = const.
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o(p, 8, ) in situ density

Po in situ density, mean value
(const, ~1000 kg m™)

in situ density, departure from
mean value

in situ density, mean vertical
profile, (used for expanding
in mean isobaric coordinates
plus departures)

potential density referenced to

Pr
adiabatic density correction.

p(p,0,5)=p— po

ps(p(2))

opr(8, 8) = p(pr, 8, 5)
Ap(p’ 8, S) =p T Opr

The notation () for total, (subscript s) for mean
vertical, () for anomalies and (prefix A) for adiabatic
correction effects, will be used in some subsequent
thermodynamic definitions; 6 is potential temperature
and s is salinity. Symbols in capital letters or square
brackets represent the scale of the same symbol in small
letters, e.g., U or [u] represents the scale of u. Here o),
always refers to the total potential density (e.g., 1027.2
kg m~3) even though numerical values for o, are given
in sigma units (e.g., 27.2), following common practice.

Now decompose the velocity vector as follows:

u=u,+u, 2

u, X grada,, =0 3)
. grad}rp, =0 4)
u.-grade,, = J (5a)

J = Doy, /Dt — 30, /01. (5b)

Equations (2)-(4) simply say that u, is perpendicular
to the density gradient everywhere, u, is parallel to it,
and that their sum is u. The u, and u, are identical to
the velocity components obtained from a local coor-
dinate rotation which aligns k with grade,,.

Equations (5a, b) define J as the advective part of
any potential density sources. For steady flow, J is zero
when the salt and heat fluxes into a water parcel are
individually zero; or, when the salt and heat buoyancy
fluxes computed at p, are equal and opposite.

These equations are just enough to define u, and u,
uniquely in terms of u and J. Define the isopycnal
slopes Ay, h,

hy = —(ap)x/(0p)zs By = —(0p)y/(apr):  (63,b)
grad(o,,) = —ihdop): — Jy(ap)z + k(ap)z.  (7)
Then, (3) and (4) give
Ve = —hW,, U= —hw, (8a,b)
—(heug + hyog) + wa =0 )
so that (5) becomes
(h + b + Dwe = J/(op0):. (10)
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Solving for u, in terms of J, grade,,, and u,

U, =u+ hx-]/[("'pr)z(hx2 + hy2 + l)] (11a)
va =0+ hy-]/[(apr)z(hx2 + hy2 + 1)] (1 lb)
W = w — J/l(ap)Lh2 + b2 + 1)]. (11¢c)

These expressions are exact.

3. Discussion: Oceanic vertical velocity

In the ocean, isopycnals slope gently (hx, h, < 1).
When h, and h, are small, Eqs. (11) are anisotropic,
in the following sense. From (10), w, ~ J/(a,,).. Since
W < (U, V) (the flow has a horizontal component to
lowest order), the approximations ¥ ~ u; and v ~ v,
from (11a, b) are correct for the horizontal component
of velocity. The approximation for the vertical com-
ponent of velocity presents several choices. Taking
w ~ w, (as in the @B-spiral method) is correct only if
W, > W,. Otherwise, either w ~ w, (as in WHG) for
W,< W, orw=w,+ w, for W, ~ W, (neither term
can be neglected in favor of the other).

Although the vertical velocity components w, and
w, and their sum w are difficult if not impossible to
measure in the ocean, together or separately, they are
indeed physically distinct entities. For example, at the
(horizontal) free surface of a flow being heated from
above (w, > 0), fluid must cross sloping isopycnal sur-
faces (w, < 0) flowing horizontally (w = 0).

Similar (partial?) cancellation may occur near the
bottom boundary of the ocean in tongues of dense
water. The Antartic Bottom Water tongue in the North
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FIG. 1. Sketch of u, u,, u., grado,,, and angles.
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Atlantic, discussed by Whitehead and Worthington
(1982), is defined by isopycnals sloping into the ocean
floor (w, < 0), from which water might exit nearly hor-
izontally as it entrains (mixes turbulently with, w,
> () lighter water from above.

Where w, and w, have the same sign, they comple-
ment each other. The equatorial undercurrent structure
proposed by Bryden and Brady (1985) has isopycnal
zonal flow along shoaling isopycnals (w, > 0), aug-
mented by upward diapycnal flow (w, > 0). Another
example is Worthington’s (1972) theory of anticyclo-
genesis as a result of winter outbreaks of polar air over
subtropical gyres. Here, surface cooling (w. < 0) may
complement Ekman convergence (w, < 0), thus en-
hancing the anticyclonic wind-driven circulation.

4. Discussion: Mixing and the direction of flow relative
to isopycnals

1t is instructive to relate J and u by a slightly different
(and more usual) method (Fig. 1). Between u and
gradoe,, an angle ¢ is formed such that

(12)

(with 0 < ¢ < 7). Equation (12) is a restatement of (5).
Let v = ¢ — =w/2; v is the angle made by u and the
local isopycnal tangent plane. Then cos¢ = —sinvy. For
purely isopycnal flow, v = 0.

For flow crossing isopycnals very obliquely so that
¥ < 1, —siny ~ —+. For gently sloping isopycnals,
lgrade,,| ~ —(o,).. In the presence of both of these
conditions, |u| ~ |uy|, where uy is the horizontal ve-
locity. Thus

u-grado,, = |ullgrado,| cosp = J

J~ |“H|(apr)z‘Y- (13)

The isopycnal tangent plane and the horizontal plane
make an angle « such that w, = |u,| sinw, and w,
= |u, cosw. Between u and the horizontal plane an
angle » is formed, such that w = |u] sin».

Now vy = v — w, which may be substituted directly
into (13); w, = w — w, and ¥ = v — w are equivalent
statements.

From measurements of the density field J, v, and u
can be determined if simplifying assertions are first
made about the dynamics and the functional form of
J. Schott and Zantopp (1980) and Olbers et al. (1982)
restricted the form of Jto depend on »n parameters and
the density field, and assumed thermal wind and lin-
earized vorticity dynamics; this made it possible to solve
for the n parameters, u, and (implicitly) v by simul-
taneous linear regression using scalar, e.g., density,
gradient data at N = (n + 3) depths.

5. Mass conservation and the divergence of u, and u,

No matter how different the physics and magnitude
of u, and u, are, the two components are always linked
by the continuity (mass conservation) equation
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dp/dt + div-pu =0 (14)

which is exact. The continuity equation is quite dif-

ferent from the in situ density equation
Dp/Dt = Sg (15)

in which Sk represents sources of p. In fact, (14) may
be rewritten
(16)

When two or more of (U/X, V/Y, W/Z) are much
greater than p~ 'Sk, the continuity equation yields the
approximate and powerful simplification

diveu=0 17)

known as incompressibility. In incompressible flow,
the in situ density equation (15) may or may not retain
Sr as a lowest-order term, depending on the relative
size of Sz compared to ([p')/[f], Ulp'V/X, VI[p']/Y,
Wlp'l/Z).

Precisely because of the opportunity for confusion
presented by these scaling arguments, it is desirable to
return to the exact continuity equation (14) and rewrite
it using (5),

diveu, = =[div-u, + p~'(Ds,,/Dt + DAp/Dr)]

= —[div-u, + p~'(J + 30,,/3t + DAp/D1)]
(18)

anticipating an approximation of the form div-u,
= O(¢), for flows in which the mixing and pressure
effects are O(e), e <€ 1.

Let the potential temperature and salt equations de—
fine Sy and Ss:

diveu = p~'Sk.

Dé/Dt = S, (19)
Ds/Dt = S. (20)

The coefficients of thermal expansion «a(p, 7, s) and
a'(p, 8, s), coefficients of saline contraction 8(p, 7, s)
and 8"(p, 6, s), and the inverse square sound speed A
are defined by

a = —p~(3p/dT ), (21a)
o = —p"YOp/00),s = 2(OTIO),s  (21D)
B = 0™30/05), 1 (22a)
B’ = p™90/0)yp = B + oL(36/35)ps  (22b)

= Opldpyss (23)

noting that (37/d6),, ~ 1 and (8 — 8")8~' ~ 3 X 1073
(Gill, 1982, p. 54).
For p = p(p, 0, s), recalling that p(p,, 8, 5) = o,(0,
s), Jis
J = Do, /Dt — d0,,/0t
= ap(—apSg + B5Ss) —

do, /0t (24)
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where ay, = a«"(p,, 0, s) and 87, = 8"(p., 0, 5). Cabbeling
(computed at p,) is 1ncluded in J, i.e., contribu-
tions from the derivatives 8™*"f,,/3"sd"8, where f,,
= (atprs Bpr), (M, n) = 0, and (m + n) = 1. The pressure
correction (not necessarily small) to this reference
pressure cabbeling comes in below. The time-depen-
dent term is retained for completeness despite the im-
mediate interest in a time-mean flow.

First consider the continuity equation (18) for a fluid
in which Ap, the difference between in situ density p
and potential density g,,, varies only with p:

div-u, = —[div-u, + p~'(J + d0,,/3t) — (25)

If the hydrostatic approximation (dp ~ —pgdz) may
be used, the —wg\ term may be incorporated into the
divergence operator by the use of isobaric coordinates,

(e.g., see Holton, 1979, pp. 54-56), giving without fur-
ther approximation

—[div,u. + o7 + 80,,/01)) (26)

(8/3x)yp + (3/0¥)x, + (80)™'0/02(pg). (27)

For seawater, in which Ap varies with (p, 6, s), the
continuity equation can be written using the terms of
(26), plus new terms. First write

DAp/Dt = (Dp/Dt — Do,,/Di)
= p(—a"Sg + B"Ss —
—ap(—apSo + B5Ss).  (28)

Deﬁne Apa” = a” — (p"a,,,)a_;’,, and Ap,ﬂ” = g
— (p"'0,,)B5,. Then the continuity equation can be
written

wgA).

div,-u, =

div, =

wgh)

—[div-u, + p~'(J - 80, /01)
— Sohpa” + SsA,B8" — wgh]  (29)

which in isobaric coordinates is

diveu, =

~[divys-u, + p\J+ da,./0t)
— SpApa” + SsA,B8" — wgN']

divpseu, =

(30)

where A = A\ (p(2)) + XN and dp, = —p,gdz.

The first three terms on the rhs of (30) and the p;
coordinates are analogous to the terms in (26). The
remaining three new terms, which are not necessarily
small, all come from the cross-derivatives **"*9f/
ap™ds"dee, f = (a”, B”), m = 1, (n, g) = 0. The A, a”
and A, 8" terms include the pressure corrections to the
reference-pressure thermal expansion (f= a”, m= 1,

= 0, ¢ = 0), saline contraction (f = 8", m = 1,
n =0, g = 0), and cabbeling [f = (a”, 8"), m = 1,
n > 0 and/or ¢ > 0]. The X term accounts for any
sound-speed anomalies remaining after the mean A\;(z)
profile has been incorporated into divy,.
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a. Special cases

For steady flow in which Sy and Ss are both zero,
the isopycnal divergence is balanced by DAp/Dt, which
is —wg\ for hydrostatic flow. The diapycnal velocity
and thus the diapycnal divergence are identically zero.
Flow is confined to isopycnal sheets do,, = const, of
variable thickness do,,/|grada,|.

If DAp/Dt is also zero, then p is constant and con-
sequently the isopycnal divergence is zero. In this trivial
case and this case alone the diapycnal and isopycnal
divergences are exactly equal.

b. Scaling considerations

Is there a consistent scaling for which the diapycnal
divergence is the largest of the O(¢) terms? In particular,
is the diapycnal divergence the first correction to the
isopycnal divergence for oceanic scales?

Scales which maximize the rhs O(¢) terms of (29),
while remaining within plausible ocean general cir-
culation ranges are shown in Table 1, along with the
resulting magnitudes of the terms of (29). For the scales
shown, the first correction to the isopycnal divergence
is, in principle, the diapycnal divergence.

TABLE 1. Oceanic scaling for the continuity equation.

(a) Basic scales

U~ 10cms™!
AU~ 0.1 cms™!
L~ 10°cm

W, <w
W~10%cms™!
H<5X10°cm
N*< 1075572
g=10*cms™

A =2 X 10" cm? 572
A=5X10"2scm™
[Ap,a"] ~ 10—4 oc—l
[Aprﬁ”] ~ 107

[ap) ~ (8, 123) X 1078 °C™* (min, max)
(87 ~ (7,8) X 107*

Notes:

(a) AgU is an error bar on U

(b) N? (p ~ P:) = _gp_l(opr)z

©) [oprs Bors Apra”, ApB”], chosen from Millard (1984) to
maximize terms in Eq. (29), for 0 < p < 4000 dbars, ~2
< 8 <20 °C, and 0.030 < s < 0.040.

(b) Derived scales for terms in Eq. (29)

div-u, ~ U/L £ AgU/L ~ 1077 £ 107 5!
diveu, ~ W,/H~2 X 107" 5!

Jlp ~ ("pr):u/t/p ~ WcNZ/g ~ 10735
wghs ~ 5 X 1073571

WgA ~ 5 X 107457

Apa*Solp ~ < 1072571

AnB"Ss/p ~ <1071 57!
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¢. Effect of errors inu,

In practice, any computation of the isopycnal di-
vergence from observational data will produce a resid-
ual E, where E < O(e, AgU/L)max, Where AgU is an
error bar on U. Since U/L > E, E can be chosen to be
arbitrarily small (including E = 0) without affecting
the O(U/L) terms. If E is formally computed to arbi-
trary order, it will be dominated by the largest of the
O(e, AUg/L) terms.

This is analogous to determining w, from —(u
+ v,) in quasi-horizontal flow when there are obser-
vational errors associated with (i, v). [(u, v, w) are the
usual Cartesian velocity components.]

Referring to the Table 1 scales, the diapycnal diver-
gence is O(1072) smaller than the residual isopycnal

_divergence due to errors in the isopycnal velocity. Sim-

ilarly, using these same scales the vertical velocity di-
vergence is O(1072) smaller than the residual horizontal
divergence.

Are there scales different from those given in Table
1 but within the ranges appropriate for the WHG model
results such that the diapycnal divergence W_/H is as
large as the error term AzU/L? Using the Table 1 scales
as a starting point, either W, or L must increase, or
AgU or H must decrease. At 1000 km L is already at
least an order of magnitude greater than the Rossby
radius and equal to the meridional scale of the South
Pacific gyre. The zonal extent of the South Pacific is
an order of magnitude larger than this, though property
(heat, salt, silicate) convergences are most likely me-
ridional, not zonal.

The AgU is 0.1 cm s™!, an optimistic error estimate
for any point measurement of oceanic velocity. In a
box model, where smooth fields of isopycnal velocity
and velocity divergence are estimated from a set of
point measurements, the total error scale AgU is the
sum of the point measurement error and the estimated
error in the field-generating procedure. Thus the point
measurement error can be regarded as a lower bound
on the total error.

Here, H is 5 km, the full water depth. Since WHG’s
w is O(W,) and nearly constant throughout the water
column, with no evidence of boundary layers or inter-
nal variation in w on scales much less than this, e.g.
500 m or less, this is an appropriate choice. The W,
has the maximum value reported in WHG.

What about much smaller values of H or much larger
values of W, in the real ocean? From an observational
point of view, there is a nearly total absence of direct
evidence concerning both the vertical scale of time-
averaged diapycnal velocities of gyre-wide horizontal
scale, and the maximum scale for these¢ velocities.
However, it is usual in scale analysis to produce a sim-
plified set of equations using all known scales plus es-
timates of any unknown scales, then to require for
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consistency that any solution produced from the sim-
plified set of equations not contradict the original scal-
ing. In order to examine the WHG model for such
consistency, it is appropriate to choose values for H
and W, that characterize the solution produced by the
model.

Using the most promising values (AgU ~ 0.1 cm
s, L ~10*km, W, ~ 107 cm s™!, H ~ 5 km), the
diapycnal divergence is still O(107}!) smaller than the
residual isopycnal divergence due to errors.

Thus, the scales of the WHG results are not consis-
tent with those leading to the isopycnal/diapycnal di-
vergence approximation to the mass conservation
equation.

d. Mass flux divergence

Leaving aside the question of errors, consider flows
where the second through sixth terms on the rhs of the
continuity equation (29) are as large or larger than the
diapycnal velocity divergence. For such flows, the con-
tinuity equation in mass flux divergence form incor-
porates these terms directly

€2))

This form of the equation has terms which are more
conveniently computed than those of the expanded
form (29). However, for flows where the second through
sixth terms of (29) are negligible, the mass flux diver-
gence is only negligibly more accurate than the velocity
divergence, since the contribution to the mass flux di-
vergence due to in situ density variation is smaller than
that from the velocity divergence.

dp/dt + div- pu, = —div- pu,.

e. Green's theorem and scaling considerations

The relative scales of terms in an equation such as
(29) may be altered by application of Green’s theorem
(Hildebrand, 1976, p. 301), depending on the integral
volume used. The WHG model layers and boxes do
not appear to have this property; the scales chosen to
characterize the relative magnitudes of fluxes for an
arbitrary volume seem equally well-suited to charac-
terize the relative magnitudes of fluxes through the
surfaces of the WHG boxes and layers.

Examples in the literature where this property -of
scale alteration does occur include Hall and Bryden’s
(1982) computation of heat flux across 24°N in the
Atlantic, and Toole and Raymer’s (1984) similar com-
putation at 32°S in the South Indian Ocean. By choos-
ing basins which are nearly-closed to one side of a hy-
drographic section (except for small Bering, Banda
Strait transport), fluxes and the associated errors are
very small on all surfaces except for the hydrographic
section. A similar but more sophisticated example from
these same studies is the near-elimination of the heat
flux due to unknown interior barotropic velocities after
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integration over the interior hydrographic stations (see
Hall and Bryden, 1982, for a full explanation), not be-
cause such a flux is relatively small locally anywhere
in the flow, but because of integral constraints specific
to this particular type of volume.

6. Ekman pumping

The imposition of a vertical velocity w, at the surface,
or at the base of a surface boundary layer, of a stratified
fluid with sloping isopycnals implies a mass flux in or
out of those isopycnal sheets which intersect the surface.
In an ocean box model, w,, or equivalently, the con-
vergence in the surface boundary (Ekman) layer, may
be prescribed by the modeler based on wind stress ob-
servations. If there is no mixing or other sources of 4
or s in the model, then w, is zero everywhere by (5):
w, in the modeled region can feed mass only into those
isopycnals which intersect the surface in that same re-
gion. Denser layers may of course exchange mass with
the surface boundary layer where these layers do out-
crop, away from the modeled region.

In WHG models S-2, 3, 4, Ekman fluxes across 28
and 43°S are prescribed in Layer 1, the only layer which
intersects the ocean surface in the modeled region.
These Ekman fluxes are not balanced, so a net con-
vergence in this layer results. This convergence is not
required to be balanced exactly by geostrophic flux di-
vergence; it is allowed to be partially balanced by an
accumulation of mass in the layer that is then assigned
to the diapycnal flow w, which flows into layer 2 below.
The w is w, averaged over an isopycnal surface of a
box. Slight mass residuals are allowed in each successive
layer, to be assigned to diapycnal flow into the layer
below. The maximum amount of mass residual the
model is allowed to produce in each layer is specified
a priori. The entire box does conserve mass precisely.

This procedure has two distinct implications. First,
as was shown in Section 5, any residual isopycnal con-
vergence should be regarded as due to uncertainties in
u; it need not be balanced by diapycnal divergence.

Second, diapycnal velocity is accompanied by po-
tential density sources, from (5). Thus the apparent
penetration of the Ekman pumping beyond the base
of Layer | in the WHG model is accompanied by mix-
ing (since external potential density sources, e.g. sun-
light, do not penetrate this deeply).

7. Simple diffusion models, salt-fingering, and mixing
in the WHG model

Do the values computed by WHG for w correspond
to diapycnal velocities expected from simple diffusion
models or salt-fingering? The purpose of this calcula-
tion is only to compare the results of the models; the
question of their applicability to the real ocean is not
addressed here.
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If the buoyancy term J arises from internal wave
breaking, then it is customary to define a vertical dif-
fusivity K, in terms of a Reynolds transport term
—w'a’, and the time-mean density field o,

—weoz = (Ky02),.

(32)

If there are no other contributions to J, then from (10),
assuming (A, h,) < 1,
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w = —bBy; 335

w negative when B, is negative corresponds to up-
gradient diffusion in this model also (but the sign of
w,, of central importance to linear vorticity dynamics,
may be altered).

Can salt-fingering produce negative w anywhere in
the water column? Salt fingering can occur where cold,
fresh water underlies warm, salty water. Such condi-

wo; = (Ky0,);. (33) tions exist in the northern and western sectors of the

If K, is relatively constant with depth, WHG model region from the surface down to the Ant-
_ T, _ arctic Intermediate Water (AAIW) salinity minimum

K, ~ wo;/a;; = WN°/(N*); = —2wB/B, (34) at ~1000 m, near the level where B, reaches a maxi-

where N (p=p,) is the buoyancy frequency
[—g07'(o,»):1"?, and B is the buoyancy period 2x/N.

Estimates for K, calculated for some of the WHG
layer boundaries using (34), WHG values for w, and
the Scorpio data (Stommel et al., 1973) are given in
Table 2. Throughout the water column W is negative.
Except for the base of layer 3, B, and thus K, are neg-
ative. The base of layer 3, 6o = 27.20, is just below the
core of the South Pacific Mode Water at 69 = 27.00-
27.10 (McCartney, 1982). Mode Waters by definition
represent maxima in B and, in consequence, overlay
isopycnals with positive B,. Only below the Mode
Water, then, are the results of the WHG model con-
sistent with constant K, downgradient diffusion acting
alone.

Gargett (1984) argues that internal wave breaking
may be more accurately modeled by K, ~ aN~! = bB,
with (a, b) = const > 0, than by K, ~ const. Substi-
tuting this form for K, into (33) gives

mum. Where fingering occurs, the cold, fresh, under-
lying water gains salt, causing it to sink across isopyc-
nals (W negative); conversely the warm, salty, overlying
water rises (w positive). Thus, at and above the AAIW,
w from the WHG model is consistent in sign with
buoyancy sources due to salt-fingering.

Negative w is consistent with these simple diffusion
models and salt-fingering only at the levels noted. Else-
where, in the deep water in particular, some additional
mechanism is required in order to produce a w profile
similar to that calculated by WHG.

8. Conclusions

The velocity vector may be decomposed, without
resort to isopycnal coordinates, into isopycnal and dia-
pycnal components. Expressions for the vertical ve-
locity in terms of isopycnal and diapycnal components,
and for the isopycnal divergence follow, without ap-
proximation.

TABLE 2. Diapycnal velocity, stratification, and diapycnal diffusivity.

n 2) (3 @ (5) (6) 0 t)) &)
~ Depth Tpr w go B B, Neg. sign, B, K., Eq. (34)
Layer (m) (kg m™3) (10%cms™) (kgm™3) (min) (10*mincm™)  (obs < O/total obs) (107! cm?s7™")
; 200 a9 = 26.80 -0.7 26.81 262 -93+29 12/14 -0.4 £ 0.1
3 500 oo = 27.00 -0.6 27.01 453 -33+37 9/14 -1.6+ 1.1
4 900 ap = 27.20 ~0.6 27.21 35+1 0.7 £0.7 6/14 60+62
6 1200 a; = 36.60 -0.8 27.41 39+1 —-3.6+06 14/14 -1.7+0.3
2100 gy = 36.98 -0.6 27.75 100 + 6 -56+£19 11/13 -2.1+07
Notes:

(1-4) From WHG: :
(1) Layer number, as in WHG Table 1. Layers deeper than
6 omitted since they are not represented at many of the
Scorpio stations used;

(5-9) From Scorpio data, Stommel et al., 1973, stations 3, 13, 29,
39, 49, 59, 69 at 43°S; 89, 99, 109, 119, 129, 139, 148 at
28°S):

(5) oo chosen to estimate (3) above;

(2) approximate depth of layer boundary, from WHG Table
1 .

(3) density of layer boundary; o, is potential density referred
to 2000 db; and
(4) w, from WHG Fig. 11a.

(6) buoyancy period, minutes, mean and standard deviation
of mean;

(7) vertical derivative of buoyancy period, mean and stan-
dard deviation of mean computed by nearly-centered
first difference, i.e., difference centered on o, as closely
as uneven vertical spacing of data allowed;

(8) number of observations of B, less than zero/total num-
ber of observations used; and

(9) K, computed from Eq. (34), mean and standard devia-
tion of mean.
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This procedure suggests an alternative interpretation
of the WHG model assumptions and results:

e The (horizontally-averaged) diapycnal velocity and
the (horizontally-averaged) vertical velocity are not
necessarily nearly equal, even when the density gradient
is near-vertical.

e Nonzero diapycnal velocities throughout the water
column imply mixing throughout the water column
(or an unsteady potential density field).

e For the diapycnal velocities computed by the
WHG model, the implied mixing is not consistent with
simple models of down-gradient diffusion or salt-
fingering, except just below the Mode Water at op
= 27.00-27.10.

¢ In practice, diapycnal divergence can be computed

from the isopycnal divergence only when the accuracy

in the isopycnal velocity is <O(W_.L/H) (and other
terms in the mass conservation equation due to vari-
ations in density are sufficiently small). Otherwise, any
residual isopycnal divergence should be ascribed to the
uncertainties in the isopycnal velocity. This is analo-
gous to the difficulty encountered in computing vertical
velocity divergence from horizontal velocity divergence
when the horizontal velocity field is imperfectly known.

These results confirm the importance of direct mea-
surements of mixing in the ocean, since such infor-
mation leads directly to estimates of diapycnal velocity
without reliance on any relation between isopycnal and
diapycnal divergence. Further, the inverse method can
assimilate this information as constraints, with appro-
priate weighting, Diapycnal velocities might contribute
significantly to vertical velocities in some oceanic re-
gimes.
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