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ABSTRACT

An analytical study of the combined wind-driven and buoyancy-driven thermocline problem is presented.
The analysis is an extension of the ventilated thermocline model of Luyten et al.

An exact solution for the ventilated region of the subtropical gyre is found under the condition that the ratio
of the buoyancy flux to Ekman pumping is a function of latitude alone. It demonstrates the general westward
shift of streamlines when the subtropical gyre is heated and the enlargement of the eastern shadow zone.

The flow in the shadow zone is described, in most instances, for the case of relatively small buoyancy flux.
It is shown that the shadow zone, now in motion due to buoyancy forcing, splits into two zones. There is a
broad eastward zone in which the deep flow is northeastward and a narrow zone between this branch and the
ventilated fluid in which the shadow zone flow is returned in a relatively swift current nearly preserving potential
vorticity. For buoyancy/Ekman flux ratios which are nearly independent of position, the eastern branch of the
shadow zone circulation lacks a beta spiral and the meridional transport can be simply calculated as a direct
response to the heating.

For sufficiently large heating, the model predicts pinch-off of the cold water layer along a latitude circle in
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the ventilated zone, south of which the solution loses validity.

1. Introduction

The theory of the Ventilated Thermocline (Luyten
et al., 1983, hereafter LPS) describes a model of the
oceanic thermocline in which the driving mechanism
for the subsurface, geostrophic circulation is the fluid
pumped out of the upper mixed layer, i.e., the Ekman
velocity wg. The Ekman velocity is directly related to
the wind stress curl and thus the LPS theory describes
an oceanic thermocline whose flow is determined by
the supposedly known distribution of wind stress. The
density field enters the dynamics by the specification
of the surface density field, i.e., the lines on which the
interfaces between layers of constant density outcrop.
Although the density field is dynamically active, e.g.,
by providing buoyancy forces and producing thermal
wind currents, it is considered thermodynamically
passive in the model of LPS. That is, density is con-
sidered a conserved quantity. In the context of the lay-
ered model of LPS, this is equivalent to the constraint
that fluid not cross interfaces between layers of constant
density in the region beneath the mixed layer. Such a
transfer requires a change of density for each parcel
being so transferred and consequently requires heat
added or subtracted from the parcel to effect the change
in density. Thus in LPS, the requirement of density
conservation is equivalent to the absence of any heating
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(or buoyancy change) penetrating below the mixed
layer. The exchange of heat within the mixed layer can
be modeled within the confines of the adiabatic model
as shown by Pedlosky et al., 1984.

Recently, there has been a revival of interest in the
role of deep buoyancy fluxes in the dynamics of the
thermocline. Luyten and Stommel (1986a,b) have
studied the dynamics of a two-moving-layer model in
which the buoyancy flux, i.e., the internal heating, is
represented by a specified mass flux between the lower
and upper moving layers. This mass flux is prescribed
in the same manner as the Ekman pumping, i.e., as a
supposedly known function of geographical position
although admittedly, the actual relation between this
buoyancy forcing and any external observable, e.g.,
surface heat flux is far less well understood than the
relation between wy and the wind stress.

Luyten and Stommel (1986a) used an ingenious re-
formulation of the geostrophic equations in the two-
layer model to derive a single quasi-linear partial dif-
ferential equation for the thermocline depth. In their
formulation, the characteristics of the resulting hyper-
bolic equation depend only on the total Sverdrup
transport, known a priori, and the layer thicknesses.
The fact that the characteristics do not depend on de-
rivatives of layer depth in their formulation renders
numerical integration of the resulting equations ex-
tremely easy and economical. (It is interesting to note
that the device used by Luyten and Stommel is the
generalization of the technique used by Rhines and
Young, 1981, in which isopleths of quasi-geostrophic
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potential vorticity are rewritten in terms of the baro-
tropic streamfunction and then, as a known quantity,
used to define domains of potential vorticity homog-
enization.)

Although the Luyten and Stommel approach is in-
trinsicaily limited to a two-layer model, the results of
their numerical calculations are of great interest and
raise many issues about the relation between the wind-
driven and buoyancy-driven circulations. The purpose
of the present paper is to present analytical solutions
to the combined buoyancy and wind-driven circulation
problem. The analysis is limited entirely to the sub-
tropical gyre. The subpolar gyre problem presents a
conceptual difficulty due to its sensitivity to data re-
quired on the western boundary of the mid-ocean flow,
data which is hard to prescribe uniquely.

In section 2, the equations for the n-layer model are
presented. An exact solution for the two- and three-
moving-layer problem is then presented. The solution
applies only to the ventilated portion of the subtropical
gyre but is valid for arbitrarily large values of the in-
terfacial mass flux relative to the Ekman flux. Regard-
less of the sign of the buoyancy flux, the meridional
velocity is determined only by the sense of the Sverdrup
transport, e.g., it is equatorward. The buoyancy flux
plays an important role, however, in determining the
eastern boundary of the ventilated zone, i.e., the west-
ern edge of the shadow zone described in LPS. It is
shown that buoyancy fluxes associated with heating of
the subtropical gyre shift ventilated streamlines west-
ward and so expand the extent of the shadow zone.

Heating or cooling of the gyre tends to produce
“pinch-off” of an internal density layer and for the
cases described herein, this occurs on latitude circles
in the ventilated zone as long as the ratio of the buoy-
ancy flux to the Ekman flux depends only on latitude.

Section 3 describes the circulation driven by buoy-
ancy fluxes within the shadow zone. For relatively small
buoyancy flux, it is shown that the circulation in the
shadow zone due to heating consists of a broad north-
eastward branch (a direct cell in the terminology of
Luyten and Stommel, 1986b) whose southwestward
return flow is limited to a narrow zone on the eastern
edge of the ventilated flow. In the northeastward
branch, the twisting terms in the potential vorticity
equation vanish when the ratio of the buoyancy flux
to Ekman flux is essentially independent of position
in the shadow zone. This allows a most simple relation
between the buoyancy flux and the transport in this
branch of the buoyancy-driven current to be derived.
It is further shown in section 3 that the vanishing of
the twisting terms in the northeastward branch also
occurs for large values of the buoyancy flux.

In many ways, the analytical approach followed in
this paper is less flexible than the numerical approach
pioneered by Luyten and Stommel. Nevertheless, hav-
ing in hand explicitly analytical representation of major
features of the circulation is of obvious value.
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2. The model

The physical model is shown in Fig. 1. The model
ocean consists of N layers with thicknesses 7, 4, . ..
hy, the interfaces of which intersect the sea surface of
latitudes y, where the Coriolis parameter is f,. The
density of each layer is a constant p,. Frictional cou-
pling between the layers is ignored but mass can pass
through the interfaces at a rate U, where

U, = W+ W+ VZ, @2.1)

where w, is the Eulerian vertical velocity, u,y is the
horizontal velocity and Z, is the depth of the nth in-
terface; U, is an entrainment velocity and represents
the rate at which fluid with density p,.; is converted
to fluid of density p,. This, of course, requires non-
adiabatic processes to be at work at the interface and
is the model used for the manifestation of internal
heating. In (2.1) U, is evaluated at z = —Z,,. Since U,
must be continuous across the interface, it follows that
(2.1) is equivalent to

Uy = Waer + Wi VZ, at z=-2Z, (2.2)

from which it follows, with the aid of the geostrophic
relations introduced below that w, = w,.; at each in-
terface.

The integral of the equation of mass conservation
over each layer yields, for steady flows,

Vu-(uh,) = U, — Up,y (2.3)

where the u, are independent of z as required by geos-
trophy and the hydrostatic approximation. Where the
upper surface of a layer is exposed to the sea surface,
the mass flux Uy becomes equal to the Ekman
pumping wg.

Within each layer the motion is geostrophic and hy-
drostatic, i.e., with standard notation

APy
pnfun = - 3;
_ 0py
Pnﬁ)n = ax
oD,
pg=—2n. (2.4a,b,¢)
. 0z

The Sverdrup vorticity equation follows directly as

ow,
Bon=f Y (2.5)
whose sum over all the moving layers yields
(2.6)

B X havn = fwe(x, y)

where it has been assumed that the velocity field does
not interact with the ocean bottom. Note that the Sver-
drup relation (2.6) is independent of the inter-layer
mass fluxes.
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FIG. 1. The physical model in schematic cross section. The latitudes
of density outcrop are (in terms of Coriolis parameter) f; and f;. The
Ekman pumping is negative and vanishes at /= f,. The cross-interface
mass fluxes are U; and U,.

When (2.5) is integrated overa single layer, we obtain
the potential vorticity equation for the #th layer in the
form

ox h, ay h, h?
where f'= 2Q sin. :

Should the mass fluxes U, and U, vanish, then g,
= fJh,, the potential vorticity of the nth layer, would
be conserved. The presence of a net flux across the
layer boundaries, i.e., of a “divergence,” (U, — U,-1)/
hy, of the cross-interface mass flux will lead to a decrease
of potential vorticity at a rate equal to the product of
this divergence with the potential vorticity.

In the cases to be described below, no more than
three moving layers will be considered. Hence, layer 4
will always be at rest. The outcrop lines will be taken
as latitude circles. The Ekman flux vanishes on f = f,
and is negative for f < fy. In the region f; < f< f, there
is one moving layer, layer 3, driven only by Ekman
pumping. The depth of the base of layer 3 is called &
and in the zone , < f< f,

(Un - Un—l) (27)

_ 39
vy = 7 ox (2.8a)
Y3 6h3 .
Uy = — —— 2.8b
7oy (2.8b)

where v, = g(pn+1 — pa)/po Where po is the average
density in the model and where p,.; — p, < po for all
n. As shown in LPS, the Sverdrup relation (2.6) is suf-
ficient in this region to find A, i.e.,in f, < f<f

‘13 n [LO (-x! .V) I li3 ]l/ (2'9 a)
Whel'e
D == w X', ,. .
0 36 E( ,V) (
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In (2.9a, b), H; is the constant thickness of layer 3
on the eastern wall at x = Xg where we assume the
geostrophic zonal velocity must vanish.

Consider now the flow in the region f; < f< f;. If
wg < 0, all the fluid in the region f; < /< f, will be
forced southward by the Ekman pumping and at /= f;,
the fluid in layer 3 will be covered by layer 2 after it
subducts. From that point on, the fluid is subjected to
a buoyancy forcing represented by the mass flux U,
which causes fluid to leave layer 3 and be entrained in
layer 2, suffering in the process a decrease of density
p3 — p2. In this case (2.7) becomes

af, a1
36xh3 36yh3 h32

(-7

V3 f 6/0x

where i = hy + h3. Thus (2.10) may be written
ohd f ohdo f fU,

A R S s 2.11
Oxdyhy dyoxhs hi® s @1

U, (2.10)

where

The Sverdrup relation (2.6) in this region may be writ-
ten (LPS) as
h2 + F2h22 = Doz + H32 (2.12)

where T, = v,/v3. Note that (2.12) assumes that the
depth of layer 2 must vanish on x = Xg to avoid geo-
strophic flow through the eastern boundary.

In LPS, U, was zero and (2.11) required that poten-
tial vorticity be constant along streamlines in layer 3.
That is, if U, were zero, (2.11) requires that f/h; be a
function only of 4. LPS relied heavily on this adiabatic
feature to find a solution to (2.11) and (2.12). In that
case, it was shown that in f; < f'< f, the relations

h2=0(f)h

hs = (1 —60)h (2.13a,b)

held where 8 = (1 — f]f5), from which it followed from
(2.12) that in this zone

h = (Do* + H:9)'?/(1 + T,0%)'? (2.14)

Clearly, when U, differs from zero, potential vorticity
is no longer conserved and the particular method of
analysis used in LPS must be abandoned. Remarkably,
however, under the condition that U,/wgbe a function
of latitude alone, the solution (2.13a, b) and (2.14) will
still be valid except that now # is a more complicated
function of latitude to be described below. Thus if

bz = Uz/We (2.15)

is a function only of latitude (or /') then (2.13a, b) and
(2.14) will satisfy (2.11) and (2.12) if 8(f) is a solution
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of the relatively simple first-order ordmary differential
equation,

by(f)(1 + 46 =0 (2.16)

f f+(l—0)—

as may be verified by substituting (2.13a, b) and (2.14)
into (2.11) and (2.12).

The condition that b, be a function of latitude alone
is not particularly an irksome one since in most cal-
culations done to date wg and U, are themselves func-
tions of latitude alone (e.g., Luyten.and Stommel,
1986b). Here they may be 1nd1v1dua11y dependent on
longitude as long as their ratio is not.

The initial condition for (2.16) is that onf=f, h

vanish so that
0(f) = 2.17)

Note that if b, is identically zero, the solution of
(2.16) subject to (2.17) is simply
g=1-1

b
which recovers the result of LPS.

For general by(f), (2.16) requires a numerical so-
lution, yet the numerical integration required is so
trivial that it seems justified to call (2.13a, b) and (2.14)
an exact solution. More significantly, the structure of
the analytical solution is extremely revealing. It follows
from (2.14) that

v3éh _  h 1 3Dy?

3T Fox V2D + HY) ox

and so the meridional velocity is a/lways equatorward
in the ventilated zone regardless of the size or sign of
the buoyancy flux. Thus, although the fluid in layer 3
may be heated in the ventilated zone, the flow in that
layer must be equatorward or indirect in the termi-
nology of Luyten and Stommel (1986b).

If b, < 0, (2.16) shows that # must increase as f de-
creases at a rate greater than that which occurs in the
adiabatic case treated by LPS. When 6 reaches unity,
(2.13) shows that the thickness of layer 3 goes to zero.

(2.18)

When b, = 0, this occurs at the equator, i.e., at the -

limit of the domain of the problem. For b, < 0, this
can occur for f> 0. Figure 2 shows the solution for §

in the case
f( /)
by = Byp=|1-—-=
2 Zofi ﬁ

B20 = _1/2, (219)

i.e., for a buoyancy flux which starts at zero at the
outcrop latitude and vanishes also at the equator. In
this case, I have chosen f; = 0, reducing the model to
a two-moving-layer model. Note that § everywhere ex-
ceeds the LPS value and reaches unity at f/f; ~ 0.14.
The solution fails south of this point but the solution

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 16

10

FIG. 2. The solution for 8( ) when there are only two moving
layers (i.e., when f; — 0) for b, = 0.5f1f(1 — fif2).

predicts that pinch-off will occur and must always occur
on a latitude circle. To investigate the position of pinch-
off as a function of the buoyancy flux, it is useful to
consider the somewhat contrived case where

b, = Uy/wg = by

i.e., where by is a constant. In that case, (2.16) can be
integrated directly.
Define
= bo(bo - l)I‘z - 1/4.

If R? > 0, the solution to (2.16) is given by

BboT, = — % +R tan[R In % + tan"( 2;)]

while if R> < 0

_ 200 = byl = (f15)]
(1+9+ (s —1)

where s° = —4R>, The condition for pinch-off is simply
6 = 1. Fig. 3 shows how the latitude of pinch-off de-
pends on the magnitude of the buoyancy flux. The
larger the buoyancy flux, the closer pinch-off occurs to
the outcrop line. Note that within the ventilated zone
the latitude of pinch-off'is independent of H;, the depth
of the lower layer at f = /.

However, the existence of the shadow zone, de-
scribed in section 3, and whose extent does depend on
H,, will determine to what extent the pinch-off will
actually occur in the physical domain of the problem,
i.e., for X,, < x < Xz where X,, is the coordinate of the
oceanic western boundary.

It is important to bear in mind that a large part of
the solution structure is contained in the factor (Dy?
+ H,?) in (2.14). This means that much of the overall
flow structure is not qualitatively altered by the buoy-
ancy flux in the ventilated zone, e.g., the formula (2.18)
for v;.
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FIG. 3. The latitude of pinch-off in the two-layer model as a function
of b, for the case where U,/W, < 0 and independent of latitude.

The zonal velocity is more sensitive to the buoyancy
flux. It follows from geostrophy and (2.16) that in the
ventilated zone

v3 0h Y3 {h dDy? 1
u3=—-———-= — ————

S oy f 2 8y (Dy* + H5?)
_ B, [b _ hhs ]}
f 2 (D + HA

When the subtropical gyre is heated, b, < 0, and the
buoyancy forcing contributes a westward addition to
the fluid motion. In general, heating will shift the
streamlines of the ventilated flow westward with respect
to the purely wind-driven case. The trajectory of a fluid
column in layer 3 which originates at the outcrop line,
at f = f,, and at the longitude x = £ will be given by
the implicit relation A(x, /) = (£, f3), which with (2.14)
yields

Do¥(x, f) = H3’T28% + DoX(E, foiX(1 + T26%).  (2.20)

Since (1) Dy? is an increasing function of Xz — x
(i.e., 2.9b) and (2) since 8 increases with decreasing
b>(f) it follows that each trajectory must be displaced
westward by heating (b, < 0).

Before proceeding to the completion of the three-
layer solution in the ventilated zone, i.e., in the region
0 < f< f,, it is interesting to consider the case where
the subtropical gyre becomes cooled. Although a less
natural choice of forcing, the result is quite interesting.
Consider the case where by(f) has the same form as
(2.19) but where now, B,y > 0. Then fluid transits from
layer 2 into layer 3 due to cooling. Figure 4a shows
6(f) while Fig. 4b shows the layer depths when scaled
by the factor (Dy> + H3?)'?. In the case shown,
I'; = 1 and By = 4.5. Note that the peak of the cooling,
or more exactly of the ratio U, /w, at f/f, = ¥ tends to
produce a separation of the warm water region into
two pools while the cold water region tends to remain
relatively flat. Strong meridional gradients then arise
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near the equator where b, — 0 and the conservation
of g, demands that #; — 0. For larger values of B,
the warm pools would separate and the validity of the
solution fails. It remains unclear to me, in both cases
of strong heating and cooling, how to continue the an-
alytical solution beyond the point of pinch-off.

Now consider the flow in the region f < f; where, in
the ventilated zone, three layers are in motion. In this
case the Sverdrup relation (2.6) becomes (LPS)

hz + Fz(hl + h2)2 + I‘lhlz = _Doz + H32. (221)

The equation for layer 3 remains (2.11) while the
equation for layer 2 is, from (2.7),

9 fzzf_z(Ul_Uz)
2

A 2.22
ot Zayh (2.22)

10

=
L
Rmt o

Z/(DE+HE) %

FIG. 4. (a) The function 8( /) for-the case of cooling. b,(f) = 4.5f/
S(1 = f1f2) for the two-moving-layer model. T', = 1. The dotted line
shows 6 for the case b, = 0. (b) The layer depths for the cooling case.
The depths are divided by the factor (Dy? + H,%)'2. Note the separation
of the warm layer into two pools as a consequence of the cooling.
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where (LPS) |
| _ v {—0/0y
{”z} S { 8/8x}[h + Tl + k)] (223)

where, of course, now, & = hy + hy + hs.

Again guided by the form of the LPS solution and
the condition imposed by the Sverdrup relation (2.21)
a solution to the three-layer buoyancy, wind-driven
problem can be found in the form '

hy = 9(f)h
hy = [0(f) — n()lh

hs=11—0()h (2.24a,b,0)

where
B = [(De* + HH/(1 + T26* + Tyd)]? (2.25)
aslong as both U,/w, = b, and U, /w, = b, are functions

only of latitude, i.e., of f. The forms (2.24) and (2.25)
will satisfy (2.11), (2.21) and (2.22) if # and 7 satisfy

f%;+ A=0)—b(1+ T+ i) =0 (2.26)
g[ n—8 ]_(bl—bz)(1+F202+P:n2)_O
arLaq + eyl 12 (1+ 10?7

(2.27a)

or equivalently

(1 + T',0) %}— 7[2T20 + (1 — Ty)] = —(1 + I'y6?)

+ (1 + T20% + T'1n)(b) + boTam) (2.27b)

where for (2.27), we use the condition # = 0 for /= f;.
If b, and b, vanish, then we can check that

.
=1 5
[L+ o1 — fif)) f

n= (1 —}:) - (1 _%) [l + I - ARV,

reproducing the results of LPS.
It is quite easy to integrate (2.26) and (2.27) and Fig.
5 shows the result for the case where

S ( S ) .
by=By=|1-7):
1 10 fi f[

Figure 5a shows the layer thicknesses scaled by (Dy2
+ H3?)'72, for the purely wind-driven case b, = b, = 0.
Figure 5b shows the functions # and n for the case
where Byg = —1 and Byp = —0.5 for T'; = I', = | while
filfz = 0.5. In this case the heating amplitude, or the
buoyancy flux, decreases downward. In Fig. 5b, dotted
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FIG. 5. (a) The scaled layer depths for the three-layer purely wind-

lines show 6 and # for the purely wind-driven case of ; cn cace. b, = 0. (b) The functions 8 and 7, for the case with

LPS for comparison. Note that as in the two layer re-
gion the effect of heating is to increase § and n and

heating b, = —0.5/1f,(1 — fif2), by = —fif(l — fIf). (c) The layer
depths for the heated case of 5b.
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since, again, # reaches unity north of the equator, the
model predicts pinch-off of the coldest moving layer,
in this case for f/, = 0.15. Figure 5¢ shows the scaled
layer depths in this case. Again, the analytical solution
cannot be continued south of the pinch-off latitude
where fluid of density p, is now directly above fluid of
density p4. Obviously a buoyancy flux through the base
of layer 2 would drive a weak circulation in layer 4
which should be put in motion south of the pinch-off
latitude. This situation is reminiscent of the surfacing
of isopycnals in the subpolar gyre found in LPS where
deep layers become exposed to Ekman suction north
of the outcrop line along which the superposed layer
above is sucked to the surface.

It is useful at this point to consider in more detail
the case when U, /wg is small. This will prove illumi-
nating for several reasons. First, since the presence of
the buoyancy term on the right-hand side of (2.7) is a
regular perturbation of the problem, we can confidently
expect that the small U, solutions will capture the
qualitative nature of the solution. Second, we can trade
the restriction of small buoyancy flux for the condition
that U,/wg be independent of longitude. This allows
us to expand the qualitative character of the forcings
considered. Finally, it will prove useful to have the
small U, solutions to check with the small b, expansion
of (2.16). This last point is useful since (2.13), (2.14)
represents a proposed solution that seems to work and
it is useful to check that it is the only solution which
can be generated, at least for small U,,.

For simplicity, I will restrict attention to the case
/1 — 0 so the model ocean contains only two moving
layers, i.e., layers 2 and 3.

For small U,, the solution may be generated as an
asymptotic series in each variable, for example,

h=h9+ p® (2.28)

where superscripts refer to orders in the small buoyancy
expansion and

hY/H® = Ob) < 1. (2.29)

Then the insertion of this expansion in the Sverdrup
relation and the potential vorticity equation yields a
sequence of problems, whose details will be passed over
quickly since they are very straightforward. The lowest
order problem is, naturally, the purely wind-driven flow
for which 4 is constant on lines of constant lower layer
potential vorticity, and using the results from LPS

hO = G(f1h®) = £,/q:°

while the O(b) problem in the lower layer, after some
algebra becomes

(2.30)

(0) oh» fz 8q3(”
ay [éx a” ax]
3g;” [oh» 3
- [ f(o)z s J PO LI
dx Lay aqs ady Y3
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Now

X0
j;l;o)z = —hy Vg OP/f

‘13“) = —

so that after the O(b) terms from (2.12) are equated,
we ﬁnally obtain as an equation for KV

(0) a9

2 (pomm) - [P(;)h<'>1 - g
6 8 Y3
(2.32)
where )
1+ (1 — §)
PO = o, (2.33)
and { = fif.

Equation (2.32) may be integrated using the method
of characteristics. The characteristics of (2.32) are the
isolines of g3, the potential vorticity of the wind-
driven flow in the absence of heating. Thus we find
that

D U ¥/ dy

Py & W

where the integral in (2.34) is understood to be carried
out along the characteristic ¢;® = constant. That is, if
U,/ Wy is a function of x as well as y, then in (2.34) x
must be written in terms of y (or f), i.e., in terms of
the dummy variable u. Thus, if U,/Wx is a strong
function of longitude, it is possible for the meridional
velocity, in principle, to reverse in the ventilated zone.
On the other hand, if U,/ Wy is a function only of f]
then the integral is independent of the contour and
depends only on the end point, i.e., A"/#? is a function
of f/f; alone. Indeed, this fact is what originally sug-
gested the trial solution (2.13a, b). It is easy to verify
that if the solution to (2.16) is expanded in a series for
small b,, the resulting series for 6,

! by(w)
#2

5 [1+ T'x(1 — u)z] (2.34)

[1+Ty(1—p? .
(2.35)

will yield, with (2.13) and (2.14) an expression identical
to (2.34). This satisfactorily displays the validity of the
guessed-at form, (2.13) as the general solution.

It must be realized that the solution (2.34), or (2.14),
is valid only on ventilated streamlines for which the
relations (2.13a, b) hold. This turns out to have im-
portant implications for the discussion of the circula-
tion of the shadow zone.

0=00+01=(1"$°)—§'J;

3. The shadow zone

If H; is zero, i.e., if the depth of the deepest moving
layer vanishes on the eastern boundary, the solution
(2.13), (2.14) or (2.24), (2.25) will hold right up to the
eastern wall. However, as discussed in LPS, if H; # 0,
the streamline which north of f = f, flows due south
along x = xg must separate from the eastern wall at f
= f> and thread its way southeastward through the gyre
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along, naturally, the line # = H;. Again, for simplicity,
I will restrict my discussion to the two-moving-layer
model, i.e., I will let f; — 0. Then the equation for the
shadow zone boundary X(f) can be obtained directly
from (2.20), with the replacement of £ with X [for
which Dg*(£, f) vanishes] so that

Do[%(f), f1=

For b, < 0, i.e., for heating, 8 is always greater than
its adiabatic value when b, = 0. Since Dy’ is an in-
creasing function of (Xr — x), this means that, in the
case of heating, the shadow zone boundary is shifted
westward. For example, for smail b, it is easy to show,
using (2.34) or (2.35), that

2
%‘3% [£), f1 =

H3*T,6? 3.1

Tl — §)? — 2081 — §)

<), bZ(“) =5 [1+ To(1 — plde (3.2)

where { = f/f2, so that the shift of the shadow zone is
westward and O(b,) for by(f) < O (heating). The situ-
ation is shown in Fig. 6 where the shaded region is the
new sliver of shadow zone exposed by the heating pro-
cess.

I have not been able to find a complete solution
valid in the shadow zone for arbitrarily large b, but
progress can be made in the case of small b, which
points to some general properties of the flow in that
region; inferences which in some cases can be rigorously
demonstrated. For small b,, the solution to the set
2.1 l) and (2.12) may, as in section 2 be generated as
a series

h=h"+pD+ ... 3.3)

in which superscripts refer to orders of smallness in b,.
In the case of the shadow zone, the O(1) solution is
(LPS)

h® = DI’y '/?
W = [, (3.4a,b)
so that
a9 = fi(Hs — h,®) = f1h. (3.5)

Thus in the absence of buoyancy forcing, the fluid
in the shadow zone is at rest in layer 3. Thus the O(b)
problem for A is of special importance because, al-
though small, the resulting gradients in 4" represent
the entire, if relatively weak, circulation in the lower
layer of the shadow zone. The substitution of (3.3) into
(2.11), with the recognition that A is constant quickly
yields the problem for A" as

ah(l) aq3(0) oh 3(]3(0)
ox dy dy 0x

from which A" may be calculated most conveniently
by the method of characteristics.

The characteristics curves of (3.6) are simply the iso-
lines of ¢;(9, i.e., of the potential vorticity of the purely

= q oy ~2 U, (3.6)
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wind-driven circulation in the shadow zone. These iso-
lines are shown in Fig. 6 as dotted lines in the shadow
zone. Each isoline for a particular ¢; intersects the
eastern boundary at f'= f,

S = g:OH;
= fH3/h;©. 3.7

The small b, solution will therefore be determined
on all such characteristic curves. Note, however, that
these curves do not penetrate the shaded region in Fig.
6, which is the sliver, of width O(b,) which is opened
up by the slight dnsplacement westward of the shadow
zone. The shaded region is penetrated by the g5 lines
emanating from the outcrop line but the solution (2.34)
is valid only for fluid elements originating at the out-
crop line and hence cannot be extended into the
shadow zone (since 4 = H; represents the eastward
limit of such fluid trajectories). Thus neither small
buoyancy flux solution generated by the regular ex-
pansion in small U, /wg is valid in the shaded sliver of
Fig. 6, which is an interesting feature of the circulation
problem I will return to later.

Returning to (3.6), we may solve it by transforming
(3.6) to the characteristic set by introducing the pa-
rameter 7 such that

dx _ 9g;%
dr oy
dy _ _9as®
dr ox
dh™
— = > % (3.8a,b,¢)
f
r=f,
:2 - X

P

FIG. 6. The boundary between the eastern shadow zone and the
ventilated region is determined by the streamline 4 = H;. The dashed
line shows the shadow zone boundary in the absence of heating. The
dotted lines show the isolines of ¢;, i.e., the potential vorticity con-
tours of the purely wind-driven flow. On x = xi these contours in-

 tersect the eastern wall at f = fo(¢;®).
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or

KO = f o2 L2 g, (39
73

where the integration in 7 proceeds westward, from

7 = 0 which is the easternmost point where the isoline

of g intersects x = Xz at f = f,. With (3.8b), (3.8¢)

may be rewritten

B = f g2 Y fy' g2 _ b
v vs dyldr  Jy v3 8g:9/ax
(3.10)
where f(y«) = fi. Since
343(0) _ l o2 ahz(o)
ax [P ox
h© an f :
ox ’Yzﬁ
it follows that
h(l) = f bzpzhz(o) ‘fi.f (31 l)

where the integration in (3.11) is along the curve x
= x(f) along which g5 is constant. Since

h® = H; — flg;%,
(3.11) may be written in the form

- Lorlf e

where, note, fi is a constant along the contour of in-
tegration.

Consider the case where b, is a function of latitude,
i.e., where the ratio U,/wg is independent of x. Then
(3.12) is a function only of the end points f and f,.
Note that f'< f,. It follows directly that

Y f ,
ax 73ﬁH3(1_fﬁ)f b(fHdf".  (3.13)

Thus if b; < 0 (heating), then in the subtropical gyre,
where wg < 0, 0h"/3x must always be positive. That
is, in the old shadow zone, i.e., excluding the shaded
sliver in Fig. 6, the meridional flow in the once stagnant
lower layer is northward.

This is the “direct cell” found numerically by Luyten
and Stommel (1986b).

Similarly,
ahV 117 T 8@ (%,
R P R e
_ d (0)
=f_*__q3 ff [b qf(o) ‘f;f bz] (3.14)
where 1—72 =(fu—f ) r bzdf "

The sign of —d4"/df is not immediately obvious.
The first term on the right-hand side is negative if b,
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< 0 and depends on the Jocal value of b,. The second
term will be positive in the heating case as long as g%/
dy > 0, i.e., as long as the forcing has not reversed the
“normal” sense of the potential vorticity gradient. This
term depends on the integral quantity b,. Thus, if
b, — 0 as f— 0, the second term will tend to dominate
for small f'while the sign of the sum may be reversed
at more northern latitudes if

e 343( )
—bZ > PR ©) f ( b2)
In any case, it can be shown that A" increases along
the old shadow zone boundary so flow crosses north-
westward into the sliver. Thus in the region excluding
the sliver, the buoyancy-driven circulation consists of
a broad northeasterly flow turning to meet the sliver-
shadow zone boundary.

It was noted in section 2 that, if b, were a constant,
then relatively simple analytical solutions could be
found in the ventilated zone. A similar and perhaps
more illuminating simplification occurs in the shadow
zone. Actually, this is a pretty fair idealization in the
shadow zone since, in the shadow zone where the upper
layer to O(1) carries the total Sverdrup transport, the
gradients of 7;?, h,©@, etc., are relatively great. Thus
by in comparison will appear as a fairly slowly varying
function in (3.12) and temporarily I wish to consider
the idealization of constant b,. In that case (3.12) im-
plies that

D = bzI‘zH;;[hlj’; -@ —ﬂf;l‘)] > (3'15)

hence A" is a function only of f/fy. But from (3.7), this
implies that A" is a function only of /;®, or of 4,©.
That is, to lowest order, when b, is constant, the con-
tours of layer thickness in the two layers coincide. Re-
turning to (3.6), this implies that the twisting terms
VA X Vh,© are identically zero so that (3.6) reduces
to

Bv;Vh @ = fU, (3.16)

Thus the northward meridional transport in the for-
merly stagnant zone may be computed directly in terms
of the buoyancy flux without regard to the wind forcing,.
The buoyancy mode becomes decoupled from the wind-
driven circulation. The form (3.16) is so simple and
striking that it is natural to ask whether the result can
be generalized to arbitrarily large, but constant, values
of b,. The answer is yes.

For the twisting in (2.11) to vanish in general, we
must have (noting that 3 = h — h3)

h = #(hy) 3.17)
where # is an arbitrary function. If (3.17) is to hold,
(2.11) and (2.12) require
oh,

1
ox 3x 2 ax (3.18)
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oh f?
—(h—h)=—U,. 1
| ﬂax(h 2) 7. U2 (3.19)
If we note that 0h/dx = #'0h,/dx where #" is the de-
rivative of # with respect to its argument, (3.18) and
(3.19) require as a condition on # that

(3.20)

Z[#(1 — by) — hy] — byIzh, = 0

such that, at x = Xz where h, =0, h = H;, or
Z(0) = H;. 3.21)

As long as b, is constant, solutions to (3.20) and
(3.21) can be found, usually numerically. For b, = 0,
the solution is # = Hj, i.¢., a motionless shadow zone
as in LPS. For small b,, the expansion of (3.20) yields

#(hy) = H3 — bol'a[hy + H3 In(1 — hy/H3)] + O(b2)?
» (3.22)

in perfect agreement with (3.15). The exact form of
Z(hy) is not nearly as important as the existence of the

functional relationship, for it implies that (3.16) may
be rewritten

Bushs = fU, (3.16"

for all constant b,. Thus, if b, can be idealized as a
constant, the eastern portion of the shadow zone will
lack a beta-spiral, i.e., the flow paths will be antiparallel
in the two layers, and the meridional transport in the
lower layer given by (3.16") takes the form of a single
layer Sverdrup relation (2.6) with the buoyancy flux
replacing the Ekman pumping, allowing an indepen-
dent determination of the meridional transports in the
two layers.

Let us return to the case of small, variable b, for
which the solution for A is given by (3.12). As noted
above, the solution is not valid in the shaded sliver of
Fig. 6. This is as it must be, for as previously remarked,
the buoyancy-driven flow in the old shadow zone is
everywhere northeastward and there must be a return
branch for mass balance. The flow in the ventilated
zone is southward but consists of water whose origin
is distinct from shadow zone water. The only remaining
possibility is that the return branch be channeled
through the sliver opened up by the buoyancy flux.
The situation is shown in Fig. 7. The flow in the old
shadow zone has velocities in layer 3 of O(b,) and thus
a total northward transport of O(b,). The depth of the
bottom of layer 3 is shown in a zonal section in Fig.
7a; KV is negative and decreases from zero at x = Xg.
The depth slowly decreases from H; on X to a value
on O(b,) less on the eastern edge of the sliver. Along
the eastern edge of the sliver, 4" increases northward
as shown in Fig. 7b. Nevertheless, the western boundary
of the sliver is the new h = H; contour. Hence from
the point P to the point A, /; must increase to reattain
the value H; on A. Since this occurs over a width of
only O(b,), it implies velocities in the sliver which are
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O(1) and flowing nearly parallel to the edge of the ven-
tilated zone as indicated in Fig. 7. Since the velocities
are O(1) to balance the mass flux, this implies that for
small b,, the buoyancy is unable at lowest order to
affect the potential vorticity of the flow in the sliver.
That is, since dh/dx and dh/dy are O(1) in this region
[although A4 is only O(b,)], it follows from (2.11) that
for small U,, to lowest order

S1hs = G(h) (3.23)
while if G is known, the solution is completed with the
aid of (2.12). To lowest order, then, the dynamics in
the sliver is the same as the O(1) dynamics of the ven-
tilated region. There is, however, a significant differ-
ence. Whereas in the ventilated zone, the function G
is determined at the outcrop latitude, in the buoyancy
sliver the refation between potential vorticity and depth
is determined along the eastern boundary of the sliver,
i.e., along the old shadow zone boundary. Note that
the outermost A" contour A" = 0, corresponding to
the outer rim of the buoyancy circulation, hugs the
eastern boundary and intersects the sliver at f = f;. As
it turns southward it has g; = f/H3, while conservation
of g; and the Sverdrup relation, identical constraints
as the O(1) ventilated dynamics, ensure that the outer
streamline of the return flow in the sliver is coincident
with the new shadow zone boundary 2 = H;. Thus we
are guaranteed that the return flow is entirely contained
in the buoyancy sliver. ‘

(a)

Otb;) Hy
Py

A P
=0 (b, H!
=t

(b)

—A

FIG. 7. A schematic of the circulation in the lower layer of the
shadow zone. The buoyancy-driven flow with velocities of O(b,)
sweeps northeastward over a broad O(1) zone. The water is returned
in a sliver of width O(b,) implying O(1) velocities on the eastern edge
of the ventilated zone. The upper panel shows a schematic of the
depth of the lowest moving layer.
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Since A" is known along the eastern boundary of
the sliver [we merely set fx = f; in (3.12)], the matching
implied by (3.23) may in principle be carried out in
the same manner as in Pedlosky (1983) where efflux
from an eastern boundary layer was matched to the
ventilated interior. However, because of the curved
boundary in the present case, the actual matching be-
comes prohibitively complex and, since the qualitative
nature of the flow is already clear as shown in Fig. 7,
it seems hardly pertinent to the discussion to proceed
further.

There is a final and important link between the
shadow zone and the ventilated region. We noted in
section 2 that pinch-off would occur within the ven-
tilated region on the latitude circle, f = f;, for which
6(f;) = 1. Were the ocean to extend an infinite distance
westward from Xz, pinch-off would always occur.
However, for L = Xz — X, and bounded, it is possible
that the latitude of pinch-off always lies south of the
shadow zone boundary for X,, < x < Xg, and so no
pinch-off would occur in the basin. For pinch-off to
occur then, it is required that

X(f) > X, (3.24)

where X(f) is the coordinate of the shadow zone
boundary. Since Dy? is a monotonically increasing
function of Xz — x, where wg < 0, it follows that (3.24)
implies

Do*(Xy, fo) > DoHX(f), o] = Hi’T2.  (3.25)

If wg were a function of fonly, the condition for pinch-
off thus requires

v Hy"T8(fvs
L= X = > o we ()]

Pinch-off is therefore favored by small H;, which is
intuitively obvious, and large Ekman pumping, which
while not obvious is required in order that X¥(f) pen-
etrate sufficiently southward.

4. Discussion

The action of buoyancy flux produces rather im-
portant alterations of the thermocline circulation than
that found for the purely wind-driven case analyzed in
LPS. Yet, within the ventilated zone, it is remarkable
how similar the overall structure of the thermocline
fields are in the two cases. In the two-layer model, for
example, a single function, 8(f’), which is determined
by the ODE (2.16) is sufficient to describe the structural
effects of buoyancy flux in the ventilated region. The
westward shift of the streamlines for the heated sub-
tropical gyre, cold layer pinch-off, and an enhanced
shadow zone are all connected to this simple latitude
structure function.

Although the analytical solution is incomplete in
the shadow zone, the case of small buoyancy flux has
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revealed a flow configuration with a rich structure con-
taining a deep cyclonic gyre with asymmetric branches.
The appearance of a largely potential vorticity con-
serving flow on the border of the ventilated zone, which
is needed to return the broader northward “direct” cell
in the shadow zone, is a striking feature of the analysis.
Many of the qualitative features exposed by the analysis
are already present in the very interesting numerical
calculations of Luyten and Stommel (1986b) but, of
course, it is especially useful to have analytical repre-
sentations of the dynamical fields.

An important qualification must be realized. In
principle, the right-hand side of (2.7) can represent any
baroclinic source of potential vorticity which leaves
(2.6), the Sverdrup relation, unaltered. In that sense
the results of the calculations presented here could be
thought to apply to any such forcing and not just a
large-scale buoyancy flux, e.g., the rectified heat flux
of baroclinically unstable waves could, in principle,
similarly enter. However, just this appeal to generality
exposes the weakness of the buoyancy model described
here. Whereas the Ekman flux is fairly clearly related
to the externally imposed wind stress, in actuality, the
buoyancy fluxes, U,, should be connected not only to
external heating, but to the structure of (at least) the
oceanic density field. Rather than being imposed as
external fields, the U, should more likely be part of the
solution to be calculated. Therefore, the present anal-
ysis must be considered as only a first step in an in-
vestigation of the buoyancy-driven circulation and
clearly lacks the dynamical “cleanliness” of the Ekman-
driven flow.
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