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ABSTRACT

A two-layer model of the general circulation including wind and thermal forcing is discussed. The flow in
each layer is geostrophic, hydrostatic and obeys linear potential vorticity constraints. The equations are developed
in spherical coordinates and reduce to a surprisingly simple, coupled, nonlinear set. Analytic solutions of this
system are obtained in the quasi-geostrophic limit. The novel feature in this model is a weakly ventilated and
weakly dissipative lower layer. .

The quasi-geostrophic model predicts homogenized potential vorticity in regions of the lower layer which
are not directly ventilated. These are also regions of locally minimum value.in potential vorticity. The net
balance determining the potential vorticity structure is between the diabatic forcing of the lower layer and eddy-
driven mixing. As such, the structure of the solution depends on the sign of the eddy diffusion of potential
vorticity (positive) and the sign of the diabatic potential vorticity source (negative). It is therefore argued that
these features are not dependent on quasi-geostrophy.

A comparison of model results with data is encouraging. The 26.5 sigma-theta isopycnal is argued to be a
density surface to which this theory applies. The potential vorticity structure on this surface obtains a bowl-like
shape and agrees well with the model. The subtropical mode water of the North Atlantic (18°C water) is centered
on this isopycnal and is identified in the model as the homogenized local potential vorticity minimum. The
stability of 18°C water characteristics, documented elsewhere, is explained in terms of a gyre-scale response to
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variability.

1. Introduction

The linear potential vorticity balance:

Bv = fws, (1)

where f is the Coriolis parameter, 8 its north-south
gradient, v north-south velocity, w vertical velocity and
subscripts denote differentiation, and its vertical inte-
gral: .

o[ vaz=pm. @

(w, is the Ekman pumping at the mixed layer base) the
“*Sverdrup relation,” are at the center of general ocean
circulation theory. The studies of Warren (1970) and
Leetma, Niiler and Stommel (1977) suggest strongly
that the Sverdrup relation accurately describes the
depth integrated, wind-driven, large-scale flow. In view
of this success, a number of investigators have tried to
augment Eq. (2) with theories which fit within the
Sverdrup relation and resolve issues it does not address.
One area of recent interest is the vertical structure of
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the general circulation; note that Eq. (2) makes no at-
tempt to compute this structure.

The recent lines of thought about the vertical struc-
ture of the circulation have proceeded in two distinct
ways. Rhines and Young (1982a,b) and Young and
Rhines (1982) have considered quasi-geostrophic lay-
ered circulation models, The upper layer in these mod-
els is directly driven by the wind and the lower layers
are accelerated by eddy form drag. The gyres respond
to the winds by forming regions which are isolated from
the eastern boundary. Eddy form-drag, although weak
in magnitude, maintains a mean flow in these areas,
thus trapping some of the Sverdrup transport in the
lower layers. The characteristics of the Rhines and
Young solutions include the homogenization of po-
tential vorticity within closed geostrophic contours and
the northward migration of gyre center with depth.
Both features have now been documented in the North
Pacific (Keffer, 1985) and the North Atlantic (Mc-
Dowell et al., 1982).

The second approach to determining the vertical
structure of the general circulation is based on ther-
mocline ventilation. This theory, proposed by Luyten
et al. (1983), predicts the thermocline structure by
tracing back on characteristics to locations where the
fluid has been altered by atmospheric interaction. Fluid
columns after subduction conserve potential vorticity
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and therefore move in curved paths to the southwest.
The boundary between active and motionless fluid in
a subducted layer is determined by the characteristic,
or line of constant potential vorticity, which strikes
either the western or northern boundary. The net
transport in ventilated models is determined by the
Sverdrup relation (Eq. 2). The manner in which this
transport is partitioned between ventilated and sub-
ducted layers is also fixed by the positioning of the
constant potential vorticity characteristics. Pedlosky
and Young (1983) in a companion paper have de-
scribed how unventilated layers are set into motion by
vertical eddy stresses. Ventilated thermocline theories
predict the northward migration of gyre center with
depth, as does the Rhines and Young theory. Luyten
et al. also argue that their solutions possess weak po-
tential vorticity structure across the basin, and are
therefore consistent with the field observations of uni-
form potential vorticity.

There is a major difference in the philosophy of the
above two approaches. Rhines and Young (1982a,b)
stress the importance of weak, nonconservative eddy
mixing, while the structure predicted by Luyten et al.
(1983) depends upon exact conservation of potential
vorticity.

Both theories are enlightening but contain certain
incompletely resolved issues. It is likely, for example,
that eddies play some role in ventilated layers. This is
suggested by the solutions in Luyten et al. and the ob-
servations of McDowell et al. (1982). In both cases,
the gradient of potential vorticity is observed to reverse
with depth in the westward interior return flow. Such
a region should be baroclinically unstable and a source
region for eddies. One would expect these eddies to
have an effect on the mean flow. How eddies can be
included in ventilated thermocline theories and what
their effects might be have not been addressed. Second,
ventilated theories do not resolve the general circulation
structure in regions which are not directly ventilated
(i.e., not connected to outcropping regions via char-
acteristics). Luyten et al. (1983) and Pedlosky and
Young (1983) have used uniform potential vorticity in
these unresolved areas, but stress that this is an ad-hoc
assumption. Rhines (1984) argues on the basis of the
“recirculation index” that directly ventilated flow is
only ~20% of the total Sverdrup transport and thus
that resolution of the flow in unventilated regions is of
primary importance. With respect to the quasi-geo-
strophic Rhines and Young theories, their analysis ele-
gantly demonstrates the importance of eddies, but is
restricted by the lack of ventilation and outcropping
layers.

The present paper presents a model of the ventilated
thermocline with eddy mixing and addresses in a lim-
ited way several of the above points. Scaling arguments
are used to reduce the planetary geostrophic equations
to a hybrid model containing elements of ventilation
and quasi-geostrophic theory. The strict application of
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the results in this paper are to layers which are “weakly”
ventilated and “weakly” dissipative (weakly to be clar-
ified shortly). A comparison of predictions with data
suggests however that the model transcends the strict
parameter ranges of its validity and describes layers
with relatively strong ventilation.

Regions which are not directly ventilated experience
the effects of ventilation because of eddy mixing. The
structure within these regions can be calculated, as op-
posed to specified, within the model. The homogeni-
zation of potential vorticity emerges within the unven-
tilated regions; a somewhat surprising result as the
boundary conditions at the outermost unventilated
streamline are different than those which were applied
in Rhines and Young (1982a). The potential vorticity
on directly ventilated characteristics is also affected by
eddy mixing. It is shown that the circulation structure
is determined by a balance between buoyancy forcing
and eddy mixing. The ramifications for the existence
and stability of subtropical mode waters (e.g., 18°C
water in the North Atlantic) are discussed.

2. Model development

Consider the two layer model in Fig. 1. The Coriolis
parameter, f, varies with latitude, the bottom is assumed
to be flat and Ekman pumping, w,, is imposed at the
upper surface. It will be convenient later to express the
position of the interface at z = —h as

h=—Ho+1]

where H, is half the total fluid depth and % is the
deviation of the interface from H,. This notation is
similar to that used in quasi-geostrophic theory. Scaling
will be adopted later which will restrict the present
model to the quasi-geostrophic parameter range; how-
ever, it is important to note that no restrictions have
as yet been placed on the size of . The dynamical

f=20N sin®
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FI1G. 1. Model System. The upper layer is subject to a downward
Ekman pumping. The lower layer experiences ventilation through
diabatic forcing. Both layers are constant density and the ocean bot-
tom is assumed flat.
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equations within each layer are the geostrophic equa-
tions:
Joi

Sfui = —a P

the hydrostatic equation:

(a cosN) ™ 'Pie (3)
4)

Di: = —pig 5

and mass conservation:

(@ cosA) "[ue + (a cosh)~'[(cos\)v;]x
+ (W) = 0. (6)

Here \ is latitude, ¢ longitude, z height, u(v) east
(north) velocity, § ‘reduced’ pressure, p density, g grav-
ity and fthe Coriolis parameter. The subscript i denotes
the layer and the classical thin-shell assumption has
been used in Egs. (3), (4) and (6) to replace the radial
coordinate r with the mean earth radius a.
Substituting in Eq. (6) for u; and v; with the geo-
strophic equations yields Eq. (1), the linear potential
vorticity constraint. Equations (3)-(5) insure Taylor-
Proudman flow in each layer, and Eq. (5) may be re-
written as
P>~ pi =g, @)
where i
pi=Ditgpiz + gPiHO}
g = g2 — p1)/po .

Integrating Eq. (1) vertically over each layer yields
Buih = flwe — wilx, y, —h)] (8a)
BUZh = fWZ(-x, A _h) (8b)

where w;(x, y, —h) denotes the vertical velocity at the
interface; 2 and A are the upper and lower layer thick-
nesses, respectively, and it has been assumed that w
vanishes at the bottom of the ocean.

a. The boundary condition at the interface

Because of the presence of atmospherically-driven
heat fluxes in the upper ocean, the calculation of w;(x,
¥, —h) in Egs. (8) must be made by considering the
heat budget of the upper layer, which is

h + (a cosN) uhe + a7 'vihy + wy
=D—-F/AT)=D+ S (9)

where AT is the difference in the layer temperatures,
F; is the heat flux from the ocean to the atmosphere
occurring at the surface and D denotes the eddy-driven
lateral thickness fluxes occurring at the interface. The
formal derivation of Eq. (9) proceeds by considering
the heat equation for a continuously stratified fluid in
the limit of a rapidly varying temperature profile and
is given in appendix A. Solving Eq. (9) for wy(x, y, —h)
yields
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wi(x, y, —h) = —h, — (a cos\) ' ushe
- a_lvlh)\ +S+D. (10)

Thus w(x, y, —h) is composed of three parts: one part
due to the motion of the isopycnal, another due to
atmospherically driven heat fluxes and the third due
to lateral buoyancy fluxes. The latter has been discussed
by Rhines and Holland (1979) and is the mechanism
responsible for the lateral potential vorticity diffusion
parameterization employed by .Rhines and Young
(1982a). The second quantity, .S, contains diabatic ef-
fects and expresses the cross-isopycnal flow caused by
the heat fluxes. If the fluid is being cooled by air-sea
exchange, i.e., if F; > 0, Sis negative. This corresponds
to a tendency for the upper layer to become thinner
(h, < 0), or equivalently for the system to locally convert
warm water to cold water to accomodate the heat loss.
A negative value of F; implies a gain of heat by the
ocean and a corresponding tendency for the upper layer
to thicken.

Finally:

W2(x9 Vs _h) = Wl(xa 1 _h),

as required by continuity [Eq. (6)] and geostrophy [Egs.
(3) and (4)].

If Egs. (8) are added together, a version of the linear
potential vorticity balance is obtained:

ﬁH()f—lax + [B/(zgif)]("pz)x = fwe

0=p + 112}
¥ =p2—D
and the coordinate system has been formally trans-

formed from the (A, ¢) system to a “warped” Cartesian
system whose independent coordinates are defined by

x = a cos(\)(¢ — <Po)}
y=a\ — Ao

Here ¢, is a reference longitude and ), is a reference
latitude. Integrating Eq. (11) yields

[BHo/f16 + [8/2g/W* = ¢

(1)

where

(12)
where

o= pudx

is a prescribed function and the boundary conditions:
pr=p.=0

on the eastern ocean boundary, x = x,, have been ap-

plied. Equation (12) is a form of the Sverdrup balance,

and is an analog of an equation which appeared in

Luyten et al. (1983) and Pedlosky and Young (1983).

Upon subtracting the layer equations [Eqgs. (8)] we
obtain

29 + 76, ¥) — BL,x — Bf 0¥
=g'w.—2¢g'D —2g'S (13)
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where the Jacobian J(4, B) is defined as
J(A, B) = A.B, — A, B,,
and L, is the local deformation radius based on Hy:
L, = g'Holf.

Equations (11) [or (12)] and (13) describe the time de-
pendent baroclinic evolution of a two-layer ocean at
basin scales and are remarkably similar to the two layer
quasi-geostrophic equations. It is worth pointing out
however that the phenomena described by the present
model are in many ways richer than quasi-geostrophic
phenomena. Layer thickness variations can be O(1)
and the analysis is not restricted to the beta-plane. In
addition, the time dependency of the baroclinic mode
has been retained. The costs of including these effects
are the introduction of some nonconstant coefficients
and one nonlinear term in the prognostic equation. It
thus appears that the numerical solution of these equa-
tions is not substantially more difficult than the nu-
merical solution of the quasi-geostrophic equations.
Work is currently under way on this topic.

Note that the lower layer in this model is ventilated
by cross-isopycnal exchange [the S term in Eq. (13)].
This affects the potential vorticity dynamics of the
lower layer by adding mass to it, in much the same
way as Ekman pumping affects the potential vorticity
dynamics of the upper layer. As discussed earlier, the
magnitude of the potential vorticity forcing caused by
S is proportional to the surface heat exchange. This is
a different ventilation mechanism than that studied by
Luyten et al., who assumed that the role of the buoyant
forcing was to fix the outcropping latitudes of the lower
layer isopycnals. The potential vorticity forcing in the
lower layers of their model was provided solely by Ek-
man pumping. '

b. Quasi-geostrophic limit

The numerical solutions of the complete model are
currently under study. In the remainder of this paper,
Egs. (11), (12) and (13) will be examined in the param-
eter range corresponding to the steady state quasi-geo-
strophic limit at planetary scales (Pedlosky, 1979). As
a result of adopting this scaling, the possibility of sur-

facing isopycnals will be lost. Ventilation of the lower .

layer will still be possible because of the cross-isopycnal
exchange term, S. Some comparisons between these
solutions and data will suggest that the model applies
to the real ocean, and that the balances implied by the
model are not overly dependent on the scaling. This
assertion is also being tested numerically.

To obtain the steady, quasi-geostrophic equations,
time derivatives are suppressed and the variables are
scaled according to
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¥ = ULy«
0 = foULD,
(e ») = L(xx, Y#) | (14)
D = DyD,
S = SoSk )

where L is a basin scale length, f; = 29 sin()\) a ref-
erence Coriolis parameter,  the rotation rate of the
earth, U a velocity scale, and the asterisks denote di-
mensionless variables. The nondimensional equations
are (dropping the asterisks):

B9:/Bo + [eL?*/(2L,HIIB/Bo) )x = (ffo)we
J6, ¥) = Bfo/(fBo)lv¥x + Byds]

= Bfoy /(fBo)lbx + eL*/2QLAWA,] — BKD — BaS
(16)

(15)

where
Bo = 29 cos(Ag)/a,

8 = BoLlfo,
e=UlfL,
v = BLU, (

a =28, f1IB(/LUY,
K =2Do fIIB(/6U)]

Equation (2) has been used to scale the Ekman pump-
ing, w,. The nondimensional parameters ¢ = U/foL
(the Rossby number), 8 = 8oL/fy, @, and K arise from
the preceding analysis and measure respectively, the
strength of the mean flow relative vorticity compared
to planetary vorticity, the variation of the Coriolis pa-
rameter over the gyre, the strength of the buoyancy
forcing and the strength of eddy mixing. The parameter
ordering for the quasi-geostrophic limit is

e< YL~ f <y~ O().

The constraint on eL2/L,? restricts the layer thickness
variations to small ones. Diabatic forcing and eddy
diffusion are assumed to be weak; nondimensionally
this is expressed by

K~ a~ 0O(1).

3. The quasi-geostrophic solution

The solution of Eqs. (15) and (16) is obtained by
formally expanding the dependent variables 6 and ¢
in powers of 8. The lowest order equations are

Oox = w,

JO + vy, vy — o) = 0.

a7
(18)
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Equation (17) may be integrated to yield

fo = f We(x')dXx',

Xe
and the solution to Eq. (18) is

vy = Yo = G(6o + vy) = G(x) (19)
where the function G is as yet undetermined. Note:

Yo = on - P10

where p,? and p,° are the lowest order quantities in the
perturbation expansion of the layer pressures; thus, the
quantity:
Yvw=v=v—@°—n"=q

is the lowest order contribution to the quasi-geostrophic
lower layer potential vorticity. The other quantity in
Eq. (19), x = 6y + vy, has been identified by Rhines
and Young (1982b) as the geostrophic contours of the
basin. Geostrophic contours are the lines of intersection
of constant density and constant potential vorticity
surfaces, and are therefore fluid trajectories. Equation
(18) thus expresses the conservation of potential vor-
ticity by fluid parcels.

The geostrophic contours can be computed given
the wind forcing by solving Eq. (17). It is useful to
consider the Sverdrup transport driven by the Ekman
pumping;

We=—x, x2+y’< 1}
w,=0, xZ+py*>1}"

This forcing is known as ““tilted disk”” Ekman pumping,
and has been used in the past to study the circulation
structure in ‘mid-ocean gyres’ (Rhines and Young,
1982b). The net potential vorticity added by tilted disk
pumping along a latitude line vanishes, which: allows
the barotropic Sverdrup transport lines to close in the
oceanic interior without a western boundary layer. Us-
ing the above in Eq. (17), the geostrophic contours are

x = {1 =[xX*+@—=v1}2+¥%2, x>+ y*> 1
x =y, x2+y*<1

and can close inside the basin depending on the pa-
rameter v. In the spirit of Rhines and Young (1982a),
I will assume the geostrophic contours close and form
regions isolated from the eastern boundary (see
Fig. 3a).

a. The lowest order solution in the interior

The lower layer is thus divided into the region of
closed geostrophic contours and the “exterior.” Solving
for the lowest order solution requires knowing the
structure function G in both regions. In the exterior,
the fluid is directly connected via geostrophic contours
to the eastern boundary, where the boundary condi-
tions are

P 10 =P 20 = Q.
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Thus on the eastern boundary, Eq. (19) may be written
as

G(yy) = vy.

This determines the exterior form of G, as introducing
the dummy variable Z:

G(Z)=Z.

The potential vorticity away from the eastern boundary
is thus
Yy — %o =7yt b
which implies
P 20 = Q.

The solution in the exterior region is consistent with
vanishing lower layer flow, which, as is shown by the
preceding analysis, is forced by the eastern no-flux
condition.

Thus 6, in the exterior region is

O = P 10
which determines P,° through Eq. (17). Note also that
outside of the regions of direct tilted disk forcing:

00 = 0.
This completes the lowest-order solution in the region
outside of the closed geostrophic contours.
b. The dynamics inside the closed geostrophic contours

The mechanisms responsible for determining G in-
side the closed geostrophic contours should involve
eddy mixing and forcing, both of which appear in the
equations at the next order in 8. The baroclinic equa-
tion at O(B) is

JO1, Yo) + J(0o, ¥1) — v¥1x + v tan’(Ao)ox
+ Yy¥ox — Yobox —Y0ix + v tan’(Ao)yhox
+ v00xy — (Y*/2)x = —aS — KD. (20)

If Eq. (20) is integrated over the area enclosed by a
geostrophic contour, the left-hand side identically van-
ishes (see appendix B) leaving an integral balance be-
tween the diabatic sources of potential vorticity and
eddy dissipation:

o[ [ suasx [[ as=o

A(x) A(x)

(21)

where A(x) denotes the area enclosed by a geostrophic
contour. Further progress requires a closure theory to
specify D. 1 will use the parameterization originally
suggested by Rhines and Holland (1979) which equates
eddy mixing and the lateral diffusion of potential vor-
ticity:

D = V2. (22)
This parameterization converts Eq. (21) into an equa-

tion for the potential vorticity structure inside the
closed geostrophic contours:
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a ff SdA = —Kf Vo ndl = —K[“f~ Vx-ndl]Gx
A(x) 04 a4
(23)

where the line integral is along the bounding geo-
strophic contour, ¢, is the lowest order contribution to
the potential vorticity and Eq. (19) has been used. The
above equation can be further simplified by using the
identity (Young, 1981):

arex] [ [ s yiaa

A(x)

= § {70 WX w3l
34
in which case:

a f [S/Vx - nldl + {[K f Vx-ndl]Gx} =0. (24)

X

The structure equation for the lower layer potential
vorticity is a second-order, ordinary differential equa-
tion involving the Sverdrup transport and S. The in-
tegral coefficients in Eq. (24) can be determined using
Eq. (17). The remainder of the problem can be closed
by specifying the diabatic forcing. Note that the pres-
ence of the diabatic forcing modifies the structure of
the solution importantly. If this model were adiabatic,
as in Rhines and Young (1982a,b), potential vorticity
homogenization would emerge from Eq. (23). The
source term and the higher order equation in Eq. (24)
will result in nontrivial structure in the interior of the
gyre.

¢. The structure of the diabatic forcing

Consider Fig. 2, taken from McDowell et al. (1982),
which shows the annual variation in the outcropping
latitudes of isopycnals in the North Atlantic. If 40°N
is taken as the northern boundary of the subtropical

N LATITUOE
a0°

SIGMA THETA

FIG. 2. Outcropping latitude variations. This figure originally ap-
peared in McDowell et al. (1982, Fig. 15) and shows potential vorticity
as a function of latitude and isopycnal. Note the 12° latitudinal vari-
ation in the surface outcrop of the shallower isopycnals. Taking 40°N
as the northern limit of the subtropical gyre, the 26.3-26.5 surface
is seen to be ventilated in late winter in the subtropical gyre. In con-
trast, the 26.5-27.0 surface appears not to be ventilated in the sub-
tropical gyre.

K. DEWAR 1209

gyre, some of the deeper isopycnals participating in the
wind-driven gyre (e.g., the 26.3-26.5 sigma-theta layer)
surface within the northern confines of the gyre during
winter. Other, deeper layers (e.g., the 26.5-27.0 sigma-
theta layer) do not outcrop even in late winter. Figure
2 points out two features of diabatic forcing which will
be central to the following analysis. First, the tendency
for the isopycnal outcrops to migrate south in the win-
ter is consistent with a conversion of warm water to
cold water, or equivalently a negative value for S. Sec-
ond, the regions where this conversion will be most
active are confined to the northern portion of the gyre.
The simplest form for the forcing in the present model
which retains these features is

f [S/Vx-nldl=¢c >0, for x>x. (25a)

“f [S/Vx -nldl = 0, for x <x. (25b)

where ¢ is a positive constant and x. is the geostrophic
contour which just grazes the southernmost limit of
an otherwise limited area of diabatic forcing (see Fig.
3b). Choosing ¢, as a positive constant reflects the sense
of the water mass production in the North Atlantic.
Constraining nonzero values for S to occur in certain
regions of the gyre models the northern confinement
of ventilation. Note, the area of closed geostrophic
contours is thus divided into two regions, an “interior”
or “unventilated” region where S = 0, and a ventilated
region.

It is unlikely that buoyancy forcing in the real ocean
is arranged so that the integral in Eq. (25) is constant,
but a constant is used here to simplify the problem as
much as possible. I will argue shortly that the important
features of the solution do not depend on this assump-
tion.

d. The solution inside the closed geostrophic contours

In the interior where the diabatic forcing S vanishes,
Eq. (24) simplifies to:

[K f (Vx- n)dl]a/axG = constant. (26)

The integral coefficient in Eq. (26) vanishes at the center
of the gyre; thus, the right-hand side of Eq. (26) must
be zero to avoid singularities. This implies:

G, =0,

or that the potential vorticity is homogeneous (at an
as yet unknown value) in the interior of this partially
ventilated layer.

Luyten et al. (1983) assumed uniform potential vor-
ticity in the interior of their ventilated layers. The pres-
ent analysis suggests this is justified. Note, however,
that uniform potential vorticity depends upon dissi-
pation.
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FIG. 3. (a) Geostrophic contours. If “tilted disk” Ekman pumping
of sufficient strength is used, closed geostrophic contours like the
above form in the lower layer. The area outside of xo, the largest
closed geostrophic contour is called the exterior. (b) Same as in a,
except the cross-hatched region indicates areas where the diabatic
forcing is assumed to be nonzero. The closed geostrophic contours
are divided into the interior, unventilated region and the ventilated
region. The dividing contour between these regions, x., is indicated.

In the ventilated region of the closed geostrophic
contours, where Eq. (25a) applies, an integration of
Eq. (24) yields

[f Vx-ndl]Gx = —coalx — xJK  (27)
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where the constant has been used to match the zero
potential vorticity flux at x.. The full solution for G
in the ventilated region is

G(x) = [aco/(47K))(x — x0) — [aco/(87K)]

1+ ‘72 - 2Xo)
T+r7—2) T4 Y

where gyis the potential vorticity on xo, the outermost
closed geostrophic contour. Equation (28) can then be
used to compute the value of the potential vorticity on
Xc- This in turn can be matched to the uniform poten-
tial vorticity in the unventilated part of the gyre interior
to complete the solution. A graph of this solution is
given in Fig. 4 for acy/(87K) = 1 and x./xo = 0.25.
These parameter settings correspond to a gyre which
is weakly ventilated in its northern quarter. An im-
portant aspect of the potential vorticity structure in
Fig. 4 is that the region of uniform potential vorticity
is a local minimum.

X (1 + 9% —2x0) ln(

e. Frictional western boundary layer closures

Since S is of one sign (negative), net negative poten-
tial vorticity enters the lower layer within the closed
geostrophic contours. This potential vorticity must be
extracted from the gyre if the flow is to be steady. The
only place where the extraction can occur is at the
boundaries, and in keeping with homogeneous circu-
lation theory, I will assume the western boundary
dominates this process.

Note that the lowest order solution is consistent
without boundary layers. The geostrophic contours

cvl/qf

-1 t 1
! %
[+]
. 5 Bu:k =1
'0 ’

FiG. 4. Potential vorticity structure. The solution is divided into
two regions: a homogenized potential vorticity region at gyre center,
and a bowl-shaped region located towards the gyre edge. The two
join smoothly. The bowl-shaped region is directly ventilated. The
uniform potential vorticity is a local minimum, a result which depends
only on down-gradient eddy mixing and a negative potential vorticity
flux to the lower layer.
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close away from the boundaries, and the exterior lower
layer pressure solution, P’ = 0, meets the required
boundary conditions. The tilted-disk Ekman pumping
is also confined to the basin interior, and the upper
layer, lowest order pressure solution away from the
directly forced region, P,° = 0, also meets the required
boundary conditions. The inconsistency in the solution
is at O(B) and appears when Eq. (20) is integrated over
the entire basin. It is not difficult to demonstrate that
this integral reduces to

o[ [ st =[] it = & § n

basin basin d basin

where Eq. (22) has been used. If g is substituted for
using the lowest order potential vorticity, the right hand
side of the above vanishes, which is inconsistent with
the imposed forcing. What is being neglected at O(B)
in the baroclinic equation are the highest order terms,
thus suggesting the need for a boundary layer involving
the O(B) quantities.
Using Eq. (22), D can be written as

D = Vvyy + (L LHVHPL + AP,
+ P°— P+ (P! — P,") + O8]

where P;” denotes the nth member in the perturbation
sequence for P;.

Using the lowest order pressure solutions near the
boundary yields:

D = B(L/LHV*P + BVAP,' — Py') + O(F?)
and Eq. (20) near the boundary becomes
2v(Py")x = KD
= KB(L/LHV*P,' + KBVA(P,' — P,)).

Introducing the rescaled boundary layer coordinate X
= 6 'x, the above can be written as:

2yPix = KB(L,*/L)6 *Phyxxx + 6 KB(P,' — Py')xx.
The only consistent balance occurs if
6 = [KBL,*/L?)'".

The governing equation in the boundary layer is thus
the same as that for a Munk boundary layer:

2‘)’Pix = lerxxxx

whose solution is
P,'(x, y) = P30, y)* <1 - exp[—(27)'/36" g]
X {cos[v;i 2y)3s7! x:|

+ Vg si [? (27)1/35-’){]})
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where P}, is the interior O(3) pressure. The boundary
layer thickness is:

L5 = [KL,2L*B/f5)' .
Using typical parameter values:
Lé ~ 200 km.

The magnitude of the norfhward flow in the boundary
layer is :

0,0, y) = Bv,' = O[F*L*/(KL,)]'"

and the north-south length scale of the boundary layer
is determined by the vorticity balance:

P f f SdA = —KBL?/L? f Pixxxdy,
boundary
or

3 L, = 0O(1).
If e = O(B2), N
(0, y) = O(8)"* < 1}
§=0B" <1}’

indicating that the boundary layer is weak and rather
broad.

4. Generalization and interpretation of results

The integral balance in Eq. (21), which determines
the potential vorticity structure in the model, is between
buoyancy forcing and eddy diffusion. It states that the
net diffusive loss of potential vorticity on every stream-
line cancels the addition of potential vorticity on that
streamline due to buoyant forcing. Warm water is con-
verted to cold water by atmospheric exchange in the
northern half of the North Atlantic subtropical gyre.
The deeper isopycnals are thus receiving mass from
the shallower isopycnals, which translates into a source
of negative potential vorticity for the deeper layers. The
integral balance in Eq. (23) requires the eddies to dif-
fusively add positive potential vorticity to each stream-
line. The only source of positive potential vorticity in
the lower layer is the ocean boundary, so all the positive
g needed to balance the negative diabatically injected
g comes from outside the closed lower layer geostrophic
contours. This is evident if Eq. (23) is evaluated at .
If the eddies move potential vorticity down the mean
potential vorticity gradient, the overall forcing-dissi-
pation balance requires the mean potential vorticity
inside the closed contours to be lower in value than
the exterior potential vorticity. This is why the g struc-
ture decreases toward gyre center and why the ho-
mogenized pool is a minimum.

Note, the balance between buoyancy forcing and
eddy diffusion makes no explicit reference to quasi-
geostrophy. The structure of the solution requires that
the eddies effect a potential vorticity flux with a com-
ponent pointing down the mean gradient and that
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warm waters are being converted to cold waters. It is
therefore likely that the characteristics of the present
solution will appear in systems which are not quasi-
geostrophic.

5. Comparison with data

McDowell et al. (1982) have analyzed the GEOSECS
data from the North Atlantic in terms of potential vor-
ticity. Two of their figures (Figs. 17 and 18) are included
in Fig. 5 for completeness. These are diagrams of po-
tential vorticity as a function of latitude on the 26.3-
26.5 and 26.5-27.0 sigma-theta surfaces, and are in
surprisingly good agreement with the predictions of
the present theory.

Figure Sa illustrates the potential vorticity in the
26.3-26.5 layer, an isopycnal which is ventilated for a
fraction of the year by wintertime convection (see Fig.
2). The net potential vorticity input into this layer is
weak, making it ideal for comparison with the present
theory. Note the characteristic bowl shape of the po-
tential vorticity with the minimum occurring at the
gyre center. There is even a hint of a homogenized
region between 25° and 35°N. The present theory sug-
gests this structure is the result of lateral potential vor-
ticity mixing and diabatic potential vorticity forcing.

It is interesting to compare the potential vorticity
structure in the 26.3-26.5 layer with that in the deeper
26.5-27.0 layer, shown in Fig. 5b. The 26.5-27.0 layer
is not ventilated at any time during the year (see Fig.
2). This layer is characterized by homogeneous poten-
tial vorticity, a result predicted by Eq. (23) if S = 0, or
equivalently if the layer is adiabatic. The difference in
the potential vorticity structure on the neighboring
26.3-26.5 and 26.5-27.0 layers is striking. It is en-
couraging that the present model explains both.

Several other characteristics of the model are seen
in the data. In Fig. 5 of McDowell et al. (1982), a plan
view of the potential vorticity on the 26.3-26.5 surface
is presented along with an estimate of the late winter
outcrop latitudes. In agreement with the model, the
strongest potential vorticity gradients occur in regions
which are directly ventilated. Other areas which are
not directly ventilated have weaker ¢ structure. This
to an extent also describes the 26.0-26.3 surface (Fig.
4 in McDowell et al.), which is somewhat more strongly
ventilated than the deeper 26.3-26.5 layer, suggesting
that the present theory applies beyond the parameter.
settings of the analytical solutions.

6. Discussion

A layer model of the general circulation employing
linear potential vorticity dynamics in each layer has
been used to study the effects of diabatic forcing. This
model admits analytical solutions in the quasi-geo-
strophic, weakly forced limit, which are characterized
by a balance between diabatic input and eddy mixing.
These solutions are a generalization of those found by
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FIG. 5. Potential vorticity on potential density surfaces in the North
Atlantic. These figures appeared originally in McDowell et al. (1982,
Figs. 17 and 18) and show the potential vorticity structure on the o,
= 26.3-26.5 surface and the o, = 26.5-27.0 surface. The shallower
gy = 26.3-26.5 surface is weakly ventilated, and obtains the bowl
shape predicted by theory. There is also a hint of uniform potential
vorticity between 25° and 35°N. This area corresponds to 18°C water.
The deeper layer (g5 = 26.5-27.0) is not ventilated, and exhibits no
such bowl-like structure.

Rhines and Young (1982b), where ventilation was ig-
nored, and by Luyten et al. (1983) who ignored dissi-
pative effects.

Unlike the Luyten et al. model, the present model
resolves the potential vorticity structure in regions of
ventilated layers not directly connected to outcrops.
Luyten et al. assumed that these regions were homo-
geneous in potential vorticity. The present model sup-
ports this assumption, but demonstrates that uniform
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potential vorticity is a result of mixing. Dissipative ef-
fects are also not confined to unventilated areas; rather,
their influence is global and alters the g structure on
streamlines which are directly ventilated. In this sense,
the present theory differs substantially from Luyten et
al. or Rhines and Young. Many features of the potential
vorticity in of the North Atlantic can be explained by
the present theory, suggesting that the theory has some
analogs in the real ocean.

The wind stress employed here simplifies model
western boundary layer structure by adding no net po-
tential vorticity to the ocean. Although analytically
convenient, this is obviously a weak point of the model.
More realistic wind stress patterns can invalidate some
of the assumptions leading to the integral balance in
Eq. (21). This was demonstrated for a simple general
circulation model by lerley and Young (1983). In their
model, the lower layer failed to homogenize in potential
vorticity due to the presence of a strongly dissipative
lower layer western boundary current. If, however, dis-
sipation occurs preferentially in the surface layers of
the ocean (possibly through some mechanism involving
relative vorticity), as postulated by Young and Rhines,
friction may still be regarded as weak everywhere in
the lower layer and the analysis proceeds as in the pres-
ent theory. Tilted disk Ekman pumping is a convenient
way of modeling weak potential vorticity dissipation
in the lower layer while retaining a tractible model. It
is nonetheless true that the details of the homogeni-
zation process are not yet well understood. It has also
been necessary to include a weak frictional western
boundary layer to close the global potential vorticity
budget. The characteristics of this boundary layer have
been described.

In some sense, this model takes some tentative steps
toward a fully ventilated general circulation model with
an explicit western boundary layer. It is worth stressing
that most of the lower-layer streamlines do not require
strong, local western boundary layer dissipation, even
though the lower layer receives net vorticity. Instead,
eddy mixing acts everywhere on the streamlines and
moves the injected potential vorticity towards the gyre
edges, so that it is only the outer few streamlines which
must pass through a frictional boundary layer. Thus
the present model is only weakly dependent on bound-
ary layers, which lends weight to those models in which
boundary layers are ignored (Luyten et al., 1983; Ped-
losky and Young, 1983). One wonders if similar pro-
cesses reduce dissipative effects on streamlines in mod-
els with stronger vorticity input.

Mode waters. An important application of this work
is to the maintenance and stability of mode waters in
subtropical gyres. The present theory predicts that
weakly ventilated layers will have a central pool of uni-
form potential vorticity which is at a local minimum.
This pool corresponds to mode water in the usual sense
of either thick layers (small f/4) or weak vertical density
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gradients (small fp,) and exists in this model because
of the interaction of lateral eddy mixing and weak ven-
tilation. Furthermore, this result depends only on §
being negative and eddy mixing being down-gradient
in sense. It is interesting that the ¢, = 26.3-26.5 iso-
pycnal surface, which is apparently well suited for
comparison with the present theory, lies at the heart
of the 18°C water in the North Atlantic (Worthington,
1959, Talley and Raymer, 1982; Jenkins, 1982).

It has been noted that the properties of 18°C water
are stable in spite of considerable meteorological vari-
ability at the source regions. This has been discussed
theoretically by Warren (1972), and led Talley and
Raymer (1982) and Jenkins (1982) to conclude that
some global storage mechanism must be in operation
which buffers 18°C water against climatic variability.
The present solutions reflect precisely this behavior.
The diffusive balance expressed in Eq. (21) makes the
potential vorticity structure in Fig. 4 largely insensitive
to seasonal variability in buoyancy forcing. Local dis-
turbances in the potential vorticity structure, as would
be produced by an anomalously cold winter, will be
considerably reduced in effect by mixing. In addition,
the gyre has a lot of inertia. Although time dependent
calculations have yet to be done, it is likely that the
gyre adjusts on cross-gyre diffusion time scales (Dewar
et al., 1984), which are about ten years:

L (10°cm)
4K 4 X 10" cm?s™!

In order to produce variability in the properties of 18°C
water, anomalies in the source regions must persist for
roughly a decade. Because of the gyre inertia, variations
in the properties of the mode water will also lag the
forcing by roughly a decade. This agrees with the time
scale of temperature and salinity variability within the
18°C water noted by Jenkins (1982).

= 10 years.
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APPENDIX A
Heat Balance in a Two-Layer Fluid
The heat equation for a continuously stratified
Boussinesq fluid is:
T,+ uly+vT,+ wl,=—-V-F (A1)

where T is temperature, ¥ and v are horizontal veloc-
ities, w is vertical velocity, subscripts denote differen-
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tiation, F = (FW, FO, F®) is an internal heat flux
vector and, for convenience, a Cartesian coordinate
system has been adopted. The heat equation for a two
layer fluid can be formally obtained by substituting for
T with:

T =T, + AT{erf[(z + h)/é]

— erf[(=H + h)/5]} (A2)
where
(z+h)/
erf[(z + h)/8] = (V2x)! f ’ e 2247
h ’
erf[(—H + h)/8] = (V2x)" f e e 2247

T, is the bottom temperature, AT the maximum pos-
sible temperature change in the water column, # a
function of x, y, and ¢, and 6 a parameter controlling
the vertical thickness over which the temperature
change occurs; AT is a constant. Note that as é becomes
small, T tends to a two-layer temperature distribution
with lower layer temperature 7, and upper layer tem-
perature T, = T, + AT. The transition between these
two layers occurs discontinuously at the interface, z
= —h,

The velocities #, v and w are assumed to be of the
form:

u=ux,y, 7, 1) + Aulx, y, 2, 1)

X {erfl(z + h)/8] — erf[(—H + h)/3]} (A3)
b= Uz(x, Y, Z, t) + Av(x, Y, Z, t)

X {etf[(z + h)/8] — erf[(—H + h)/s]} (A4)
w = wyx, , z, 1) + Aw(x, ¥, z, 1)

X {erf[(z + h)/é] — erf[(—H + h)/8]} (AS5)
where uy(x, y, —H, 1), vi(x, y, —H, t) and wy(x, y, —H,
1) are the fluid velocities at the bottom and Au, Av and
Aw are related to the velocity changes caused by the
temperature structure. The quantities u,, v, w,, A,
Av and Aw are in general functions of x, y, z and ¢,
but are assumed to be independent of the parameter
6. Note that as 6 becomes small, u, v and w tend toward
velocity distributions w1th a discontinuity at the inter-
face z = —h.

The form of the denvatlves of T"can be demonstrated
by considering 7,:

T, = ATh(e-EHhwmt _ gHwmy sy

thus Eq. (A1) becomes
e—(z+h)2/2¢$2

V2ro

o (HR282

V2ro

ATTh, + uhy + vh, + Wl

— AT(h, + uh, + vh) = —V.F. (A6)
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Equation (A6) demonstrates that as 6 becomes small:
V.:F=0 for z+h#0

or that in a two-layer fluid, the internal heat fluxes
must be nondivergent away from the interface. If it is
further assumed that lateral heat fluxes can be ignored,
Eq. (A7) becomes

' F@=0 (A7)

where F@ is the vertical heat flux. Equation (A7) dem-
onstrates that in a two-layer fluid:

FO(z=—h)y= FOz =0) =

* where F; is the heat flux to the atmosphere from the

ocean.
Integrating Eq. (A6) over the mterface from —h —»
to —h + v yields ,

AThjferf(v/6) — erf(—=v/d)]

—h+v —(z+h)2/262
+ ATh, f ——dz + ATh
V2ro i’
—h+v e—(z+h)2/262 ~h+y —(z+h)2/252
X dz + AT f
—h—v Vﬂa h~» V_5

X dz + O(e CHYW12%) = —F (A8)

where it has been assumed that the internal heat fluxes
under the interface vanish and the exponentials pro-
portional to —(H + h)/é have been ignored in antici-
pation of letting § go to zero. The first term tends to
ATh, as 6 becomes small. Substituting for # in the next
integral yields

J‘_hﬂ (uz + Auferf[(z + h)/6] — erf[(—H + h)/8]})

~h—v

—(z+h)2/282 —h+v —(z+h)2/252
T [T,
V2rs b V27d
—h+v ~(z+h)2/252
+ f Auerfl(z + h)/8] ———dz
s [ V2ms
+ O(e7I-H+28)  (A9)
In the limit of small 6:
—h+v e—(z+h)2/262
Lim uxx, y, z, t) ————
—0 J—h—p 2% 3. ) VE&
X dz — uxx, y, —h, t).

The second integral in Eq. (A9) can be rewritten as

—h+v
fh Au/2{erf*[(z + h)/d]}.dz

—h—v

—h+v
= Aulx, y, —h)/2 — 172 f erf?[(z + h)/6)(Au).dz
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in the limit of small . The second integral on the right
hand side is O(») as Au is independent of 8, and there-
fore bounded in the limit of small 6. Thus Eq. (A8) in
the limit of small é tends to

ATh, + ATh(u;, + Auj2) + ATh,(v, + Av/2)

+ AT(w, + Aw/2) = —F, + O(»). (A10)

The continuity equation for a Boussinesq fluid is
(A11)

which when integrated over the interface at z = —h
yields

[u(=h + v) — u(=h — v)]h, + [v(—h + v)
—v(—h—v)h, + w=h+v)—w(-h—v)=0.
Substituting with Eqs. (A3)~(AS) yields
Aw(x, y, —h) + Aul(x, y, —h)h,
+ Av(x, y, —h)h, = 0(»)
in the limit of small v. Defining

uyt+ v, +w, =0,

u = uxx, y, —h) + Au(x, y, —h)
vl = 02(x9 y’ _h) + Av(xa ys —h) ’
wy = w(x, y, —h) + Aw(x, y, —h)

Eq. (A10) becomes
A:T(h, + u,hx + Ulhy + Wl) = —F,.
Dividing by AT and Reynolds averaging yields
wilx, ¥, —h) = "711 - {ill_'lx - ﬁli_ly - u\h
— vih, — F,/AT = —h,— i,h, — D,h,+ D+ S
(Al13)
where D is the “thickness flux” associated with the
eddies, S is the contribution to the interface movement
due to surface heat fluxes, the overbars denote Reynolds
averaged quantities and the primes denote fluctuating
quantities. Except for the overbars and the use of

Cartesian coordinates, Eq. (A13) is the same as Eq. 10
in the text.

(A12)

APPENDIX B
Integral Balance in the Gyre

After a little algebra, the baroclinic evolution equa-
tion [Eq. (20)] can be written as

J6,, Yo — v¥) + J(0o + vy, ¥1)
+ [y tan’(Ao)y¥olx + Y¥¥ox + [ tan?(\o)yholx

+ 10011 + 3 o — Yolox = —S — KD.  (B1)

Area integrals over closed geostrophic contours of the
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Jacobians vanish identically. For example, in the case
of the first Jacobian:

ff J(0:1, Yo — vy)dA = f v-nd,dl
40 o4
where

V= [0 — 7V —(o — YV = Glxy, —Xx)s
so that
v.n=20

fff(ﬂn,ll/o— YY)dA =0

A(x)

A similar proof applies to the second Jacobian. The
next four quantities in Eq. (B1) can each be written in
the form [p(y)N(x)]x, where p and N are functions
only of y and x respectively. Area integrals of these
terms return:

[] womwooras = § poiwooi-na

A(x)

- N f p()dy =0

using the fact that the line integral is along a contour
of constant x. The last quantity on the left hand side
of Eq. (B1) when area integrated can be shown to vanish
as follows:

ff VoloxdA = ff YoxxdA = —ff XgoxdA
= —f f L(x)xxxdA = —f f L(x)xdAd =0

where L(x) is defined by

L(x)x = x90(x)x-
Thus, Eq. (B1) reduces to

o0 [ [ swa+ k[ pas

A(X) A(x)

which is Eq. (21).
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