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ABSTRACT

In this paper we consider the effect of the variation of the Coriolis parameter with latitude on barotropic shelf
waves, using a §-plane model. Solutions are constructed using the method of inner and outer asymptotic ex-
pansions, where the inner expansions hold over the shelf, and the outer expansions hold in the deep ocean.
Three cases are identified, depending on the relationship between the shelf wave frequency and the allowed
frequencies for deep-ocean Rossby waves. The connection is provided by the matching of the longshore wave-
numbers. In the first case, the shelf wave frequency is too large to permit Rossby wave radiation, and the
variation of the shelf wave amplitude is governed by conservation of longshore energy flux. In the second case,
the shelf wave frequency is sufficiently small to permit Rossby wave radiation at high latitudes, and in the third
case there is Rossby wave radiation at all latitudes. In both these cases the longshore shelf wave energy flux
decays at a rate determined by the radiated Rossby wave energy flux.

1. Introduction

Current theories for continental shelf waves generally
assume that the waveguide is uniform in the longshore
direction (see, for instance, Allen, 1980, or Mysak,
1980a). Nevertheless, various authors have considered
the effects of longshore variations in bottom topography
or coastline curvature (for a recent review, see Mysak,
1980b). However, the effect of variable Coriolis pa-
rameter has received less attention. Grimshaw (1977)
used a WKB approximation to determine the variation
of wave amplitude due to the variation of the Coriolis
parameter with latitude but considered only the case
when the shelf waves remain trapped in the coastal
waveguide. Recently, Beer and Grimshaw (1983) con-
sidered continental shelf waves on a $-plane and ob-
tained some analytic solutions for the case when the
shelf waves are confined to a channel (i.e., the coastal
waveguide is bounded in the offshore direction by a
rigid barrier).

Suginohara (1981) found in a numerical experiment
that barotropic shelf wave energy leaked away from
the coastal region in the form of barotropic Rossby
waves. Suginohara and Kitamura (1984) (see also
McCreary and Chao, 1985) found a similar phenom-
enon involving baroclinic Rossby waves in a numerical
study of coastal upwelling. Enfield and Allen (1980),
in an analysis of sea-level anomalies along the Pacific
Coast of America, found that at high latitudes there
was significant correlation with local wind stress, but
that at low latitudes the anomalies took the form of
poleward-propagating waves. It is also relevant to note
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that Mysak (1983) has recently suggested that baroclinic
Rossby waves in the North Pacific may be generated
by coastal current oscillations. One factor that may be
involved is the variation of the Coriolis parameter and
the possible leakage of energy by radiating Rossby
waves at high latitudes. Motivated by these papers, we
propose to study barotropic continental shelf waves on
a S-plane and to quantify the extent to which shelf
waves can lose energy by radiation into offshore prop-
agating Rossby waves.

In conventional notation (see Fig. 1), the linearized,
nondivergent barotropic shelf-wave equations are

u—f+&=0, (1.1a)
v, +fut+§,=0, (1.1b)
(hu), + (hv), = 0. (1.1¢)

Here we are using nondimensional coordinates based
on a length scale L (typical of the shelf width), a time
scale F~! where F is a typical value of the Coriolis
parameter, and a velocity scale FL; the wave height is
scaled by F2L? g'. Introducing the mass-transport
stream function y, where

hu=y,, ho=—y, (1.2)

and assuming a time dependence proportional to
exp(—iwf) (where w > 0), we find that the vorticity
equation is

A, ()l o) -0 0o

We shall assume that the coastline is straight and given
by x = 0, where ¥ must satisfy the boundary condition

v=0 at x=0. (1.4)
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F1G. 1. The coordinate system.

We shall assume that the depth & = h(x) is a mono-
tonically increasing function of x, and that either 4(0)
= Q with A, # 0, or that 4(0) # 0. Also we shall assume
that # — 1 exponentially fast as x — oo, so that
|1 — h] is O[exp(—Kx)] as x — oo where K is a positive
constant. As x — oo, Yy must satisfy a radiation con-
dition to ensure that either the waves are trapped or
that any radiating waves are outgoing. This radiation
condition is developed in section 2.

We shall assume that the variation of the Coriolis
parameter foccurs on a length scale much greater than
the shelf width. Hence we introduce a small parameter
¢ to measure this slow variation and put

f=f+BY+~X, (1.5a)
where

X = ex. (1.5b)

Here f;, 8 and « are constants; 8 > 0 (<0) corresponds
to an east (west) coast. The case 8 = 0 corresponds to
a coast aligned in the east-west direction; this case will
not be considered explicitly in this paper as it has been
extensively discussed in the literature on equatorial
shelf waves (see, for instance, Beer, 1978, or Mysak,
1978a,b). When 8 # 0 the longshore wavenumber #1(Y)
is a function of Y and the aim of the subsequent analysis
is to determine m(Y) and the variation of the wave
amplitude with Y. In the present nondimensional co-
ordinates the wave phase speed, wm™!, is O(1) with
respect to ¢, and hence w and m will have the same
order of magnitude. Three cases can be distinguished,
depending on whether w is O(1), O(¢!’?) or O(¢). We
designate these cases as follows

Y=¢,
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I: w, mare O(1), (1.6a)
II: w= €26, m = ¢?n, where o, n are O(1), (1.6b)
(1.6¢)

The three cases are analyzed in sections 3, 4 and 5,
respectively. In case I the shelf waves are trapped, and
the variation of wave amplitude is governed by the
conservation of the longshore kinetic energy flux. In
case II the shelf waves are trapped at low latitudes but
radiate Rossby waves into the deep ocean at high lat-
itudes. In case III the waves radiate at all latitudes, at
least in the present (-plane approximation. In each
case the solution is constructed as an inner expansion
on the shelf where x is O(1) with respect to e. This
inner expansion is matched to an outer expansion
which holds in the deep ocean, where x is O(¢™!) and
h — 1. The outer expansion takes the form of modu-
lated Rossby waves, either evanescent or radiating. The
theory for these is developed in section 2, where we
also describe the matching with the inner expansion.

Before proceeding we note that Willmott and Bird
(1983) have considered a similar problem to that for-
mulated here, but for trench waves. (See also Holyer
and Mysak, 1985, who consider forcing of trench waves
on a B-plane by incident baroclinic Rossby waves.) In
effect, the shelf in our formulation is replaced by a
depth profile A(x) which at first increases but then de-
creases as x increases. However, Willmott and Bird
(1983) approximated equation (1.3) by replacing fwith
/1 in terms such as f{1/h)x. This allowed them to keep
the longshore wavenumber m constant with the effect
that the subsequent analysis is quite different from that
presented here. Nevertheless, they also find the exis-
tence of regimes in which trench waves radiate energy
into the deep ocean. )

To conclude this section we consider the equations
which describe conservation of energy. These are

<§‘¢y>x + <——§‘¢x>y = 0’ (1.73)

III: w = ev, m = er, where v, r are O(1).

where

(ab) = 2 Re(ab*) (1.7b)

and is a time average. Equation (1.7a) is readily estab-
lished from (1.1a, b, ¢). However, because the geo-
strophic components of the pressure gradients do no
work, Eq. (1.7a) is not a convenient expression to use
(see Pedlosky, 1979). Instead we shall use the following
expression which can either be derived from (1.7a) us-
ing integration by parts and (1.1a, b) or directly from
(1.3).

F.+G,=0, (1.8a)
where .
[ We 1 z(£)>
F ( ve-svh) o
=W 1 off '
G= <—h X+ 2‘//2(}2)) : (1.8¢c)
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We shall interpret F and G as the kinetic energy flux
in the x- and y-directions, respectively. The radiation
condition as x — oo is now F — 0 for evanescent waves
or that F > 0 for radiating waves. In this latter case it
can be shown that F > 0 is equivalent to the require-
ment that the x-component of group velocity be pos-
itive.

2. Quter expansion: Modulated Rossby waves

The outer expansion holds in the region where x
~ ¢ 'and h ~ 1. In this limit the governing equation
(1.3) becomes

\bxx""l’yy_;i;

w¢x+%¢y=o. @.1)

In the outer expansion the appropriate variables are X,
Y {see (1.5b)], and the solution has the form of a mod-
ulated Rossby wave. Hence we put

¥ = AX, Y) explio(X, Y)/e].
On substituting (2.2) into (2.1) we find that
B

€
aX2 + ay2 + ; Oy — % ay = GZ(AXX + Ayy)/A,

2.2)

(2.3a)
B ey
2ax+; X+ Zay‘-—‘;‘ y+A(axx+ ayy) = 0.

(2.3b)

Note that for the three cases I, I and III the terms ey/
w and ef/w are O(¢), O(e!/?) and O(1), respectively. In
all three cases we shall verify a posteriori that the right-
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hand side of (2.3a) can be neglected, since it is O(e?),
O(e) and O(e), respectively, relative to the left-hand
side. The resulting approximation is, in effect, a WKB
solution. Matching with the inner solution is achieved
by considering the limit X — 0 and will require spec-
ification of a(0, Y) and A(0, Y). Hence we impose the
boundary conditions

a(0, Y) = 6(Y),
A0, Y) = Ay(Y),
where 6(Y) is real-valued.
Equation (2.3a) (with the right-hand side neglected)

is the dispersion relation for a Rossby wave of wave-
number (p, q) where

(2.4a)
(2.4b)

p=ay, g=ay, (2.52)
p2+q2+£p—-61q=0. (2.5b)
w w

Figure 2 shows a plot of the dispersion relation (2.5b)
for a fixed frequency w as a function of (p, g); the arrows
point in the direction of increasing « and define the
direction of the group velocity (dw/dp, dw/dq). It will
be shown below that the solution of (2.4a) and (2.5a,
b) requires g to be real-valued. For a real-valued ¢ the
dispersion relation (2.5b) defines two branches. The
radiation condition at infinity requires us to choose
that branch on which Imp > 0 when p is complex-
valued corresponding to evanescent waves. When p is
real-valued we choose that branch on which dw/dp > 0
corresponding to outgoing waves since it can readily
be shown that then F (1.8b) is positive. Thus, from
(2.5b)

vemae
Plad S

PYTL L T

Y
-

FiG. 2. The Rossby wave dispersion relation, i.e. (2.5b). The arrows point in the direction of increasing w
and define the direction of the group velocity (a) 8 > 0 (east coast), (b) 8 < 0 (west coast).
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1/2

b+ o= {(s-2) - S+ )]

2w 2w
if [---]1>0, (2.6a)
or
B _ &2 ey 24172
pto—=flg = —[m(62+72)~(q—5;)]
' otherwise. (2.6b)

Note that when (2.6b) applies, the radiated Rossby
waves have short (long) wavelengths according as 8
> 0 (<0), corresponding to the initial condition (2.4a)
being applied to an east (west) coast.

The solution of (2.3a) and (2.4a) is achieved by the
method of characteristics. First we note that (2.4a) also

specifies
q(0, Y) = m(Y) = 0AY). (2.7

Since (2.3a) contains no explicit dependence on X, Y,
both p and g are constant on each characteristic or ray.
Thus, on each ray g is real-valued and given by (2.7),
and then p is given by (2.6a, b). The rays are given by

S G
s P @ 1T 20 (2.83)
while
da  €f €y
ds 20F + 207 (2.8b)

Here s is a parameter along the ray. The initial con-
ditions for X, Yas s m Qare X — 0, Y — Y,. The
solution of (2.8a, b) is then

Y- Y= [m(yo) - -%]X[f(mm»rl, 2.92)
a—0(Yy) = — %ﬁ-)ﬁ %(Y—— Yo)
2 (2 NV _
P LI 0
40T (Yg) ~ =~
2w

Elimination of Y, between (2.9a, b) then yields « as
function of X, Y. The solution of (2.3b) is now found
by integration along the rays. The result is

A = J124(Yy), (2.10a)

where
2
J =1+ Xmy(Yo) 4—2)'5 B>+ YH{fIm(Y)1} . (2.10b)

Here J is the Jacobian of the mapping from (s, Yo)
to (X, Y) with the parameter s chosen to ensure that
J = 1 on the initial line X = 0.

Next we consider the matching of the outer expan-
sion (2.2) with the inner expansion, which will be ob-
tained in sections 3 to 5. In the inner expansion the
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appropriate variables are x and Y. Hence the matching
conditions are obtained by putting X = ex in (2.2) and
expanding the result in powers of ¢ with x fixed. We
find that

Wex, ¥) = ¥x, ¥; 9 exp[i”(y’] . (@lla)

€

where
U, ¥ 9 = {A(o, Y)+ e[xAAO, Y)

+ % ix%ay 0, YA, Y)] + 0(52)}

X explip(Y)x], (2.11b)

where
po(Y) =p(, Y). (2.11¢)
Here p(0, Y) is found from (2.6a, b) with g = ¢(0, Y)
= m(Y). From (2.11b) it follows that
U, 5 €) = ipo(YIUx, Y; €) = e{[4X0, Y)
+ ixax(0, Y)A(0, Y)] + O(e)} explipo(Y)x]. (2.12)
We shall find that (2.12) is a more useful form of the

matching condition than (2.11b) when considering
higher order terms in e.

a. Casel

In this case both w and m are O(1) with respect to

¢. It follows that the solution of (2.6a, b) is given by

€y 3 2
- -+ :
a 2w 2w 0
Thus, to leading order in ¢, p is pure imaginary, and
the waves in the ocean are evanescent. From (2.9a, b)
and (2.10a, b) we find that

,p =1 (2.13)

oX, V)= 07+ iX) — L x+ L ix + o),
2w 2w .
(2.14a)
A =AY + iX) + O(é), (2.14b)

where + refers to sign m(Y). The matching conditions
(2.11b) and (2. 12)_ become

Wx, Y; ) = A(Y) exp(—Imlx) + O(e),
Ydx, Vi €) + Imif(x, Y; €)

(2.15a)

= e{iiAoy(Y) + [-—ixmy(Y) - % + 'g;]Ao(Y)}
(2.15b)

Also we note here that « is O(1) with respect to ¢, and
so the right-hand side of (2.3) is O(¢?) with respect to
the left-hand side, thus justifying the formula (2.14a).

X exp(—|m|x) + O(e?).
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b. Case Il

In this case w and m are O(¢'/?) with respect to e and
hence we replace w and m with €/?¢ and ¢/n, re-
spectively [see (1.6)]. It follows that p and g are also
O(¢'/?) and so we put

2
D1,

Equations (2.6a, b) become

2 12
D+ % = filq)) = il:(% - 2%“) a7 B>+ ‘Yz):l )

p =€’ q = ¢%q,. (2.16)

if [+-:1>0, (2.17a)
or
2 2 29172
n+ L@ - {52 (a-2) ]
otherwise. (2.17b)

If (2.17a) applies, the waves are evanescent, but if
(2.17b) applies then there is radiation of outgoing
Rossby waves. The demarcation between these two re-
gimes occurs at a critical wavenumber 7., where fi(n.)
= (0, and is given by
A [ N
ne 201-( 207 ) . (2.18)
The two solutions in (2.18) have opposite signs and
hence only one can be chosen; waves are evanescent
for n> n.> 0 or n < n. <0 and are radiating otherwise.
The equality n(Y) = n. defines a critical value Y = Y.
Equations (2.9a, b) become

Y- Y= [n(Yo) - gg]xm(nm»r‘, (2.19a)

0 - £ x+ L v -y

o= 6”2 (62 + 72)()/_ YO) 5 (219b)

+
402[n(Y0) - %]

where n(Y) = 6,(Y), while the amplitude 4 is again
given by (2.10a), but now

J =1+ XnlYo)(B? + v(4ad){ Aln(Yo)]} 3. (2.20)

Here we remind the reader that n(Y) is a specified
function of Y determined from the inner expansion
(see section 4).

We shall show in section 4 that |n(Y)| increases in
the equatorward direction (i.e., as | fo| decreases). Hence
when 8 > 0 (i.e., on an east coast) and the shelf wave
propagates equatorward, there is radiation of Rossby
waves until the shelf wave reaches Y = Y, with a
trapped shelf wave thereafter. The pattern of rays
forming the radiated Rossby waves is shown in Fig. 3a
for the case f'< 0 (i.e., Southern Hemisphere); for f> 0

A. DORR AND R.
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FIG. 3. A typical ray pattern for radiated Rossby waves, shown for
the case f< 0, and v = 0. (a) 8 > 0 (east coast); (b) B8 < O (west
coast). In both cases, the shelf wave is propagating in the positive
longshore direction and has a period of 15 days; the critical latitude
has been placed at Y = 0.

the pattern is found by taking the mirror image about
Y = Y,. The most significant feature of this pattern is
the presence of a caustic where J = 0, and consequently
the amplitude A is infinite [see (2.10a)]. The caustic
intersects X = 0 at Y = Y_. In the vicinity of the caustic,
the outer expansion based on (2.2) fails and must be
replaced by an Airy function representation of the wave
field (see, for instance, Ludwig, 1966). However, when
B < 0 (i.e., on a west coast) and the shelf wave prop-
agates poleward, there is a trapped wave until the shelf
wave reaches Y = Y., with radiation of Rossby waves
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thereafter. The pattern of rays is shown in Fig. 3b for
the case f'< 0 (for /> 0 the pattern is the mirror image
about Y = Y,). There is now no caustic.

The matching conditions (2.11a) and (2.12) become

WX, Vi e) = A(Y) + O('?),  (221a)
VX, Y; €) — ePipio(Y ), Y; €)
= eA0, Y) + O(¢¥%), (2.21b)
where
DoY) = pi(0, Y). (2.21¢)

Here py(0, Y) is found from (2.17a, b) with g, = ¢,(0,
Y) = n(Y). We note here that « [see (2.19b)] is O(¢'/?)
with respect to €, and so the right-hand side of (2.3a)
is O(e) with respect to the left-hand rule. It follows that
the error term in (2.1b) is relatively O(e), or O(e¥?) in
total, and thus affects only the error term in (2.21b).

c. CaseIll

In this case w and m are O(e) with respect to ¢, and
hence we replace w and m with ev and er, respectively
[see (1.6)]. It follows that g is also O(e), eg, say, and
hence (2.6a, b) become

p=—5-- + O(é). (2.22)

B | €q2y
|8l

Thus p ~ —@v~! when 8 > 0 (i.e., on an east coast),
and p is O(e) when 8 < 0 (i.e., on a west coast). In both
cases p is real, and hence only radiating Rossby waves
occur. Referring to Fig. 2, we see that with ¢ =~ 0, the
solutions are p ~ —Bv~! or p ~ 0; the former is a short
Rossby wave propagating to the east (west) for § > 0
(<0), and the latter we interpret as a long Rossby wave
propagating to the west (east) for 8 > 0 (<0). The so-
lution of (2.9a, b) is now

a=- %Y + 0,(Y — v87'X) + O(¢?), if 8>0,
(2.23a)
a=e(Y+v87'X)+ O(?), if <0, (2.23b)
where
r(Y) = 6:/Y), (2.23c)
while the solution of (2.10a, b) is
A =AY —v87'X), if >0, (2.24a)
A=A(Y +v67'X), if #<0, (2.24b)

Note that in the second case, the phase « and the am-
plitude A4 are constant along the contours ' = constant.
The matching conditions (2.11b) and (2.12) now be-
come
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Ux, Y; €) = A, Y) exp(— ’ﬁTx) +0(e), if B8>0,
(2.25a)

YUx, Y;e) = A0, Y) + O), if B<0. (2.25b)

In this case the O(¢) terms in (2.25a, b) will not be
needed, and hence we have not displayed them. Finally
we note that « [see 2.23a, b)] is either O(1) or O(e); in
the former case the right-hand side of (2.3a) is O(¢?)
relative to the left-hand side, while in the latter case it
is O(e). In both cases (2.23a, b) are consistent with the
neglect of the right-hand side of (2.3a).

3. Inner expansion: I—Trapped shelf waves

In this case w and m are O(1) with respect to . The
inner expansion holds in the region where x is O(1),
and the governing equation is (1.3). We seek a solution
which has the form of a modulated shelf wave and put

¥ = ¢(x, Y; €) explib(Y)/e). (3.1

Here we remind the reader that the longshore wave-
number m(Y) = 8AY) [see (2.7)]. Thus ¢ satisfies the
equation

2 2
(L) -2+ % may + mry + S 0re
1 Th, )
— [g (fo + evx) — %](tmqb + edy) — l—;% ¢x=0,
(3.2a)
where .
~ f(Y) = A + BY. (3.2b)

Here fi(Y) is simply the Coriolis parameter fevaluated
at x = 0. Also we must satisfy the boundary condition
(1.4), or

#(0, Y;¢ =0 (3.3)

and as x — oo, Y must satisfy the matching conditions
(2.11a). Thus

d(x, Y; € (3.4)

where ¢ satisfies (2.11b) and (2.12), which for this pres-
ent case (i) reduce to (2.15a, b).
We put

¢ = ¢0(-x, Y) + €¢1(x, Y) + . *s (3'5)

and substitute this expansion into (3.2a), (3.3) and (3.4)
with the result that

~¥(x,Y:ie) as x— oo

bos\ _ M mpo s
( h )}r A do — Y > o = (3.6a)
$o=0, at x=0, (3.6b)
¢o ~ Ao(Y) exp(—|m|x) as x— . (3.6¢)
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These equations define the shelf wave, and in particular,
for a given h(x), determine a set of dispersion relations

o W(m). (3.7

Some typical dispersion curves, obtained from the ex-
ponential depth profile of Buchwald and Adams (1968),
are shown in Fig. 4. Since w is a fixed constant, each
dispersion relation (3.7) determines  as a function of
Y. Considering only the long wave portion of the dis-
persion curve (i.e., |m| < |mg| where my, marks the
turning point on the dispersion curve) we see that
|m(Y)| increases in the equatorial direction (i.e., as | fol
decreases). For all shelf waves mfy < 0, and hence on
an east coast (8 > 0) the waves propagate equatorward,
while on a west coast (8 < 0) the shelf waves propagate
poleward. Note that if m = my, then the group velocity
in the Y-direction is zero, and wave reflection will oc-
cur. For instance, long shelf waves propagating equa-
torward on an east coast will reflect into short shelf
waves propagating poleward; the opposite process oc-
curs on a west coast. In the vicinity of m = m, the
ansatz (3.1) fails and must be replaced by an expression
involving an Airy function; some aspects of this re-
flection process have been discussed by Beer and
Grimshaw (1983) and will not be discussed further here.

At this stage the amplitude of the shelf wave, Ay(Y),
is undetermined and is found by considering the equa-
tion for ¢,. This is

2
(B2) — T -2 - g, (80

where

. hy
hg, = —1(2m¢0y + mydo + IJ'IQ doy + — 8 ¢0x)

+ X7 (& - 1)%, (3.8b)
w \ h

¢=0 at x=0. (3.8¢c)

The matchlng condition for ¢, is obtalned from (2.15b)
and is

<bl,)c + |ml¢| ~ [iley + (_lxmy —_ ﬁ + E‘Z_ ]
w

X exp(—|mlx) as x— oo. (3.8d)

To solve (3.8a) we use the method of variation of pa-
rameters. First we let xo be a solution of (3.6a) inde-
pendent of ¢y, defined so that

1

7 (Poxxo — Xoxpo) = 1. (3.9)
Here the left-hand side is the Wronskian of ¢, xo. In
particular, it follows from (3.9) that x, cannot satisfy
the boundary condition (3.6b) at x = 0 and is propor-
tional to exp(|m|x) as x — co. The solution of (3.8a),
which satisfies the boundary condition (3.8c¢), is then

A. DORR AND R. GRIMSHAW

s ) : s s 1 s "
2 4 6 8 10 12 14 16 18 20

Fi1G. 4. Typical dispersion curves for the exponential-depth profile
fsee (3.20) and (3.2a, b, ¢)]. The curves shown are for s = 2.0 and
the labels represent the mode number, N = 1, 2.

¢ = A(Y)go + ¢0J; &1XodX — XOJ; gidodx. (3.10)

Here 4,(Y) is an arbitrary function of Y and represents
an O(e) perturbation of Ay(Y); it does not enter into
the subsequent analysis and will be ignored henceforth.
In order to satisfy the matching condition (3.8d), the
coefficient of x, in (3.10) must be eliminated as x —
o0. Hence we obtain the compatibility condition

[ sitoax = 0. (3.11)
From (3.8b) this can be written in the form
_i 2wm¢0 ]
vl (5 g s
P " L )
rme; 7 (h 1)dx. (3.12)

This is the required equation for the amplitude 4((Y)
and is equivalent to the more general expression ob-
tained by Grimshaw (1977), which included longshore
variations in the coastline and depth profile. To con-
clude, we must now show that the matching condition
(3.84) is satisfied. From (3.10) and (3.11) it follows that

O1x + Imldy ~ (xox + Imlxo)

X f:o &idodx, as x— 0. (3.13)
But, from (3.8b) and (3.9) it can be shown that
(3.14a)

1
Aoxo ~ — 2m ‘eXp(Imlx) as x— oo,
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m
a ~ [ (2mA0Y + mydo — M Ao — 2|m|mYXAo)

ﬁ%Ao:Iexp(—lmlx) as x— oo. (3.14b)

When (3.14a, b) are substituted into (3.13) we have
confirmed that the result is (3.8d). .
We next return to (3.12) and note that

® (2wmpy> hy
—fo ( ? 2 +foﬁ¢02)dx=‘cgl, (3.15a)
where
I= —ﬁ’—m-f 23 do'dx, (3.15b)
or
2
I= f ( moe’ | dol )dx (3.15¢)

Here ¢, = dw/dm is the group velocity. The equality
between (3.15b) and (3.15c¢) is obtained from (3.6a) by
multiplication by ¢, and integrating; (3.15a) is then
obtained by differentiating with respect to m. From
(3.15¢c) we can show that |/] is the kinetic energy of the
shelf wave while it can readily be shown from (1.8¢)
that ¢,|7| is the kinetic energy flux, [;° Gdx. It is ap-
parent from (3.6¢) that ¢, is proportional to Ay(Y).
Without loss of generality we may put

do(x, Y) = Ao(Y)do(x, Y) (3.16)
where ¢, is real-valued. Hence I = AT where T is real-
valued and positive and is given by (3.15b or ¢) with
¢o in place of ¢o. Hence (3.12) becomes

o 1 2
a%,(chto) = iymAg? f "%(’—‘%‘— l)dx. (3.17)
0

We now let

Y

Ay = Aol exp[if m.(Y’)dY’] (3.18)
0

where m; can be regarded as an O(e¢) correction to the

longshore wavenumber m. Then (3.17) becomes

d .
E,(cglelzl) =0 (3.19a)

. =) ¢ 2 th )
2my(cI) = ym fo 7!9- (—h— —~ l)dx. (3.19b)

Here (3.19a) shows that the kinetic energy flux on the
Y-direction is constant, while (3.19b) then determines
m; . Note that (3.19a) can also be established from (1.8a,
b, ¢) by integration with respect to x.

For any given depth profile A(x), Eq. (3.19a) deter-
mines the variation of shelf wave amplitude [4,| with
fo. However, it should be pointed out here that |4 is
the amplitude of the mass transport streamfunction at
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the shelf break (i.e., as x — oo here), and other measures
of shelf wave amplitude may be more appropriate. For
instance, the wave elevation ¢ is given by [see (1.1b)]

(3.20)

from which it follows that an appropriate measure of
wave elevation is | foAOI For long waves (i.e., |[m| — 0),
W(m) — mc, where ¢ is a positive constant, and hence
|m| is proportional to | 5| . In the same limit / becomes
constant, and ¢, — —foco; it then follows from (3.19a)
that |4o| is proportional to |f|~/%. Thus on an east
coast where the waves propagate equatorward the am-
plitude increases; on a west coast the waves propagate
poleward and the amplitude decreases. But note that
| foAo| is proportional to | fo|'/? and hence the wave ele-
vation decreases equatorward.

To obtain more information it is necessary to specify
h(x). We use the exponential-depth profile of Buchwald
and Adams (1968). Thus

exp[s(x—1)] for O0sx<1,
h(x) ={ [sCe= 11 (3.21)
1 for x=1.
Then we find that
s1.nax exp [ls(x - 1)] for 0sx<1,
~ ] sing 2
o = .
exp[—|m|(x — 1) for x=1,
(3.22a)
where
2= _p Lo (320m)
W 4
a cota = —|m| — % . (3.22¢)

Equations (3.22b and c) form the dispersion relation
(3.7) which is plotted in Fig. 4; this determines m as a
function of | fo|. Then from (3.22a) we may calculate
I and hence determine |4,| as a function of | f|. The
results are shown in Fig. 5.

4. Inner expansion: II—Leaky shelf waves

In this case w and m are O(¢'/?) with respect to e and
hence we replace them with ¢!/?¢ and ¢'/?n, respectively
[see (1.6b)]. We again seek a solution in the form of a
modulated wave (3.1), but we note that 8(Y) is now
O(e!/?). Thus (3.1) and (3.5) are replaced by

¥ = ¢(x, Y; €) explif(Y)/e'], (4.1a)
6= ¢olx, )+ €2i(x, V) + - - - (4.1b)

Here n is given by (2.20¢). The governing equation is’
again (3.2a), together with the boundary condition (3.3)
and the matching condition (3.4), which now reduces
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FIG. 5. A plot of the wavenumber |m} and the shelf wave amplitude
|4o| against | fo| for case I. The curves are shown for the exponential-
depth profile (3.20), with s = 2.0, for the first two modes and a period
of 10 days. Note that mode two has a turning point at m = my.

to (2.22a, b). On substituting (4.1b) into (3.2a), (3.3)
and (3.4) it follows that

(%) - n_ﬁ) .y d)o (4.23)
$o=0, at x=0, (4.2b)
¢o ~ Ay(Y) as x— oo. (4.2¢)

Comparing these equations with (3.6a, b, c) we see that
they are simply the long-wave limit, |m| — 0, of the
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shelf wave equations, and in this limit the dispersion
relation reduces to
= —JoCon, 4.3)

where ¢ is a positive constant. Here |n| is proportional
to | fg|™'. This result was anticipated in section 2, (ii)
and leads to radiating Rossby waves in the ocean when
In| < |n.| [see (2.18) and the following discussion], and
evanescent waves otherwise. The pattern of rays form-
ing the radiated Rossby waves are shown in Fig. 3.
Because nfy/o is a constant, ¢ (3.16) is a function of
X only.

To determine the amplitude 4,(Y) we must again
consider the equation for ¢,. This is

D1x
( ;1 ) hz S 61 = &1, (4.42)
where
hgy = — (J% — ¢oy + — B ¢0x) , (4.4b)
¢1=0 at x=0. (4.4¢)

The matching condition for ¢, is obtained from (2.21b)
and is

dix ~ iDio(Y)go, as 4.5)

The solution of (4.4a) follows a similar course to that
discussed in section 3. Thus let xo be a solution of
(4.2a) independent of ¢, defined so that (3.9) again
holds. It follows that x, cannot satisfy the boundary
condition (4.4c) at x = 0 and xg is proportional to x
as x — oo. The solution of (4.4a), which satisfies the
boundary condition (4.4c), is then given by (3.10),
where now g, is given by (4.4b). To satisfy the matching
condition (4.5) it follows that

X ™ 00.

_XOxJ; gidodx ~ ipyoAy, as x— oo. (4.6)

But, from (3.9) it can be shown that

—AoXox ~ 1 as x— oo. (4.7)
Thus the compatibility condition (4.6) becomes
J; g1dodx = ip1o A 4.8)

Using (2.17a, b) and (4.4b) this becomes
d ©  hy
5[ 55 b0ax) = 200008 @9)

and is the required equation for the amplitude 4,. Here
Si(n) is defined by (2.17a, b).
In order to interpret (4.9) we first note that

0 2
I=f %—dx 1
0 h Co Jo

This is readily established from (4.2a, b, c) and is the

h2 $o’dx.  (4.10)
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long-wave limit of the relations (3.15b, c). Thus |7|
measures the kinetic energy of the shelf wave. We let

Bolx, Y) = Ao(V)olx), (4.112)
Y
Ay = |40l exp(iJ; nmy( Y’)dY’) , (4.11b)

which are the counterparts of (3.15) and (3.17) for the
long-wave limit. Here n, is an O(e"/?) correction to the
longshore wavenumber n. Then (4.9) becomes

[ﬁ)leP] 5= = ~[Refi(m]l4F,

 folAol? %’ — —{mfim)lAl.

(4.12a)

(4.12b)

Here the real and imaginary parts of f,(n) are obtained
from (2.17a, b) and I'is a real-valued, positive constant
and is given by (4.10) with ¢, in place of ¢¢. Equation
(4.12a) shows that the kinetic energy flux is constant
when the waves are evanescent in the ocean but decays
when there is radiation of Rossby waves into the ocean.
It can also be established from (1.8a, b, c) by integration
with respect to x. On an east coast the shelf waves
propagate equatorward and the kinetic energy flux de-
cays until the waves reach Y = Y, (where n = n), after
which the kinetic energy flux is constant. On a west
coast the shelf waves propagate poleward, and the ki-
netic energy flux is constant until ¥ = Y, with decay
thereafter. Equation (4.12a) can be integrated to give

Jol4ol*> = (constant)

R
P13t 407 " 2 n’

if [---]1>0, (4.133)

Joldol?> = constant, otherwise. (4.13b)

Here we recall that n is a function of Y by virtue of
(3.2b) and (4.3). In Fig. 6 we show a graph of (4.13a)
for the special case when v = 0 and A(x) is given by
the exponential-depth profile of Buchwald and Adams
(1968) [see (3.21)]. Here ¢y is given by the long-wave
limit of (3.21a), and we find that

i 1
51.nax exp {-s(x— l)} , for O0<x<1,
~ sing 2
¢ =
1, for x=1,
(4.143)
where 4
Co = s(a2 + i s2) , (4.14b)
a cotd = — % S. (4.14¢)
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FIG. 6. A plot of the kinetic energy flux | 40| (4.13a, b) against
{6l for case II. The curves are shown for the exponential-depth profile
(3.20), with s = 2.0, v = 0, for the first mode and a period of 15
days.

The critical value Y, is found by substituting (4.3) into
(2.18). With vy = 0 this gives

|fod = 20%IBcol™,  for = fi + BY..  (4.15)

The critical latitude thus decreases with the square of
the shelf wave frequency and inversely with the shelf
width, L; the latter result follows here since 3 is a non-
dimensional quantity which scales with the shelf width.
For instance with L = 100 km, s = 3 and a dimensional
value of 8 =2 X 107! m~! 5™}, we find that the critical
inertial period is 0.59 days (or a critical latitude of 58°)
for a mode-one shelf wave of period 10 days, and a
critical inertial period of 1.33 days (or a critical latitude
of 22.5°) for a mode-one shelf wave of period 15 days.
For the same parameters a mode-two shelf wave has
critical inertial periods of 0.15 days and 0.34 days, re-
spectively; since these are less than the minimum al-
lowable inertial period of 0.5 days, there is no radiation.
With these parameters, the minimum period for ra-
diation from a mode-two shelf wave is 18.2 days, while
for a mode one shelf wave the minimum period is 9.2
days. Returning to Fig. 6, it can be shown_that the
exponent in (4.13a) is a function of fo/fo., ol and the
ratio /B and, in particular, is independent of the wave
period ¢. The value ¢,/ is a function of the slope s
alone, and with s = 3 it can be seen from Fig. 6 that
loss of energy by radiation can be significant. Also, co/
decreases as s decreases and consequently the loss of
energy by radiation increases.

5. Inner expansion: IlI—Modified topographic Rossby
waves

In this case  and m are O(e) with respect to € and
hence we replace them with ev and er, respectively [see
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(1.6¢)]. We again seek a solution in the form of mod-
ulated wave (3.1), but we note that now 8(Y) is O(e).
Hence (3.1) is replaced by

¥ = é(x, Y; ¢) exp[ifx(Y)], (5.1

where r is given by (2.23c). The governing equation is
again (3.2a), together with the boundary condition (3.3)
and the matching condition (3.4) which now reduces
to (2.25a, b). We now let ¢ have the expansion (3.5)
and substitute the result into (3.2a), (3.3) and (3.4).
Without any loss of generality we also let ¢, be given
by (3.16) and assume that both r(Y) and Ay(Y) are
real-valued. Then we find that

(~b x f A . ﬁ
(To)x - ;9 (r OY) y bo + ¢0x 0, (5.2a)
=0, at x=0, (5.2b)
exXp (- ﬁx), lf ﬂ > 0
do ~ ’ as x — 0. (5.2¢)

Since ¢, is a function of x only, the dispersion relation
is
.Aoy)
—focoll r —i——],
o °( Ao
where ¢, is a complex-valued constant. Thus (5.2a) be-
comes
~ i
(fh"—) 4250+ 5 B =0,
X

Comparing (5.4) with (4.2a) we see that (5.4) can be
regarded as the long-wave equation (4.2a) modified by
the inclusion of the term involving 3, which has the
effect of causing the “speed” ¢, to be a complex-valued
constant. Once ¢, has been determined, r and A, are
found from (5.4). We put

(5.3)

5.4

Y
Ao = (constant) exp[— J; o( Y’)dY’] , (5.5a)

R=r+ip. (5.5b)
Then (5.3) reduces to
v = —/oCoR, (5.6)
which shows that R is proportional to f,~!. Also we
note from (5.1) and (5.5a, b) that
¥ = do(x) exp[i fo ! R( Y’)dY’] : (5.7)

To determine ¢, we must specify A(x) and then solve
(5.4) with the boundary conditions (5.2b, c). First,
however, we derive some general results. If we multiply
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(5.4) by ¢%, and then subtract the complex conjugate
of the result, we can show that

i (‘7’3‘50}( ¢0¢3=x) 2]
[(B800x 008, L

ox
1 1 iB:l he s 1
+|———=+—|5 =0. (5.8
[CO Cag v h2 |¢0| ( )
Integration, and use of the boundary conditions (5.2b,
¢) then gives

[+ 2m(3)] [ 3 tkax =18 69

This result can also be obtained directly from (1.8a, b,
¢) by integration with respect to x and hence is an
expression of the conservation of kinetic energy. Fur-
ther, it can be shown that the kinetic energy flux in the
Y-direction is given by '

hy -

;1325 |pol>dx.

f Gdx = —foAg” (5.10)
0 0

Thus these waves, like shelf waves, propagate equator-
ward (poleward) on an east (west) coast. From (5.9) it
follows that

8+ 2v Im(i) > 0. (5.11)
Co.

Using (5.5a, b) and (5.6) it can now be shown that
(5.11) is precisely the condition needed to ensure that
the kinetic energy flux decays in the direction of prop-
agation. Indeed it can be shown from (5.5a, b), (5.6)
and (5.10) that the kinetic energy flux is proportional

to | fol2, where ) |
y
b=1+— Im( )
B Co

From (5.10) we note that

© hx . -1
b = sgnB = ldolPdx )
o h

using this form for the kinetic energy flux it is readily
shown that in the limit 8/2v — 0 the results of this
section agree with those of case II (§4) in the limit
a/B — O [see, for instance, (4.12a)].
Next we put
~ iBx
o = xo exp(~ ) 5.12)

and substitute this expression into (5.2b, c¢) and (5.4).
We find that

Xor) o (L ié)ﬁf _B
( h )x+ (c0+ v h2 Xo Vh Xox 09

at x=0,

(5.13a)

X0 =0, (5.13b)
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1, if >0

as x — o0. (5.13¢)

Xo ™~ iBx
exp( ), if <0
14

It follows that if [¢o(x; B); 1/co(B)] is a solution pair

then so is
1 B
[XO( X3 ﬁ)a ( 6) y] .
Hence we deduce that
RS 1 - B
=— =, 5.14
B =B v G194

Thus, it is sufficient to calculate ¢, for 8 > 0.
The first specific case we consider is that for the step-
depth profile, where

hy for x<1

h(x) = { (5.15)

1 for x>1.

At the discontinuity x = 1, ¢, must satisfy the discon-
tinuity relations

. 1(- 1-\71"
[#0]Z =0, [Z (¢ox - C_o ¢o):|~ =0.

We find that

(5.16)

xp(—— “’%C l|ﬁl) for x <1, (5.17)

and is given by (5.2c) for x > 1, while

6 tﬁ—-—q(l ho) + holﬁl.

—(l—ho) %

(5.18)

Note that Re(1/cp) is zero for B/v = xm, 37, « « «;
this corresponds to a zero value for the wavenumber
r, and the solution represents a stationary oscillation.
Also Re(1/¢y) is infinite for 8/v = 27, +4x, - - -; this
corresponds to an infinite value for the wavenumber
r, and the solution represents a resonant oscillation on
the shelf [see (5.17)].

The second case we consider is the exponential-depth
profile (3.20), for which we find that

~ sinax

b0 = — exp{l 8(x — 1)}, for x<1, (5.19a)
sing 2
where )
6=s—n—3, (5.19b)
14
2 2 ;
PERE S S . (5.19)
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and is given by (5.2¢) for x > 1. Application of (5.16)

then gives
acota = — ! s — M
2 2

The “speed” ¢ is found by solving (5.20) for a, and
then evaluating ¢y from (5.19¢). The results are dis-
played in Fig. 7, which shows 1/c, as a function of
B/2v for various values of s and for the first two
modes. As in the first case there are values of 8/v where
Re(1/cy) is zero, corresponding to a zero value of r and
a stationary oscillation. However, infinite values of
Re(1/cy) cannot now occur. It is also interesting to note

(5.20)

Re Q—o)

1
Im(—)
c
(]

F1G. 7. A plot of 1/¢ against 8/2v for case III, N = 1, 2. The curves
are shown for the exponential-depth profile (3.20), for s = 1.0, 2.0
and 3.0. (a) Re(1/cp); (b) Im(1/cp).
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that for sufficiently large values of 8/v, Re(1/¢) is neg-
ative, implying phase propagation in the opposite sense
to energy propagation [which is equatorward (pole-
ward) on an east (west) coast; see (5.10)]. In Fig. 8 we
show a plot of the kinetic energy flux (5.10) as a func-
tion of Y.

To conclude this section we note the consequences
of replacing the radiation condition (5.2¢) with

1, if >0

~

do ~ as x — o0. (5.21)

exp —(?), if <0

This corresponds to incoming waves from infinity, and
the solution of (5.2a, b) with (5.21) describes an oceanic
Rossby wave which is incident on the continental shelf
and is effectively absorbed there since there is no re-
flection. The kinetic energy flux generated on the shelf
now grows in the direction of propagation. If [¢o(x; 6);
1/co(B)] is a solution of (5.2a, b) and (5.2¢) then it can
be shown that [¢§(x, —0); 1/c¥(—B)] is a solution of
(5.2a, b) and (5.21). Hence the solution for these am-
plifying waves can be found from the solution for the
leaky waves by replacing ¢, with ¢ and 8 with —8.
More general solutions to (5.2a, b) can be con-
structed for which the radiation condition (5.2c) is re-
placed by a condition which describes a combination
of incident and reflected oceanic Rossby waves. For
this more general case the “speed” ¢, can be specified
a priori and, in particular, can be chosen to be real-
valued so that the longshore wavenumber R (5.6) is

.8
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
4110 sec”

FIG. 8. A plot of the kinetic energy flux (5.10) against | fo| for case
III. The curves are shown for the exponential-depth profile (3.20),
with s = 2.0, for 8/v = 1.0, 2.0 and 3.0.
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also real-valued and the solution (5.7) does not decay
or grow in the longshore direction. The result of such
a calculation would determine the reflection coefficient
as a function of R and the parameters defining the
depth profile. This is the procedure followed by Holyer
and Mysak (1985) in discussing baroclinic Rossby
waves incident on a trench. We shall not pursue this
line of inquiry any further, but we note that the case
when the incident (or reflected) wave amplitude is zero
produces the solutions described in this section.

6. Conclusions

In this paper we have considered the effect of the
variation of the Coriolis parameter with latitude on
barotropic shelf waves within the context of a 8-plane
model. Three cases have been identified which depend
on the relationship between the shelf wave frequency
and the range of frequencies permitted by the deep-
ocean Rossby wave dispersion relation. The connection
is provided by the requirement that longshore shelf
wave wavenumber should match the corresponding
wavenumber component of the deep-ocean Rossby
waves. In the first case (I) the shelf wave frequency is
too large to permit the generation of deep-ocean Rossby
waves, the shelf waves are trapped at the coast, and the
variation of shelf wave amplitude is governed by the
conservation of energy flux in the longshore direction.
The main result is (3.18a), which is graphed in Fig. 5
for the exponential-depth profile. For long waves, con-
servation of energy flux implies that the mass transport
streamfunction varies as | 5| '/ and the wave elevation
varies as | fo|'/? where f; is the Coriolis parameter at the
coast. In the second case (II) the shelf wave frequency
is small enough to permit some generation of deep-
ocean Rossby waves. The shelf waves are trapped at
low latitudes but radiate Rossby waves into the deep
ocean at high latitudes. The critical latitude which sep-
arates these two regimes is given by (2.18) where the
critical wavenumber is found from (4.3). In dimen-
sional variables the critical latitude is thus given by

= = v senfo + [B7 + 712

| focol
where w is the wave frequency, ¢ is the long-wave phase
speed, and 8 and v are derivatives of the Coriolis pa-
rameter in the longshore and offshore directions, re-
spectively. The variation of shelf wave amplitude in
high latitudes is governed by the requirement that the
longshore shelf wave energy flux decay at the rate de-
termined by the radiated Rossby wave energy flux; at
low latitudes the longshore energy flux is conserved.
The main result is (4.13a, b), which for the exponential-
depth profile is graphed in Fig. 6. In the third case (III)
the shelf wave frequency is sufficiently low to generate
deep-ocean Rossby waves at all latitudes. The main
result is described by (5.6) and (5.7) where the complex
constant ¢ is determined by solving (5.4). For the ex-

6.1)

2w?
0Co
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ponential-depth profile, ¢, is graphed in Fig. 7. Al-
though all our calculations have been for a S-plane
model we would expect to obtain qualitatively similar
results for a more sophisticated model that allows for
the earth’s spherical geometry in full. Indeed, insofar
as the Rossby waves on a 3-plane are an accurate rep-
resentation in midlatitudes of Rossby waves on a
spherical earth, we can hope that our results have some
quantitative validity as well.

When Rossby wave radiation occurs the shelf waves
are damped. Although the damping rates incurred are
not dramatic they are large enough to conclude that
they may be significant for low-frequency shelf waves,
particularly at high latitudes. This is consistent with
the analysis by Enfield and Allen (1980) of sea-level
anomalies along the Pacific Coast of America and with
the numerical results of Suginohara (1981) and Sugi-
nohara and Kitamura (1984). How the damping rates
due to Rossby wave radiation calculated here would
compare with the damping rates due to local frictional
effects is not known. For high-frequency shelf waves
(i.e., periods in the range 2-10 days) Allen and Smith
(1981) have estimated a frictional decay time of about
12 days for shelf waves off the Peru coast and about
7 days for shelf waves off the Oregon coast. For low-
frequency shelf waves (i.e., periods in excess of 10 days)
it seems likely that the frictional decay time will be
larger, but comparable with the decay time due to
Rossby wave radiation. Of the analytical approxima-
tions made in the model discussed in this paper, it is
clear that the nondivergent approximation is the least
serious; the inclusion of divergent terms would not sig-
nificantly alter any of the conclusions in this paper.
However, the restriction to barotropic waves is a severe
limitation. Nevertheless, it seems clear that although
the inclusion of stratification would make the analysis
more complicated, the same general conclusions would
apply. In particular, sufficiently low-frequency baro-
clinic shelf waves will lose energy due to radiating
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Rossby waves and the rate of energy loss will be de-
termined by the radiated Rossby wave energy flux.
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