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ABSTRACT

The usual two-layer model for steady wind-driven upwelling along a uniform coastline is extended to incorporate
the effects of an upper-layer jet trapped against the coast. The characteristic width of the jet is the internal
deformation radius, so the jet Rossby number in the governing equations for the upper layer is order of unity,
and the nonlinear term involving cross-stream shear must be retained. It is shown, however, that the equations
can be reduced to a manageable form when the upper-layer thickness and equilibrium displacement of the
interface are both much less than the total depth. Explicit solutions are obtained for equilibrium jet profiles for
which the interface is either exponential, which corresponds to a frictionless jet with uniform potential vorticity,
or parabolic. It is also shown that solutions should be obtainable when the jet profile can be expressed as an
arbitrary polynomial in the offshore coordinate. The principal differences between our results and the usual
ones for the no-jet case are that upwelling is reduced at the coast and amplified offshore. The differences are
due to a reduction in the divergence of the on-offshore velocities within an internal Rossby radius of the coast
and to increased divergence farther offshore. These changes in divergence are the result of the equilibrium
displacement of the interface through the continuity equation and of advection of mean flow momentum by

wind-induced offshore motion through the cross-stream shear.

1. Introduction

The problem of coastal upwelling in the presence of
a jet with finite Rossby number does not appear to
have been previously addressed in the literature. Niiler
(1969) investigated the effect of a free barotropic jet
on the depth-dependent Ekman layer solution and
concluded that upwelling should occur along the jet
axis for a wind stress directed parallel to the mean flow.
This effect was ascribed to a reduction in the effective
Coriolis parameter at the jet axis owing to the large
cross-stream shear. The shear enters the problem
through the nonlinear advective term in the momen-
tum equations. Advection of mean flow momentum
by wind-induced velocities is also investigated here.
There are three principal points of departure from
Niiler’s work. First, instead of a free barotropic jet a
two-layer system is considered, with the jet trapped
against an infinite coastline. Second, the time-depen-
dent local acceleration in the longshore direction is
included. Third, the equations of motion are vertically
integrated in each layer rather than retaining the depth
dependence through an eddy-viscosity parameteriza-
tion of the vertical turbulent momentum fluxes. The
present investigation therefore represents an extension
of the usual two-layer coastal upwelling model to in-
clude the effects of cross-stream advection by wind-
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induced perturbation velocities on the momentum
balance, and the effects of the equilibrium displacement
of the interface on the vertically integrated mass and
momentum conservation equations.

The motivation for the study arose from our interest
in the possible effects of the Labrador Current on wind-
driven upwelling at the edge of the Labrador Shelf and
the Grand Bank. This current flows southward with
shallow water to its right, and the underlying isopycnals
therefore plunge downward toward the shelf. Typical
temperature, salinity and o, sections are shown in Fig.
1. These sections extend along a line at 45°10'N from
the Grand Bank across the shelf break over the slope.
The Labrador Current is clearly evident as the core of
cold water spanning the shelf break. To seaward of the
shelf break and below the low-temperature core, iso-
pleths of all three scalar quantities plunge downward
in the direction of the shelf. The flow is directed from
north to south, with shallow water to the right. Up-
welling-favorable winds, however, are directed in the
sense opposite to that of the current, since the shallow
water must be to the left of the wind. A typical value
for the Rossby number can be estimated using a cross-
stream length scale Lo ~ 25 km (Fig. 1) and typical
mean speeds #; ~ 50 cm s~ (Petrie and Anderson,
1983), giving uy/fLo ~ 0.2. While this value is not large,
neither is it small, and the possible importance of non-
linear effects cannot be ignored a priori. This then is
the physical system in which we are ultimately inter-
ested. As a first step, however, we have chosen to ex-
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FIG. 2. Sketch of an upper-layer, coastally trapped jet. The x-co-
ordinate is positive into the page; the y-coordinate positive to the
left.

amine the simpler problem of upwelling in the presence
of a jet trapped at the coast rather than at the shelf
break.

2. Formulating the problem for the baroclinic response

Consider the two-layer representation of a coastally
trapped upper-layer jet in Fig. 2. The alongshore co-
ordinate is x, the offshore coordinate y. Prior to the
onset of the wind stress, the undisturbed jet flows in
the +x direction with speed () and vy = 0. The lower
layer is assumed to be at rest initially. All parameters
are taken to be independent of alongshore distance.
The wind stress at the sea surface, —7, is initiated at
time ¢ = 0, spatially uniform, and directed alongshore
in the sense opposite to that of the jet. Interfacial and
bottom stresses are ignored.

Making the hydrostatic approximation, the hori-
zontal momentum equations for the upper layer are

1
w+ou,—fo=-1
p

(1)

v+ fu = —gn,. )

The subscripts denote partial differentiation. The vu,
term is the only nonlinear term retained, anticipating
that cross-stream advection of downstream momentum
will be important. In the lower layer,

up =o' =0
v+ fu' = —gn, — g'n)

(€))
@
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where primes have been used to denote lower-layer
quantities, and g’ = g(p’' — p)/p. The vertically inte-
grated continuity equations in each layer are

m—7)+[h+9—9)W],=0 %)
7+ (A +7)0],=0 (6)

where the overbar denotes the vertical average. These
equations differ from the usual two-layer upwelling
equations for an infinite coastline because of the non-
linear term in (1).

We define zero-order quantities (o, 1o, 16) Which
characterize the initial state, and perturbation quan-
tities (&, 0, @', ¥, %, 1), and substitute ¥ = uy, + 4,
n =10+ 7, v = ¥ etc. in (1) to (6). In the unperturbed
state these equations reduce to

fuo = _gWOy}
8oy = —& "no
Retaining only those terms that are first order in per-

turbation quantities, and vertically integrating over
each layer gives, for the upper layer,

,
&, + Doy — 5 = —— (Ta)
Doy =IO = L )

0, + fii = —gn, (7b)

[(h — 70)D], = W (70)

in which 7 = —7, is the wind stress, and for the lower
layer,

u,—f'=20 (8a)

0+ fA = —g'ny,— ghy (8b)

[(A' + no)0']y, = —7,. (8c)

The rigid-lid approximation has been used, since we
are interested in the baroclinic response, and it has
been assumed that 79, % and %’ < 75 in the continuity
equations. It is understood that 7 and ¢ represent the
vertically averaged perturbation velocity components.
Henceforth, the tildes will be dropped for convenience.

The horizontal momentum equations can be re-
duced to

vy + 20— g'l(h + o'y,

_fr
p(h — 10)
in which use has been made of (8¢). A steady solution
is sought, so v, and v, are dropped. This requirement

= Uy "ﬁ)uOy +fzu + &)

HG. 1. Temperature, salinity and density (s,) sections across the Labrador Current.
Note the change in vertical scale at 75 m depth. These data were acquired on 24
June 1983 along a transect extending from west to east across the shelf break at
45°10'N. The reader is referred to Hill et al. (1975) and Smith et al. (1937) for
more extensive but lower-resolution sections across the Labrador Current at the

edge of the Grand Bank.
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supposes that a time of at least O(f ") has passed since
the onset of the wind stress (Gill, 1982, p. 396). Since
v and v’ vanish at the coast, (7c) and (8c) require that

(h — no)v = —(h" + moyv’ (10)
and substitution in (9) gives
'y ' ’ h— 776
[f? ~ g'moplv' — & (—H—)
/ ! i U / ﬁ
X [2770yvy + (A" + no)vyy] = pTI (1)

with H = h + h'" and fi,, = g'n},.

We now estimate the relative importance of the dif-
ferent terms on the left-hand side of (11). Let Ly rep-
resent the offshore length scale of the unperturbed jet.
We are interested in those cases for which the jet Rossby
number uy/fLo ~ O(1). Letting 7, be the magnitude
of the interfacial displacement at y = 0, we find that

(12)

Now, let L be the offshore length scale of the baroclinic
upwelling response. In the absence of the jet, this is
just the internal Rossby radius

a’>=g —. (13)

H

We assume that L ~ a’ even in the presence of a jet.
In this case we find that

2n0,0Y — 210 , _£ ~ z(h_%)vz <1
(A" + moyvy, (A" + o) Lo Hh'

provided that

|70l < A’ (14a)

h<H. (14b)
Under these conditions the 7,v), term in (11) may be
ignored. The ratio of the remaining terms is
(fz - g’nz)yy)le - 2hh'
&'(h — no)(h' + no)vy, (A — mo)(h' + o)

which, given (14a), is O(1) for 5o < 0. Under these
conditions, (11) takes the form

7 ! g'h, U 7 fT
[f? — goylv' — o (h — no)v,, = ol

(15)

Note that the presence of the jet has resulted in two
terms that do not occur in the equation equivalent to
(15)in the usual two-layer model. Oneis the g'ng,, term,
which results from cross-stream shear through the
nonlinear term in (7a); the other is the —n term, which
arises from the equilibrium deformation of the interface
through the continuity equation.
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It is convenient to define the nondimensional vari-
ables

Y =yla (16)
Yo = no/h. a17)

Substitution in (15) gives
(1 —%)v’w—(l _717%”)”'*_1—11 (18)

If Yy is set to zero, this reduces to the usual result in
the absence of a jet.

Equation (18), and its alternate (15), form the basis
for the rest of the discussion. Reiterating, these equa-
tions govern the baroclinic upwelling response for a jet
with Rossby number O(1) and which satisfies the con-
ditions (14a) and (14b). From (18) it is clear that the
solutions depend on the choice of jet profile, . In the
following we show that solutions are possible for at
least two types of profile and then give explicit results
for specific instances of each.

We first note that a special class of solutions to (18)

exists if
N h, 172
vo=tooxe] (%) 7] (19
In this case (18) becomes
r
v, — V' = — 20
m ofH[1 — Yo(y)] (20)

which is readily solved.
Another class of solutions exists if ¥, can be repre-
sented by a polynomial in v. If we let

Yo=1vo+ bi(1 —doyy + b1 =gy’ + -+ - (21)

and use the Frobenius method (e.g., Hildebrand 1962,
p. 129) with

©
v = z ak'Yk+s,
k=0

(22)

then it can be shown that there are in general two lin-
early independent solutions of the form (22), one with
s = 0, the other with s = 1. :

3. Coastally trapped jet with uniform potential vorticity

We choose for the purpose of illustration a jet for
which the potential vorticity is invariant with offshore
distance. The reason for this choice will become ap-
parent, but it is of sufficient oceanographic interest in
any case. For example, Stommel (1965, pp. 108-109)
showed that the potential vorticity is nearly uniform
across the Gulf Stream, and Griffiths et al. (1982) have
assumed uniform potential vorticity in an investigation
of instabilities in baroclinic jets.

Equating the potential vorticities in each layer to
their values, f/h and f/h’, outside the jet region, the
following relations are found:
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gy = '7'[(770 — ) 23)

—Uoy = w 1o (24)
where —ug, and —ug, are the relative vorticities in the
upper and lower layers, respectively, and fis assumed
constant. Defining the difference velocity 6§ =
— up, and making the approximation 7y < 75, we find
from (23) and (24) that

JH

5y = h—h,‘r)b

A second expression, 6, = g'ng,,, can be obtained from
the geostrophic relations for the upper and lower layers,
and combining the two gives

o = a"*noyy.
The profile of a jet with uniform potential vorticity,

bounded by a coastline at y = 0 to the right of the mean
flow direction, is therefore

o = —fipe @5)

where 75 > 0. This exponential profile compares fa-
vorably with the isopycnals at the base of the Labrador
Current in Fig. 1 (g, = 27.2 for example).

4. Solutions for the baroclinic response
a. Exponential profile
Comparing (19) and (25) it is seen that the two are

nearly identical for the case of interest, » < H (Eq.
14b). We therefore rewrite (20) in the form

Py = T
U T VT UHO + age ) (26)
where a, = = = 7o/h. The solution of (26) is
=T f eXln(l + ae dt. (27
ofHay Jo * )

Using (8¢c) and making no further approximations, we
have

f_TTLH _h'+"6)e_’ —
pfa’H[( X a*ln(1+a,.e )

W+ 2n\ e (7

- (—’170) £ f e¥1In(1 + a,..e“)d{] . (28a)
h ax Jo

For cases satisfying (14a), this becomes

—71t h' [6’7

— In(1 + Y
P n( axe™")

U

= pfa' H

_eT (7 2 -
e J; e¥In(1 + aye ‘“)df] . (28b)
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The integral in these equations is given by

Y
J; e¥ In(1 + aye N)dt

= % [ez" In(1 + aye™) — In(1 + ay)

1+ ay

+ a3 ln| ———
* (1+a*e“"

) - a%y + aue” — 1)] . (29)
The solution for v can be obtained using (10).

These results are to be compared with the usual ones
for upwelling in the absence of a jet (e.g., Csanady 1982,
p. 89):

v = p—’ﬂ}(l — e (30a)
s TTth
- (30b)

which can be obtained from (26) with a, = 0, or from
(27) and (28) in the limit a4, — 0.

The results for v’ normalized by 7¢/pfH and ' nor-
malized by 7oth'/pfa’H are shown in Fig. 3 for ay
= 0.9. It is seen that the flow toward the coast is ev-
erywhere reduced in the presence of the jet, and that
the upwelling rate is 27% lower at the coast, but en-
hanced at distances = a’ from shore. Since the ap-
proximate form of (28) is identical to the result which
would be obtained if np were set to zero in the conti-
nuity equation (8c), it is clear that the enhanced up-
welling beyond y = a4’ in Fig. 3b is entirely due to the
greater divergence of the on—offshore velocities in this
region (Fig. 3a).

This point is underscored by an analysis of the be-
havior of the solutions as a function of a,, which we
present now. From (28a) the interfacial displacement
at the coast is given by

111
1‘1’[ Toth ] = Lint + ay). 31)
Ax

pfa’'H

In the limit a4 — 0, this tends to unity, as required
[see Eq. (30b)]. For a, very large, upwelling at the coast
is effectively reduced to zero in the presence of the jet.
The sensitivity of ' to ay is largest, however, for small
values of ay, dp'/da, being a maximum at a, = 0.
The normalized values of v’, v and 7’ are plotted in
Fig. 4 for values of a, ranging from 0 to 100: v’ and %'
are normalized as in Fig. 3, v by 1o4'/(pfHh). Figure
4c illustrates the suppression of upwelling rates at the
coast. This is clearly associated with large reductions
in the divergence of v’ (Fig. 4a). Perhaps the most re-
markable feature of these solutions, however, is the
prediction that a second upwelling zone develops at
distances y > a' for ay = 5. Maximum upwelling rates
in this zone are relatively independent of a,, but exceed
those at the coast for a, large enough. The maximum
upwelling rate occurs where the divergence of v’ is a
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FIG. 3. Exponential case. (a) Lower-layer velocities and (b) inter-
facial displacements, normalized as indicated in the text. The solid
line is the usual (no-jet) solution; the dashed line the solution in the
presence of a jet.

maximum (Fig. 4a). This behaviour is discussed further
in a later section.

b. Parabolic profile

We now consider the class of solutions in which the
jet profile can be represented by a polynomial in y. We
choose a parabolic form, since this is the lowest-order
polynomial for which the cross-stream shear is nonzero.
Let .

mh =~ ,% (Lo — » (32)
where L, is a cross-stream length scale which will be
adjusted to fit the exponential profile, in order to fa-
cilitate comparison with the previous results. Substi-
tuting (32) in (15) gives

i 2657, _ =t
'2+"°L»~2]'—[1 ]'= .
1+ o= P o= [ 1+ R -

(33)
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FI1G. 5. Comparison of the exponential (solid line) and the parabolic
(dashed line) forms of the interface (normalized as n5/75).

The solution is obtained by defining exterior (y
= L) and interior (y < L) regions and requiring that
v' and the interface be continuous across the boundary
between these regions. In the exterior region, np = 0
and

vl = A€V 4 ——Tfﬁ (34)

P

where A4 is a constant to be determined. Figure 5 shows
that (32) provides a reasonable fit to the exponential
shape when L, = 3a’. Defining ay as before and b,
= (9 + 2ay), and making the following change of vari-
able,

ssl/a_*(l —Lio), (35)
(33) takes the form
2 _ b* ' _9T
(1 + &y *v S (36)

with Lo = 3a4’.

The solution to this equation can be expressed, for
certain values of gy, in terms of a sum of an infinite
series and a Jacobi polynomial of order m. The former
corresponds to s = 1 in (22), the latter to s = 0. The
details are in the Appendix. The value of a, depends
upon the choice of m, and several possibilities are given
in Table 1. We select a value applicable to a jet com-
parable to the Labrador Current. From (32) and the

TABLE 1. Parameters determining .

m Ol
1 [o)
2 0.9
3 0.32
=4 <0.08
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TABLE 2. The coefficients 4, for » odd. The recursion relation is
n(n— 1A, + [(n — 2)(n — 3)—12}4,, = 0.

n A,

1 1

3 2

S 3/5

7 —4/35
9 1/21
11 =2/77
13 7/429
15 —8/715

geostrophic relations for the upper layer, the maximum
speed of the unperturbed jet at y = 0 is iy = 2 Vg'hax.
Choosing 2 = 100 m and Ap = 0.5 kg m™ (Fig. 1)
gives a reasonable value for i, (42 cm s™') with a
= 0.9. From Table 1 we therefore select the m = 2
case, for which the solution for v’ is

L= B'(1 + 6£% + 5¢¢4
v J,HG{ (1 + 6¢ £9
+C Y Apnit* + 5} (37a)
k=0
T _ s
v, = TH(I + A'e™V4) (37b)
where 4 = -2.57036, B' = 0.232177 and ('

= —2.42807. The coefficients 4, are given in Table 2
up to n = 15, for n odd, together with the recursion
relation. The convergence of the infinite series is dis-
cussed in the Appendix.

The velocity in the upper layer is found by using
(10). Substitution of £ from (35), and taking the limit
h'[h> 1 > £? gives the interior solution

—n 1
U= T £<Vax. (382)
The exterior solution for v is
Vex = 1:— V. (38b)

Similarly from (8c) and (35) the displacement of the
interface in the interior region is

Tt V6_
{n = — / + 3 1
i 7 H 18 — @B'BE+ 5E)+ C kZoAzk+1£ 2,
(39a)
and the exterior solution is
Nex = }; ?IA, Ly > L. (39b)

The solutions for v, v and %', normalized as before,
are shown in Fig. 6. These are to be compared with
the results for the exponential profile with a, = 0.9 in
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FIG. 6. Parabolic case. (a) Lower-layer velocities; (b) upper-layer
velocities; and (c) interfacial displacements, normalized as indicated
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line the solution in the presence of a jet.

Fig. 3. The two solutions display essentially the same
features: reduced on-offshore flow everywhere in both
layers near the coast, reduced upwelling rates for y
< a’, and enhanced upwelling rates farther offshore.
The only major difference occurs at y = 34/, the
boundary between the interior and exterior regions. In
the parabolic case, however, a sharp maximum in up-
welling rate occurs at this boundary. This maximum
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represents a stepwise change in v’,, and arises from
the matching procedure at the boundary.

5. Barotropic response

It is necessary to revoke the rigid-lid approximation
and convenient to rewrite (7) and (8) in the form

U —fV= i + (“’% nz,ny) (40a)
fU = —g(h — nom, (40b)
Vy=—n +n (40c)
U,~—fV'=0 (41a)
JU = —g(h' + no)(n, + en})  (41b)

vy, = -, (4lc)

where U = (h — no)u, U’ = (h' + yp)u’, and so on, and
e = (o' — p)/p. We have dropped the V, and V7, terms
because solutions in which the on-offshore motion is
steady are sought.

We wish to find the governing equations for the
barotropic mode. It can be shown in the no-jet case
(e.g., Csanady 1982, pp. 83-91) that two uncoupled
linear combinations of (40) and (41) exist, one for each
of the barotropic and baroclinic modes. In the presence
of a jet, however, this approach meets with difficulty
because the multiplicative factors in the linear com-
bination must in general be functions of y. We therefore
adopt an alternate approach in which

(42)

Usually the proportionality factor « is taken to be con-
stant (e.g., Gill 1982, p. 120), but here o = a(y). The
governing equations for the baroclinic mode may be
recovered by taking a > 1. This is equivalent to the
rigid-lid approximation: (40) and (41) reduce to (7)
and (8).

In the barotropic mode, however, we expect a
~ O(1). Since ¢ < 1, the sum of (40) and (41) yields

7 = an.

U+ U),—fV+ V)= ;I: + (‘% n;,ny) (43a)
AU+ Uy = —gHy, (43b)
V+ V), = —~n,. (43c)

These are the usual equations for the barotropic mode,
except for the advective term on the right in.(43a).
Fortunately this term is small for the cases of interest
here. That is, the Rossby number for the barotropic
mode

! vV
Ro, = ;"—.2 ory (44)

is small, as shown below.
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We first consider the case of a weak jet: that is, one
for which the Rossby number, even in the baroclinic
mode, is small. The advective term in (43a) can then
be safely ignored, and we have the usual results

V+V)=l(eve-1) (45)
of
= T v
™=t Y (46)

where a= \/gTJ/ /fis the external Rossby radius. In order
to find V/(V + V’), however, an expression for « is
needed. Since in the absence of a jet « is just the frac-
tional height of the interface above bottom (see Csan-
ady 1982, p. 87), we choose

h' + nb)
! = . 47
n ( g ) 47)
Equation (41c) becomes
, '+
vy = ("2 48)
which, for [;| < h', simplifies to
hr )
V' ——(e7¥% - 1). (49)
H pof
Making use of (45), we find that
h 7
Va—=—(e7%~1), (50)
H of )
and the Rossby number (44) becomes
h g’nbyy)
R01~H( =) (51)

It is seen that Ro, is O(h/H) times the Rossby number
for the baroclinic mode and that even if the latter is
O(1), Ro; < 1 for h < H (14b). In particular, for a jet
profile given by (19),

|0l
Roy~ 7

which, given (14a), is small. We conclude that the ad-
vective term does not contribute significantly to the
momentum balance in the barotropic mode, and that
the usual results (45) and (46) apply even in the pres-
ence of a jet, provided the conditions (14a) and (14b)
are met.

6. Discussion and conclusions

Analytic solutions to the problem of steady upwelling
in the presence of a coastally trapped upper-layer jet
have been obtained for the cases in which the cross-
stream equilibrium profile of the interface is either ex-
ponential or parabolic. It is also shown that solutions
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should be obtainable when the jet profile can be ex-
pressed as a polynomial in the offshore coordinate. The
exponential case corresponds to a frictionless jet in
geostrophic balance with potential vorticity uniform
in the cross-stream direction. The parabolic profile is
adjusted to approximate the exponential. The solutions
apply when both the upper-layer thickness and the
equilibrium displacement of the interface are much
less than the lower-layer thickness.

The barotropic response is unaffected by the jet, es-
sentially because the requirement that the upper layer
be thin results in the nonlinear advective term being
unimportant. This occurs by virtue of the fact that the
on-offshore velocities are approximately equal in each
layer in this mode, and therefore the Rossby number
involving the on-offshore volume transports is small.

The baroclinic response, on the other hand, is con-
siderably modified. Upwelling rates are reduced at the
coast and enhanced at offshore distances greater than
the internal deformation radius. For a jet with a (baro-
clinic) Rossby number of unity, the degree to which
the response is modified depends on the speed of the
jet at the coast. For high-speed jets upwelling at the
coast is almost entirely suppressed, and a second up-
welling zone develops offshore beyond y = a'.

The physical mechanism behind the modified up-
welling response can be understood in terms of the
divergence of the on-offshore velocities in each layer.
In section 4 we showed that as in the no-jet case, it is
this divergence which drives the vertical displacements.
In the presence of a jet the divergence is reduced at the
coast, and with increasing jet speed at constant cross-
stream scale the position of the zone of maximum di-
vergence moves offshore. This occurs as a consequence
of three effects. First, in the vertically integrated equa-
tions of motion, the wind stress is applied to an upper
layer that is thickest at the coast [Eq. (7a)]. Second, the
presence of the interface sloping downward toward the
coast imposes a constraint on the on—offshore motion
through the continuity equation which results in in-
creased divergence of this motion at points immediately
offshore. Third, the nonlinear term in the alongshore
momentum equation (7a) can be considered to cause
a change (in this case an increase) in the effective Co-
riolis parameter, as suggested by Niiler (1969). Such a
reduction would result in decreased offshore Ekman
transport in the upper layer. The modified response is
the net result of all three effects, however, and we have
retained the unmodified Coriolis parameter in the def-
inition of the Rossby radius, which remains the natural
offshore length scale for the problem even in the pres-
ence of a jet. Examining (20), or its alternate (15), there
is no obvious way in which a modified parameter can
be defined which would reduce this to the usual no-jet
form. For an exponential-profile jet, however, it is clear
from (20) that the net effect can be thought of as either
a reduction in the effective wind stress or an increased
effective depth.
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Finally we note that of the jets considered here, the
slower-speed ones will in general be more readily re-
alized in the ocean. The parameter ay [see Eq. (26)] is,
for the exponential-profile jets with the form (19), just
the jet Rossby number at the coast. Jets corresponding
to values of this parameter much greater than unity
are considered here in order to illustrate the tendency
for the zone of maximum divergence to shift offshore.

In summary, we have extended the usual two-layer
upwelling problem to include a coastally trapped upper-
layer jet. By linearizing the governing equations
through a perturbation expansion of the displacement
and velocity fields, analytic solutions are obtained. The
principal differences between these results and the usual
ones for the no-jet case are that upwelling is reduced
at the coast and amplified offshore. The differences are
due to a reduction in the divergence of the on—-offshore
velocities within an internal Rossby radius of the coast
and to increased divergence farther offshore. These
changes in divergence are the result of the equilibrium
displacement of the interface through the continuity
equation and of advection of mean-flow momentum
by wind-induced offshore motion through the cross-
stream shear.

Acknowledgments. This work was funded by Grant
A8846 from the Natural Sciences and Engineering Re-
- search Council, Canada. We thank John Anderson,
Northwest Atlantic Fisheries Centre, for making the
data in Fig. 1 available to us.

APPENDIX

Series Solution for the Baroclinic Mode with a
Parabolic Profile

The homogeneous equation for the interior is, from
(36),

b
(1 + £l — a—* v'=0, 0<ft<Va. (Al
*
A further change of variable x = —£2 gives
1 X by
L=y 4+ {= =X + 22y =
x(1 — )0l + (2 2)”" 2a v =0,
—Ax S X S 0. (A2)

A standard solution to (A2) in terms of Jacobi poly-
nomials exists when

2 0 =m2m— 1) =
where m is a positive mteger. Therefore,
Mo 9
=—=——"0— A3
“Th TN (A3)

As discussed in the text, only the m = 2 case is con-
sidered. Returning now to (A2), the solution for m
= 2 is the second-order Jacobi polynomial
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—l
J2(2 - —x) =1+6x+5x% Ixl<l. (A4)

This does not represent the complete solution, however.
Using the values above, (A1) becomes

(1 + £Yv) — 120" = 0. (A5)

The substitution
[co]
= 2 At"*
k=0

using the method of Frobenius yields two independent
solutions:

for s = 0,
V) = Ap + AE% + At (Aba)
fors =1
vy = A+ A3k’ + AsE + AsE" + - - . (A6D)

The coefficients 4, are given in Table 2 up to »n
= 15, for n odd, together with the recursion.rela-
tion. The values: 4 = 1, A, = 6, A4 = 5, and 4,56
= 0 (for even n), are the same as the coefficients of
J(1/2, =1/2, =x).

Now, from (36), with a4 = 0.9, the particular solution
for the interior is

Vp=———. (A7)
The complete solution in the interior is therefore
vin = Bv| + Cvh + v, (A8)

where B and C are constants to be determined.

The boundary conditions are that v}, = 0 at the coast
and that v’ and #' (or equivalently v}, by 7c and 8c) be
continuous at y = L,. Therefore,

10.45008 + 3.0585C + 37 9 (A9)

6 ofH
at y = 0. Continuity of velocity at y = L, requires that

T

B=Ade3+-—, Al0
34

C=-—¢>3 (A11)
Vau

because v}, is continuous at y = Lg. These equations
are solved for A, B and C, yielding the final resulit,
Egs. (37).

The convergence of the infinite series in the interior

- solutions (37a) and (38a) was investigated. Because 0

<é<1 everywhere the most stringent test is at the
coast where ¢ = V0.9. Depending upon the accuracy
desired, the solutions converge quite rapidly at the coast
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largely because of the comparatively high values of the
leading terms in the series (Table 2). For example, let-
ting » represent the highest power of £ in the nth-order
partial sum, v, (37a normalized by 7/pfH) is within
0.4% of zero for the 9th-order partial sum. Because
consecutive terms in the C’ series alternate in sign for
n = 7 and are of nearly equal value, the rate of con-
vergence of the higher-order partial sums is rather slow.
Advantage can be taken of this, however. The arith-
metic average of consecutive pairs of partial sums ap-
proaches the limit quite rapidly: the average of the 9th-
and 11th-order partial sums is within 0.01% of zero,
whereas the 15th-order partial sum must be computed
to obtain equal accuracy. The same remarks apply to
the result for 5}, (40a): the 9th-order partial sum differs
by 1.8% from the true limit; the average of the 7th and
9th order partial sums by only —0.7%. To obtain equal
accuracy, the 15th-order partial sum must be com-
puted.
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