Null scrolls in the 3-dimensional Lorentzian space

Handan Balgetir, Mehmet Bektaş and Mahmut Ergüt

Abstract

In this study, a timelike ruled surface in the 3 - dimensional Lorentzian space \mathbb{R}_{1}^{3} which is called null scroll is generated by a null straight line which moves along a null curve with respect to the null frame. In a null scroll, the central point, the curve of striction, pseudo-orthogonal trajectory and some theorems related to these structures are obtained in the 3-dimensional Lorentzian space \mathbb{R}_{1}^{3}. Results about developable null scrolls are provided as well.

M.S.C. 2000: 53B30.

Key words: null curve, null scroll, Lorentzian space

§1. Introduction

\mathbb{R}_{1}^{3} is by definition the 3-dimensional vector space \mathbb{R}^{3} with the inner product of signature $(1,2)$ given by

$$
\langle x, y\rangle=-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

for any colomn vectors $x={ }^{t}\left(x_{1}, x_{2}, x_{3}\right), y={ }^{t}\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}$. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standart orthonormal basis of \mathbb{R}_{1}^{3} given by

$$
e_{1}={ }^{t}(1,0,0), e_{2}={ }^{t}(0,1,0), e_{3}={ }^{t}(0,0,1)
$$

A basis $F=\{X, Y, Z\}$ of \mathbb{R}_{1}^{3} is called a (proper) null frame if it satisfies the following conditions

$$
\begin{gathered}
\langle X, X\rangle=\langle Y, Y\rangle=0, \quad\langle X, Y\rangle=-1 \\
Z=X \wedge Y=\sum_{i=1}^{3} \varepsilon_{i} \operatorname{det}\left[X, Y, e_{i}\right] e_{i}
\end{gathered}
$$

where $\varepsilon_{1}=-1, \varepsilon_{2}=\varepsilon_{3}=1$. Hence we obtain that

$$
\langle X, Z\rangle=\langle Y, Z\rangle=0, \quad\langle Z, Z\rangle=1
$$

A vector V in \mathbb{R}_{1}^{3} is said to be null if $\langle V, V\rangle=0,[2,4]$. A surface in the 3-dimensional Lorentzian space \mathbb{R}_{1}^{3} is called a timelike surface if the induced metric on the surface

[^0]is a Lorentzian metric. A ruled surface is a surface swept out by a straight line Y moving along a curve α. The various positions of the generating line Y are called the rulings of the surface. Such a surface, thus has a parametrization in ruled form as follows:
$$
\varphi(t, v)=\alpha(t)+v Y(t)
$$

We call α to be the base curve and Y to be the director curve. If the tangent plane is constant along a fixed ruling, then the ruled surface is called a developable surface. The remaining ruled surfaces are called skew surfaces. If there exists a common perpendicular to two preceding rulings in the skew surface, then the foot of the common perpendicular on the main ruling is called a central point. The locus of the central points is called the curve of striction $[1,5]$.

§2. Null Scrolls in \mathbf{R}_{1}^{3}

Let $\alpha: M \rightarrow \mathbb{R}_{1}^{3}$ be a null curve, namely, a smooth curve whose tangent vectors $\alpha^{\prime}(t), \forall t \in I$ are null. For a given smooth positive function $d=d(t)$ let us put

$$
\begin{equation*}
X=X(t)=d^{-1} \alpha^{\prime} \tag{2.1}
\end{equation*}
$$

Then X is a null vector field along α. Moreover, there exists a null vector field Y along α satisfying $\langle X, Y\rangle=-1$. Here if we put $Z=X \wedge Y$ then we can obtain a (proper) null frame field $F=\{X, Y, Z\}$ along α. In this case the pair (α, F) is said to be a (proper) framed null curve.

If the null vector Y moves along α, then the ruled surface is given by the parametrization $(I \times \mathbb{R}, \varphi)$ where

$$
\varphi: I \times \mathbb{R} \rightarrow \mathbb{R}_{1}^{3}
$$

is given by

$$
(t, v) \rightarrow \varphi(t, v)=\alpha(t)+v Y(t), t \in I, v \in J
$$

which can be obtained in the 3-dimensional Lorentzian space \mathbb{R}_{1}^{3}. Then the ruled surface is called a null scroll and denoted by M. It is a timelike surface.

Let α be a (proper) framed null curve and ∇ be Levi-Civita connection on \mathbb{R}_{1}^{3}. Then a framed null curve α satisfies the following Frenet equations

$$
\left\{\begin{array}{l}
\nabla_{X} X=a X+b Z \tag{2.2}\\
\nabla_{X} Y=-a Y+c Z \\
\nabla_{X} Z=c X+b Y
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
a=-\left\langle\nabla_{X} X, Y\right\rangle \tag{2.3}\\
b=\left\langle\nabla_{X} X, Z\right\rangle \\
c=\left\langle\nabla_{X} Y, Z\right\rangle
\end{array}\right.
$$

are smooth functions $[3,4]$.
If we fix the parameter v, then the curve $\varphi_{v}: I \times\{v\} \rightarrow M$ sending (t, v) to $\alpha(t)+v Y(t)$ can be obtained on M, the tangent vector field of which is given by

$$
A=d X-a v Y+c v Z
$$

Theorem 2.1. Let M be a null scroll. Then the tangent planes along a ruling of M coincide if and only if $a=c=0$.

Proof. Straightforward computation.
Then we have following:
Corollary 2.2. The null scroll M is developable if and only if $a=c=0$.
Lemma 2.3. For the null scroll M we have

$$
\begin{align*}
& a=-\operatorname{det}\left(Y, Z, \nabla_{X} X\right) \tag{2.4}\\
& c=-\operatorname{det}\left(X, Y, \nabla_{X} Y\right) \tag{2.5}
\end{align*}
$$

Proof. The equations (2.2) infer the two equalities.

$\S 3$. Position vector of a central point and pseudo-orthogonal trajectory for the null scrolls

If the distance between the central point and the base curve of a null scroll (which is a skew timelike surface), is \bar{u}, then the position vector $\bar{\alpha}(t)$ can be expressed by $\bar{\alpha}(t, \bar{u})=\alpha(t)+\bar{u} Y(t)$, where $\alpha(t)$ is the position vector of the base curve and $Y(t)$ is the directed vector belonging to the ruling. The parameter \bar{u} can be expressed in terms of position vector of the base curve and directed vector of the ruling. Consider three preceding rulings of a null scroll such that the first one is $Y(t)$, and the second one is $Y(t)+d Y(t)$. Let P, P^{\prime} and Q, Q^{\prime} be the feet on the rulings of the common perpendicular to the two preceding rulings. The common perpendicular to $Y(t)$ and $Y(t)+d Y(t)$ is $Y(t) \wedge d Y(t)$.

The vector $\overrightarrow{P Q}$ coincides with the vector $\overrightarrow{P P^{\prime}}$ in the limiting position, and $\overrightarrow{P Q}$ will be the tangent vector of the curve of striction. Thus, we have

$$
\left\langle\nabla_{X} Y, \overrightarrow{P Q}\right\rangle=0
$$

Therefore, we get

$$
\begin{equation*}
\bar{u}=-a d / c^{2} . \tag{3.6}
\end{equation*}
$$

Hence the curve of striction is given by

$$
\begin{equation*}
\bar{\alpha}(t)=\alpha(t)-\frac{\left\langle\nabla_{X} Y, d X\right\rangle}{\left\langle\nabla_{X} Y, \nabla_{X} Y\right\rangle} Y(t) \tag{3.7}
\end{equation*}
$$

where $\left\langle\nabla_{X} Y, \nabla_{X} Y\right\rangle \neq 0$ and $a d / c^{2}$ is constant.
Theorem 3.1. The curve of striction $\bar{\alpha}$ is independent on the choice of the base curve α for the non-developable null scroll M.

Proof. Let β be a another base curve of the null scroll M, that is, let

$$
\varphi(t, v)=\alpha(t)+v Y(t)
$$

and

$$
\varphi(t, s)=\beta(t)+s Y(t)
$$

be two different base curve for the null scroll M. Then from (3.7) we obtain

$$
\bar{\alpha}(t)-\bar{\beta}(t)=0
$$

thus the proof is complete.
Theorem 3.2. Let M be a nondevelopable null scroll. Then $\varphi\left(t, v_{0}\right)$ on the ruling through the point $\alpha(t)$ is a central point if and only if $\nabla_{X} Y$ is a normal vector of the tangent plane at $\varphi\left(t, v_{0}\right)$.

Proof. Let M be a nondevelopable null scroll and $\nabla_{X} Y$ be a normal of the tangent plane at $\varphi\left(t, v_{0}\right)$ on the ruling through $\alpha(t)$. The tangent vector field of the curve

$$
\varphi_{v_{0}}: I \times\left\{v_{0}\right\} \rightarrow M
$$

is $A=d X-a v_{0} Y+c v_{0} Z$. Thus $\left\langle\nabla_{X} Y, A\right\rangle=0$. Then we get $v_{0}=-a d / c^{2}$. Therefore $\varphi\left(t, v_{0}\right)$ is a central point of M.

Conversely, let $\varphi\left(t, v_{0}\right)$ be a central point on the ruling through $\alpha(t)$. Then we obtain $\left\langle\nabla_{X} Y, Y\right\rangle=0$ and $\left\langle\nabla_{X} Y, A\right\rangle=a d+c^{2} v=0$.

Thus $\nabla_{X} Y$ is a normal vector of the tangent plane at $\varphi\left(t, v_{0}\right)$.
Theorem 3.3. Let M be a nondevelopable null scroll. The curve of striction

$$
\begin{equation*}
\bar{\alpha}(t)=\alpha(t)-\frac{a d}{c^{2}} Y(t) \tag{3.8}
\end{equation*}
$$

is a timelike curve in a null scroll M.
Proof. If we use the equation (3.8), we can show easily that the tangent vector field of the curve of striction is a timelike vector field.

We know that, if there is a curve which meets perpendicularly each of the rulings, then this curve is called an orthogonal trajectory of a ruled surface which base curve is non-null. Hence we have

Definition 3.1. Let M be a null scroll in \mathbb{R}_{1}^{3}. If there exists a curve which makes constant angle with each one of the rulings, the this curve is called a pseudo-orthogonal trajectory of M.

Theorem 3.4. Let M be a null scroll in \mathbb{R}_{1}^{3}. Then there exists a unique pseudoorthogonal trajectory of M through each point of M.

Proof. Let $\varphi: I \times J \rightarrow \mathbb{R}_{1}^{3}$, defined by

$$
\varphi(t, v)=\alpha(t)+v Y(t)
$$

be a parametrization of M. A pseudo-orthogonal trajectory of M is given by β : $\widetilde{I} \rightarrow \mathrm{M}$, where

$$
\beta(t)=\alpha(t)+f(t) Y(t), \quad t \in \widetilde{I}
$$

and $\left\langle\beta^{\prime}, Y\right\rangle=$ const. We may assume that $\widetilde{I} \subset I$.

Now we want to get a curve which passes through the point $p_{0}=\varphi\left(t_{0}, v_{0}\right)$. Thus we can write

$$
p=\alpha(t)+f(t) Y(t), \quad p_{0}=\alpha\left(t_{0}\right)+v_{0} Y\left(t_{0}\right)
$$

Therefore we get $\alpha(t)=\alpha\left(t_{0}\right)$ and $f(t)=v_{0}$.
If we choose I such that it is one to one, then we have $t=t_{0}$. Therefore the pseudo-orthogonal trajectory of M through the point p_{0} is unique. Since this pseudoorthogonal trajectory of M makes a constant angle with each of the rulings of M, we have $\overparen{I}=I$. Thus the proof is complete.

Theorem 3.5. Let M be a null scroll in \mathbb{R}_{1}^{3}. The shortest distance between two rulings is measured only on the curve of striction which is one of the pseudo-orthogonal trajectories.

Proof. We consider two rulings which pass through the points $\alpha\left(t_{1}\right)$ and $\alpha\left(t_{2}\right)$, where $t_{1}, t_{2} \in I$ and $t_{1}<t_{2}$. We compute the length $\ell(v)$ of an pseudo-orthogonal trajectory between these two rulings

$$
\ell(v)=\int_{t_{1}}^{t_{2}}\|A\| d t=\int_{t_{1}}^{t_{2}}\left(2 a d v+c^{2} v^{2}\right)^{\frac{1}{2}} d t
$$

To find the value of t which minimizes $\ell(v)$, we notice that

$$
\frac{\partial \ell(v)}{\partial v}=0
$$

which infers $v=-a d / c^{2}$. This completes the proof.

References

[1] Beem, J. K. and Ehrlich, P.E., Global Lorentzian Geometry, Marcel Dekker, Inc. New York, 1981.
[2] Dajczer, M. and Nomizu, K., On Flat Surfaces in S_{1}^{3} and \boldsymbol{H}_{1}^{3}, Manifolds and Lie Groups, Univ. Notre Dame, Birkhauser, 1981, 71-108.
[3] Duggal, K.L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, 1996.
[4] Graves, L K., Codimension One Isometric Immersions Between Lorentz Space, Trans. Amer. Soc. 252 (1979), 367-392.
[5] O'Neill, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.

Authors' address:

Handan Balgetir, Mehmet Bektaş and Mahmut Ergüt
Department of Mathematics, University of Firat, Elazig, 23119 Turkey
E-mail: hbalgetir@firat.edu.tr, mbektas@firat.edu.tr and mergut@firat.edu.tr

[^0]:
 (c) Balkan Society of Geometers, Geometry Balkan Press 2003.

