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Abstract

Many questions in macroeconomics lead to random discrete dynamical systems
yt+1 = wi(yt) where the map wi is contractive and it is chosen in a given set
with probability pi. The aim of this paper is to study the inverse problems for a
macroeconomic stochastic growth model. Roughly speaking, solving an inverse
problem means to find a model converging to a fixed optimal target. In practical
cases, the solution of the inverse problem can be used to know if a given system
may converge to a given steady state, forecasting the behaviour of the model.

M.S.C. 2000: 37N40, 91B62, 91B64.
Key words: macroeconomic stochastic growth, convex optimization, iterated
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§1. A new macroeconomic growth model
In a macroeconomic system it is well known that we have an equilibrium at the

time t if the aggregate demand Dt is equal to the its income Yt, that is Dt = Yt,
∀t ∈ N. The aggregate demand is the sum of the consumptions Ct, the investments
It and so the previous relation become

Yt = Ct + It.(1.1)

The quantity of consumption Ct is a function of the income of the previous year by
a linear relation as Ct = αYt−1, where the stochastic coefficient α can take values
in a given set C = {s1, s2, . . . sm} ⊂ (0, 1) with probability pi,

∑m
i=1 pi = 1. If the

level of investments if fixed, say I0 (the initial quantity of investments), the previous
equation becomes

Yt = αYt−1 + I0,(1.2)

and so the stochastic growth model of the income is described by the system of
equations















Yt+1 = s1Yt + I0 with probability p1

Yt+1 = s2Yt + I0 with probability p2

. . .
Yt+1 = smYt + I0 with probability pm

(1.3)
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Remark. In the sequel, we think Ct, Yt and I0 as elements of [0, 1]. In other words
we are studying the behaviour of the weights (in terms of political and economical
decisions) of the involved variables.

To establish if this model converges (and in which sense it converges) and to
characterize the eventual attracting point of the system is known as direct problem.
To find the solution of the direct problem we consider the space H([0, 1]), built with
all compact subsets of [0, 1], and the following metric, known as Hausdorff metric on
H([0, 1]),

h(A,B) = max{ max
x∈A

min
y∈B

|x− y|, max
x∈B

min
y∈A

|x− y|}.

In [19] is shown that the space (H([0, 1]), h) is a complete metric space. Now let
M([0, 1]) be the space of all probability measures on [0, 1]. Define a metric on
M([0, 1]) as

dH(µ, ν) = sup
f∈L1

∫

[0,1]
fdµ−

∫

[0,1]
fdν, µ, ν ∈M([0, 1]),

where
L1 = {f : [0, 1] → R | |f(x)− f(y)| ≤ |x− y|}.

This is the Monge-Kantorovich metric, referred to in the IFS literature as ”Hutchinson
metric”. The space (M([0, 1]), dH) is a complete metric space [10]. Now let w =
{w1, w2, . . . wN} denote a set of N continuous contraction maps on [0, 1], i.e. wi :
[0, 1] → [0, 1] and

|wi(x)− wi(y)| ≤ ci|x− y|, x, y ∈ [0, 1], 0 ≤ ci < 1, i = 1 . . . N.

Definition. The couple ([0, 1], w) is called Iterated Function Systems (briefly IFS).
The IFS were born in 1985 ([1]) as applications of the theory of discrete dynam-

ical systems and as useful tools to build fractals and other similar sets. It will be
convenient to define the maximum contractivity factor of the IFS as

c = max
i=1...N

ci < 1.

Associated with these maps is a set of non-zero probabilities p = {p1, p2, . . . pN},
pi > 0 and

∑N
i=1 pi = 1.

Now for a set S ∈ H([0, 1]), denote wi(S) = {wi(x), x ∈ S} and denote the
”parallel” action of the set of maps wi on S as:

w(S) =
N
⋃

i=1

wi(S).

Also define the iteration sequence wn+1(S) = w(wn(S)) n = 1, 2 . . .. Two important
results for contractive IFS are given below:

Theorem 1.1. ([19]) i) There exists a unique compact subset A ∈ H([0, 1]), the
attractor of IFS {[0, 1], w} (indipendent of p) such that

A = w(A) =
N
⋃

i=1

wi(A)
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and h(wn(S), A) → 0 as n →∞ for all S ∈ H([0, 1]).
ii) Define the following ”Markov operator” M : M([0, 1]) →M([0, 1]),

M(ν) =
N

∑

i=1

piν ◦ w−1
i .

Then there exists a unique measure µ ∈ M([0, 1]), termed the invariant measure,
which obeys the fixed point condition

Mµ = µ.

Moreover, supp(µ) = A.

If one builds the random sequence






































yt+1 = w1(yt) with probability p1

yt+1 = w2(yt) with probability p2

. . . . . .

yt+1 = wn(yt) with probability pn,

∀y0 ∈ [0, 1], n ∈ N, i = 1 . . . N, then for almost every code sequence {s1, s2, . . .} the
set ∪∞n=1{yi} is dense on the attractor A of the IFS (see [19]). This random walk is
called Chaos Game in IFS literature [9]. Furthermore there is a relation between the
invariant measure µ and the Chaos Game:

µ(S) = lim
n→+∞

1
n + 1

n
∑

k=0

IS(yk), S ⊂ [0, 1],

that is, µ(S) is the limit of the relative visitation frequency of S during the chaos
game.

§2. The inverse problem and applications
In the previous section we have seen that the convergence of the dynamical system

(1.3) can be characterized by the invariant measure of the associated Markov operator.
So the inverse problem can be formulated as follows: ”given a measure µ, find a
dynamic model which converges to µ”. In other words, the inverse problem of (1.3)
consists, given a target measure µ∗, of finding the maps wi and the probabilities pi,
i = 1, 2, such that the Markov operator built with these parameters has µ∗ as fixed
point. Referred to the growth model in the previous section, the inverse problem
consists of finding the parameters of the model (economical parameters) which allow
to reach the fixed goals of economic policy. Anyway, in practical cases one has the
maps wi and the unknown data are only the probabilities pi. Finding all the solutions
of the inverse problem, one can establish if the system may converge to a given steady
state. Furthermore, following the random sequence and estimating the probabilities
through the frequencies, one may forecast the behaviour of the model.
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2.1. Formulation of the inverse problem.

Let µ be a given measure. Let wi : [0, 1] → [0, 1] be contractive and affine maps,
that is wi(x) = six + ai, |si| < 1. Clearly for affine maps the contractivity factor
ci = |si|.

Theorem 2.1. Let M : M([0, 1]) →M([0, 1]) be a contractive Markov operator,
associated to an IFS, with contractivity factor c ∈ [0, 1). Let µ∗ be the fixed point of
M . If dH(Mµ, µ) < ε then dH(µ∗, µ) < ε

1−c .

Proof. In fact we have:

dH(µ, µ∗) ≤ dH(µ,Mµ) + dH(Mµ, Mµ∗) ≤ ε + cdH(µ, µ∗).

So dH(µ, µ∗) ≤ ε
1−c . 2

The previous theorem states that the inverse problem can be studied through
the function FM (w, p) := dH(Mµ, µ). This is a function of the maps wi and the
parameters pi; however, in the sequel, we will use a fixed family of contractions
W = {w1, w2, . . .} with associated probabilities {p1, p2, . . .}. Associated to each map
wi there is a probability pi; so the inverse problem consists of finding only the prob-
abilities pi, putting pi = 0 when the corresponding map is not used in the Markov
operator. We will write Mp to put in evidence this fact. It is clear that the optimal
solution is to find p∗ such that F (p∗) = 0,

∑N
i=1 p∗i = 1; in fact in this case µ = µ∗,

that is the map M has exactly µ as fixed point. In the other cases Theorem 2.1 gives
an estimate of the fixed point.

Theorem 2.2. Let µ ∈ M([0, 1]) and WN = {w1, w2, . . . wN} ⊂ W be the subset
of the first N maps of W. Then the map FM (p) = dH(Mpµ, µ) : Rn → R+ is convex.

Proof. In fact for all p1, p2 ∈ Rn and t ∈ [0, 1] one has:

FM (tp1 + (1− t)p2) = dH(Mtp1+(1−t)p2µ, µ) =

sup
f∈L1

{
∫

[0,1]
fdMtp1+(1−t)p2µ−

∫

[0,1]
fdµ} =

sup
f∈L1

{
n

∑

i=1

(tp1i + (1− t)p2i)
∫

[0,1]
f ◦ widµ−

∫

[0,1]
fdµ} ≤

sup
f∈L1

t{
n

∑

i=1

p1i

∫

[0,1]
f ◦ widµ−

∫

[0,1]
fdµ}+

sup
f∈L1

(1− t){
n

∑

i=1

p2i

∫

[0,1]
f ◦ widµ−

∫

[0,1]
fdµ} =

tF (p1) + (1− t)F (p2).

2

To solve the inverse problem means to find p∗,
∑N

i=1 p∗i = 1, such that FM (p∗) =
0. The function FM is not differentiable; however, since FM is convex, then it is
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locally Lipschitzian and then semismooth [17]. So for solving the nonsmooth equation
FM (p) = 0 one can use the nonsmooth version of Newton’s method due to Qi and
Sun [17]. When the inverse problem has not solution, one can solve the following
optimization problem:

min FM (p), 0 ≤ pi ≤ 1,
n

∑

i=1

pi = 1,

which gives a lower bound for the approximation. In this setting, this bound can be
improved only increasing the number of contractions wi (that is sending N → +∞).
Necessary and sufficient conditions for the previous optimization problem can be given
by Kuhn-Tucker conditions with Clarke’s subdifferential. However, in the next section
we will show how the previous optimization problem can be reduced to a quadratic
optimization problem. This represents a significant simplification since quadratic
programming problems can be solved computationally in a finite number of steps.

2.2. Moment matching and quadratic optimization problem.
The aim of this section is to show how the previous problem can be reduced to a

quadratic optimization problem by moment matching.
Suppose that γ = Mν; then for each continuous function f : [0, 1] → R we have

∫

[0,1]
fdγ =

∫

[0,1]
fd(Mν) =

N
∑

i=1

pi

∫

[0,1]
f ◦ wi(x)dµ(x).

We now consider the moments of ν and γ defined as

gn =
∫

[0,1]
xndµ, hn =

∫

[0,1]
xndγ,

where g0 = h0 = 1. From the previous equation with f(x) = xn, we obtain

hn =
n

∑

k=0

n!
(n− k)!k!

{
N

∑

i=1

pisk
i an−k

i }gk,

with n ∈ N. Let

D([0, 1]) = {g = (g0, g1, g2, . . .) | gn =
∫

[0,1]
xndν, n ∈ N, ν ∈ M([0, 1])}.

So it is possible to identify each operator M : M([0, 1]) → M([0, 1]) with a linear
map A : D([0, 1]) → D([0, 1]).

Moment matching for the approximation of measure can be justified by the fact
that the convergence of moments is equivalent to the the weak convergence of mea-
sures. This is summarized in the following theorem.

Theorem 2.3. ([3]) Let X = [0, 1], ν, νj ∈ M(X), j ∈ N, with moments defined
by

gn =
∫

X
xndν, gj

n =
∫

X
xndνj , n ∈ N.
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Then the following assertions are equivalent:

i) gj
n → gn when j → +∞, ∀n ∈ N;

ii) the sequence νj converges weak* to ν, i.e. for any continuous function
f : [0, 1] → R ,

∫

[0,1] fdµ(j) →
∫

[0,1] fdµ, as j → +∞;
iii) dH(νj , ν) → 0 when j → +∞.

We now consider the sets:

l2(N) =

{

c = (c0, c1, c2, . . .) | ci ∈ R , ‖c‖2
l2

= c2
0 +

∞
∑

k=1

c2
k

k2 < ∞

}

and
l20(N) = {c ∈ l2(N) | c0 = 1} ⊂ l2(N).

It is easy to prove that D(X) ⊂ l20(N) ⊂ l2(N).

Proposition 2.1. Let ν, νn ∈ M([0, 1]), with moments g, gn ∈ D([0, 1]). Then
‖g − gn‖l2 → 0 when n → +∞ if and only if dH(ν, νn) → 0 when n → +∞.

Proof. The proof follows from the results of Theorem 2.3. 2

Proposition 2.2. Define the following metric on D([0, 1]): for u, v ∈ D([0, 1]),
d2(u, v) = ‖u− v‖l2

. Then (D([0, 1]), d2) is a complete metric space.

Proof. Let g(n) = (g(n)
0 , g(n)

1 , . . .) ∈ D([0, 1]) be a Cauchy sequence in l2. Let
ν(n) ∈ M([0, 1]) be the probability measures whose moments are the components of
the g(n). Now consider the sequence a(n) = (a(n)

0 , a(n)
1 , . . .) where a(n)

0 = g(n)
0 and

a(n)
k = g(n)

k
k , k ∈ N. It is clear that a(n) is a Cauchy sequence in l2(N) and then,

by completeness of l2(N), there exists an a ∈ l2(N) such that ‖a(n) − a‖l2 → 0 as
n → +∞. Now let g = (g0, g1, . . .) where g0 = 1 and gk = kak. Since |a(n)

k − ak| → 0
as n → +∞ we obtain that |g(n)

k − gk| → 0 as n → +∞. Now a ∈ l2(N) and then g
is an element of l2(N). We now show that g ∈ D([0, 1]). A necessary and sufficient
condition for an infinite set of real numbers c = (c0, c1, . . .) be the moments of a unique
probability measure µ ∈M([0, 1]) is that they satisfy the Hausdorff inequalities

Hi,j(c) =
j

∑

m=0

(−1)m j!
(j −m)!m!

cj+m ≥ 0,

i, j ∈ N. Since g(n)
k are the moments of the measures ν(n) ∈ M([0, 1]), they must

satisfy inequalities as the previous one and then, taking the limit as n → +∞, we
obtain:

Hi,j(g) =
j

∑

m=0

(−1)m j!
(j −m)!m!

gj+m ≥ 0,

i, j ∈ N. These are the Hausdorff inequalities for the sequence g and these imply that
gk are the moments of a unique measure ν ∈M([0, 1]). Thus g ∈ D([0, 1]). 2
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Recall that for each Markov operator M : M([0, 1]) → M([0, 1]) there exists a
linear operator A : D([0, 1]) → D([0, 1]).

Proposition 2.3. The linear operator A is contractive in (D([0, 1]), d2).

Proof. In the standard basis {ei = (0, 0, . . . , 0, 1, 0, . . .)}∞i=0 the infinite matrix
representation of A is lower triangular. Hence, A has eigenvalues:

λ0 = a0,0, λn = an,n =
N

∑

i=1

pisn
i ,

with n ≥ 1. Thus, |λn| = |an,n| < cn < 1 and, for any u, v ∈ D([0, 1]), ‖A(u− v)‖l2
≤

c‖u− v‖l2
, which implies the contractivity of A. 2

From Proposition 2.3 results that there exists an unique solution g∗ ∈ D([0, 1]) of
the equation Ag = g. So the inverse problem on M([0, 1]) can be analyzed with the
following result.

Theorem 2.4. Let µ ∈ M([0, 1]) with moment g ∈ D([0, 1]). Let (w, p) be a
contractive IFS map with contractivity factor c ∈ [0, 1), such that d2(g, h) = ‖g −
h‖l2

< ε, where h ∈ D([0, 1]) is the moment of the measure γ = Mν. Then

d2(g, g∗) <
ε

1− c
,

where g∗ is the moment of the invariant measure ν∗.

The proof is trivial and we omit it. Let WN = {w1, w2, . . . wN} and

ΩN = {pN = (p1, p2, . . . , pN ) : pi ≥ 0,
N

∑

i=1

pi = 1}.

Obviously ΩN ⊂ RN is compact. Let µ ∈ M([0, 1]) be the target measure with
moments g ∈ D([0, 1]). For a given let p ∈ ΩN and Mp be the Markov operator
corresponding to the IFS ({w1, w2, . . . wN}, p). Furthermore γ = Mµ with vector of
moments h ∈ D([0, 1]). The distance between the moments of ν and γ is

∆(p) = ‖g − h‖l2
.

Let A : D([0, 1]) → D([0, 1]) the linear operator associated to M . Then h = Ag,
where hn =

∑N
i=1 An,ipi and

An,i =
∫

[0,1]
(wix + ai)ndµ =

n
∑

k=0

n!
(n− k)!k!

sk
i an−k

i gk.

Then if S(p) = (∆)2(p), with trivial calculus, one can show that S(p) = pT Qp+bT p+c,
p, b ∈ RN . The element of the symmetric matrix Q are given by

qi,j =
∞
∑

n=1

An,iAn,j

n2 , i, j = 1, 2, . . . N.
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Furthermore,

bi = −2
∞
∑

n=1

gnAn,i

n2 , i = 1, 2, . . . N

and

c =
∞
∑

n=1

g2
n

n2 .

Since 0 ≤ An,i ≤ 1, then the infinite sums converge.

Thus, given a target measure µ with moment vector g, the inverse problem be-
comes the one of finding an IFS such that the collage distance d2(g, h) = 0, where
h = Ag. When this problem has not solution one may solve the following quadratic
programming problem with linear constraints

minSN (p),
N

∑

i=1

pi = 1, 0 ≤ pi ≤ 1.

This represents a significant simplification, since quadratic programming problems can
be solved computationally in a finite number of steps. Furthermore, this minimum
represents a lower bound for the approximation and it can be improved only increasing
the number of maps wi (that is, sending N → +∞).

§3. Conclusions

Starting from some classical macroeconomic models introduced by Ramsey, Do-
mar, Nardini [2, 4, 16] we have built a new model in which the public expenditure
is part of a shock factor and the level of investments is a linear function of the in-
come. For this model we have formulated and studied the inverse problem; roughly
speaking, it means to find a set of parameters such that the dynamic model converges
to a fixed optimal target of the public decision makers. Finding all the solutions
of the inverse problem, one can establish if the system may be converge to a given
steady state, forecasting the behaviour of the economical phenomena. The inverse
problem is a nonsmooth equation and when it has not solution, it is possible to solve
a nondifferentiable convex optimization problem on Rn which gives a lower bound
of the approximation. Necessary and sufficient conditions for this problem can be
given with Clarke subdifferential calculus. Furthermore, by moment matching we
have shown that this problem can be reduced to a constrained quadratic program-
ming problem with linear constraints. This represents a significant simplification since
quadratic programming problems can be solved computationally in a finite number
of steps.
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