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Abstract

The notion of key privacy for encryption schemes was defined formally by Bellare, Boldyreva,
Desai and Pointcheval in Asiacrypt 2001. This notion seems useful in settings where anonymity
is important. In this short note we describe a (very simple) sufficient condition for key privacy.
In a nutshell, a scheme that provides data privacy is guaranteed to provide also key privacy if
the distribution of a random encryption of a random message is independent of the public key
that is used for the encryption.

1 Introduction

The motivation for the notion of key-privacy is anonymous communication, where eavesdroppers
(or even active attackers) are prevented from learning the identities of the communicating parties.
Assuming that the communicating parties are using public-key encryption, anonymous communi-
cation requires that an attacker cannot determine the public keys that were used to generate the
ciphertexts that it sees.

This notion was defined formally by Bellare, Boldyreva, Desai and Pointcheval in Asiacrypt
2001 [BBDPO1]. They defined this notion via probabilistic games, similar to the standard games
that are used to define secrecy of plaintext. The difference is that the goal of the attacker is not
to determine what message was encrypted under a known public key. Rather, the attacker tries
to determine what public key was used in an encryption of a known message. Specifically, the
attacker is given two public keys, it generates a message, and then it sees the encryption of that
message under one of these keys. The attacker wins if it can guess what key was used to encrypt the
message, and the scheme provides key-privacy if feasible attackers only have insignificant advantage
over a random guess.

With this notion in mind, it seems clear that encryption schemes that are based on the De-
cision Diffie-Hellman assumption, such as ElGamal [EIG85] and Cramer-Shoup [CS98], provide
key-privacy “right out of the box”. After all, the ciphertext is such schemes consists of several
random-looking group elements, regardless of the public key. Similarly, it seems clear that RSA-
based schemes do not provide key-privacy, since a ciphertext looks like a random element modulo NV,
and in particular a ciphertext gives some information about the modulus N. To fix that, Bellare et
al. described some techniques to ensure that ciphertexts will always end up in a common domain.

The arguments from above hint on the possibility that key-privacy can be proven information-
theoretically, but this was not the case in any of the key-privacy proofs in the literature. Although
we seem to have an “information theoretical intuition” for what scheme does or doesn’t provide
key-privacy, all the actual proofs were computational, essentially replicating the arguments that



were used to prove secrecy of plaintext for the corresponding schemes. To understand why, recall
that in the game as defined in [BBDPO01], the attacker knows the message that is “hidden inside
the ciphertext”. With this knowledge, the ciphertext does provide information on the public key
(in the information-theoretic sense), hence one must rely on some computational hardness to show
key-privacy.

The simple observation in this note is that since the schemes in question are known to provide
secrecy of plaintext, then in particular the attacker cannot distinguish between “an encryption
of the right message” and “an encryption of a random message”. Hence, for such schemes to
provide also key privacy, it is sufficient that the attacker cannot distinguish between encryptions
of random messages under the two public keys. In particular, in the DDH-based constructions
from [BBDPO1] the distribution of a random encryption of a random message is independent of the
public key. Hence our “information theoretical intuition” for their providing key-privacy.

2 Observation

We have an encryption scheme £ = (Gen, Enc, Dec). We assume that the message domain is implied
by the public key, and denote it by Domain(pk). We assume that the reader if familiar with the
standard notions of CPA-secure and CCA-secure encryption for data privacy. The corresponding
notions for key privacy were defined in [BBDPO01] by considering the following game:

1. The key generation algorithm is run twice with the security parameter to generate (pko, sko) «—
Gen(1%), (pky, sk1) + Gen(1¥), and a bit b is chosen at random in {0,1}.

2. The attacker A is run with the two public keys pk as input, and it also has access to the two
matching decryption oracles Decg, (+).

3. The attacker A produces a message m, that belongs to the domains of both public keys, and
it gets back the “target ciphertext” ¢* < Encpy, (m).

4. The attacker continues to run with access to the decryption oracles as before, and it outputs
a bit b'. It is considered successful if it never queried any of the decryption oracles on the
target ciphertext ¢*, and yet b’ = b.

The scheme £ is CCA-secure for key-privacy if any efficient attacker A can only be successful with
probability at most negligibly more than 1/2, and CPA security for key-privacy is defined similarly,
except that the attacker is not given access to the decryption oracle.

Observation 1 Let & = (Gen, Enc, Dec) be an encryption scheme that is CCA-secure (resp. CPA-
secure) for data-privacy. Then a sufficient condition for € to be also CCA-secure (resp. CPA-
secure) for key-privacy if that the statistical distance between the two distributions

Dy = {(pko, pk1, Encyry(m)) : (pko, sko) «— G’en(lk), (pk1, sky) «— Gen(lk), m «— Domain(pko)}
Dy = {(pko, pk1, Encyr, (m)) = (pko, sko) «— Gen(lk), (pk1, sk1) «— Gen(lk), m «— Domain(pki)}

1s negligible.

Proof (sketch) The proof is elementary. Due to data-privacy, the attacker A in the key-privacy
game cannot distinguish between the distributions where the message encrypted under pkg is the
real message m or a random message. Similarly it cannot distinguish between the distributions



where the message encrypted under pk; is the real message m or a random message. But if they
were both random messages, then the condition above says that the distributions are statistically
close, so clearly A cannot distinguish between them. Hence an advantage of € in the the key-privacy
game can be transformed into an advantage of at least (negligibly close to) €¢/2 in the data-privacy
game. l

An obvious extension. Of course we do not really need statistical closeness of Dy, Dy, it is clear
that computational indistinguishability suffices. But it seems that the observation is more useful
(in simplifying proofs, at least) when we have statistical closeness, since it is in that case that we
can replace computational arguments by information-theoretic ones.

Interpretation in the random oracle model. If the scheme £ is analyzed in the random-
oracle model, then the algorithms Gen, Enc, Dec as well as the adversary A are also given oracle
access to a function H (say, from {0,1}* to {0,1}* where k is the security parameter), and the
games are analyzed with respect to a random function H.

Some care must be used when interpreting the observation above in the random-oracle model.
Specifically, here the distributions Dy, D; depend also on the function H (which is modeled as a
random function). If it is true that Dy(H) ~ D1 (H) for every fized function H then the observation
from above holds just the same. However, the weaker condition that Dy(Hy) ~ D;(H;) for random
functions Hy, Hy does not seem to suffice. It is likely possible to formulate some condition on the
proof of data-privacy, such that “IF the data-privacy reduction works like that, THEN the weaker
condition from above is sufficient”. (The condition would essentially say that the attacker only query
the H-oracle in the “relevant points for the encryption of the target ciphertext” with negligible
probability.) But formulating and checking such condition does not appear to be substantially
easier than proving key-privacy from scratch.
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