APRIL 1986

PETER D. KILLWORTH

709

On the Propagation of Isolated Multilayer and Continuously Stratified Eddies

PETER D. KILLWORTH

Robert Hooke Institute/Institute of Oceanographic Sciences, Dept. of Atmospheric Physics,
Clarendon Laboratory, Oxford OX1 3PU, United Kingdom

(Manuscript received 12 June 1985, in final form 11 October 1985)

ABSTRACT

Integral expressions are derived for the east-west velocity of propagation of isolated eddies on a beta plane.
It is assumed that the eddies have no surface or floor expression, i.e., that both surface and floor are isopycnals.
The results of Nof and Mory are generalized and demonstrate the crucial necessity for all such results that, on
the bounding density surfaces, the linearized Bernoulli function depends only on the depth of that surface. Thus
there are examples of isolated eddies satisfying the assumptions but which are not directly amenable to the
analyses presented hitherto. Results for multiple layers (including a simple rule for the direction of propagation)
and for continuously stratified eddies, subject to some assumptions, are given. A simple model fit to salt lenses
observed by Armi and Zenk gives westward motion of order 1 cm s™!, which is not unreasonable.

1. Introduction

Nearly circular, isolated eddies and lenses occur in
many parts of the world ocean, and are notable for
their varying internal structures, sizes and directions
of propagation. In the Atlantic, for example, there are
warm and cold-core Gulf Stream rings (Joyce, 1984;
Richardson, 1983); large saline lenses (Armi and Zenk,
1984); and nearly isothermal eddies in the Sargasso
Sea (Dugan et al., 1982). The flow in these eddies can
be cyclonic or anticyclonic, both inferred from hydro-
graphic data and by direct observation. The eddies
usually contain a finite water mass whose 7-S prop-
erties differ strongly from the surrounding water, al-
though this is seldom the case for the density field,
which differs little from its surroundings. The eddies
vary both in radius, from around 100 km or more for
Gulf Stream rings (Joyce, 1984) to 50 km or less for
salt lenses (Armi and Zenk, 1984) down to 25 km for
the Sargasso eddies (Dugan et al., 1982). There are
similar variations in height, from the full ocean depth
to under 100 m, respectively. When a direction of
propagation can be determined, there is usually but
not always a westward tendency (Joyce, 1984; Nof,
1985).

The existence of such eddies provides several theo-
retical problems: their formation, propagation, stability
and eventual fate; McWilliams (1985) gives a review
of efforts in these directions. This note will concentrate
on the propagation of such eddies. Hitherto, analytical
modelers have concentrated on simple, dynamical lay-
ered models for quasi-radially symmetric eddies (War-
ren, 1967; Shen, 1981; Nof, 1981; Killworth, 1983;
Davey and Killworth, 1984), together with modon so-
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lutions of nonsymmetric form (e.g., McWilliams et al.,
1981). The former studies have involved few—typically
one—active layers, with a resting deep layer beneath.
They find steady westward motion for the eddy; noting
that N-S motion would involve a change in potential
vorticity of the eddy—impossible for steady flow.

Numerical studies also have used layered models.
Regrettably, the results of such models seem to depend
critically upon the physics of the model: two-layer
quasi-geostrophic experiments (McWilliams and Flierl,
1979) differ in results qualitatively from two-layer
primitive equation experiments (Mied and Lindemann,
1979), which in turn differ from one-layer primitive
equation results (Davey and Killworth, 1984), with a
tendency toward more rapid eddy destruction as the
number of degrees of freedom in the model—e.g.,
number of layers—is increased.

Recently, Nof (1985), and Mory (1985) have sought
to extend the analytical work to include a second active
layer, in the spirit of the numerical approaches. Nof’s
results for an eddy with a trapped volume of fluid den-
sity not equal to any of those in the resting fluid outside
show that propagation can be west or east. However,
it is unclear how many eddies have any fluid with this
property, even though the 7-S properties may differ
radically, except in the top 100 m. It turns out to be
straightforward to allow for layers not to be trapped
within the eddy. Since there is no reason to restrict
attention to two active layers, one of the aims of this
note is to derive a formula for eddy propagation in a
fluid with N active layers, each of which may or may
not be confined either to the eddy or to the outer en-
vironment, together with a simple rule for the direction
of eddy propagation.
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Layered models, especially those with few layers, are
quite difficult to apply to a continuously stratified fluid,
if one wants to make estimates from observations. It
therefore seems relevant to produce the equivalent in-
tegral formula for the propagation speed of a contin-
uously stratified blob. This can be done, under slightly
restrictive circumstances, but the analysis demonstrates
clearly that not all eddies can be treated. Finally, as an
example, the formula is applied to an approximate
version of Armi and Zenk’s (1984) data.

2. Propagation speeds for multilayer eddies
a. Solution

We consider a fluid made up of N + 1 layers, not
all of which need be present at any given location. The
density of the nth layer from the surface is p,, with
depth A,(x, y, t) where axes are x (east), y (north), and
t (time). We assume that the (N + 1)th layer is at rest;
the consequences of this will be discussed later. The
hydrostatic relation, plus the assumption of the resting
layer, gives the pressure p, in the nth layer as

N
pO—lpn = 2 gmax(m,n)hms (21)

m=1

where max(m, n) refers to the larger of m and n, and
the g, are reduced gravities given by

&n =80 — palpNni1), (2.2)

and py is a reference density. Equation (2.1) holds even
if some h,, are zero.
- The dynamical equations in each layer are

Aunt +u,-Vu, _fvn + Pux/po =0 (2.3)
Uy + 1, an +fun + pny/pO =0, (24)

where (u,, v,) are the velocity components and f = f,
+ By is the Coriolis parameter. Mass conservation
yields ’

b + (Unhn)y + (Vahy)y = 0. (2.5)

We now follow Ball (1963), as in Killworth (1983)
and Davey and Killworth (1984), to derive a simple
expression for propagation speed. (The method relies
on integral balances which do not depend on any spe-
cific depth profile.) The eddy is assumed localized, so
that

hy— Hpy (U D) =0, Il — 00, (2.6)

where H,, is uniform, possibly zero. Thus for each layer
we may define the mass anomaly

0. = [ th— ran, @7
where the integral is over the entire area. We note that

i f 4 = f D¢
2 ) hedd = | b, da, (2.8)
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for any ¢, where
2.9)

is the advective operator. The center of mass (X, Y,)
of the nth layer can be defined by

0k, = [ (= Hyxds.  @10)
From (2.8), we thus have '
dQ,
— = 2.11
ai 0 2.1
ax, j‘
= . 12
On dt hu,dA (2.12)

If the motion is steady, then dY,/dt = 0 for all n, as .

meridional motion would involve potential vorticity

changes (see Nof, 1984 for a case of unsteady meridi-

onal motion). Further differentiation of (2.12) gives
d*y, Dy

dtzn - f hn Dntn dd = _J SunhndA

0=0,
daX,
+ [ty [ oo = 10, 52 = [ o

+ f hnpny/pOdAa (2.13)
or '
fOQn % = _B f yunhndA + lf hnpnydA- (2‘14)
dat v po

Now a steady east~west propagation requires the
dX,/dt to equal c, the east-west speed of the eddy. This
is not an assumption, but a necessity if such a flow is
to exist. There are scaling arguments (Killworth, 1983;
Nof, 1985) to show that since ¢ = Bafy ™! is a small
parameter for isolated eddies, where a is a typical length
scale, then c is of order ¢ times a typical velocity. Thus
in coordinates moving at speed ¢, (u, — ¢, V) ~ (Uy,
v,) is describable by a streamfunction ¢, by (2.5), and
(2.14) gives

dx,
f OQn dt

=4 J- $ndA + pl f hupnydA, (2.15)
0

as an alternative formulation. To remove the unknown
pressure gradients, we sum (2.14) over the layers, giving

N N
foe 3 Qn=—B f VS wddd,  (2.16)
n=1 n=1

since the pressure gradients cancel in pairs of form
| 8maxomny(Pmbny + Buhimy)dA from (2.1). The most use-
ful form for (2.16) is by assuming approximate radial
symmetry. Then, using r as radius, (2.16) becomes
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© N
Bf ridr 3 h,V,
0 n=1

c= , (2.17)

o N
2% fo rdr 3 (hy — Hy)

n=1

where V, is the azimuthal velocity in layer #, although
forms using the integrated streamfunction ¢ are pos-
sible from (2.15). Using the cyclostrophic balance
V2 19
foVu+ 2 —n (2.18)
r Po or

(2.17) can be written

-8B o N
c= = 7 J; rdr { 3 [h.Vy?
25t [ rdr 3 tha - H =
Y n=1
+ gl — H + 2 3 gulhuhm — H,H,)}, (2.19)

m>n

proportional to (energy/mass), as used by Davey and
Killworth (1984). Using their methods, limits on ¢ may
be evaluated from (2.19), although this is not our pur-
pose here.

b. The pressure gradients

It is of importance to understand why the pressure
gradients cancelled in (2.16), since their removal is vital.
We relax temporarily the requirement that layer (N
+ 1) be at rest, so that the pressure p, becomes

N+1

=& 2 pmin(m,n)hm-

m=]

(2.20)

Repeating the sum in (2.15), (2.16) then givés
N N+t
2 hnpny g 2 Z pmm(m,n)hn my
n=1 n=1 m=1
a N+1 N+1
=& a_}_)( z 2 Pmin(m, n)h hm) - ghN+le+ly

n=1 m=1

=87 Z E pmm(mn)h -

3 (N+l N+1
ay n=1 m=1

1
+3 PN+th+12) — hyniB,, (2:21)

where we define the (linear) Bernoulli function B at
heigh.t hN+| by
B =p+ pyi18hnss- (2.22)

Although not the dynamical Bernoulli function, B
serves as the equivalent of pressure when using density
as a vertical coordinate. Now, integration over d4 re-
moves the first y-derivative, leaving only the term in

hy11B,, or, by parts, Bhys, .
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It is now clear that for this term to vanish on inte-

gration,
B = fn(hy+). (2.23)

In the case of no flow in the lower layer, B = constant,
which is a special case of the above. Thus, if there is
motion in all layers, no formula of form (2.17) is, in
general, possible; the assumption of a resting layer is
important to the success of any integral method.

It is tempting to circumvent this difficulty by adding
in a weighted term involving the (N + 1)th layer de-
signed to cancel the outstanding terms. However, the
denominator, instead of being a baroclinic mass deficit,
which involves a pycnocline displacement, becomes a
weighted barotropic deficit, which involves a surface
displacement. This yields propagation speeds beyond
the range of validity of the method unless very large
surface displacements are assumed (e.g., Mied and
Lindemann’s, 1979, barotropic eddy 5, which dispersed
and did not propagate, had a surface displacement an
order of magnitude larger than for their barochmc ed-
dies).

¢. Propagation directions and speeds

Nof (1985) has evaluated propagation velocities for
special cases when N = 2, and when either H, or H,
vanishes, i.e., there is a trapped lens of fluid within the
eddy. Equation (2.17) or its equivalents is considerably
more general, as it allows any combination of layers
to be trapped or continuous as required. Since Nof
(1985) has shown cases of both east and west propa-
gation, there is little point in extending those calcula-
tions, though specific solutions with three or more lay-
ers can trivially be written down.

Instead, we can deduce a simple rule to determine
the direction of propagation Provided merely that each
pressure gradlent Dnr 18 one-51gned it follows that the
denominator in (2.17) has s1gn

sgn( 2 (hy, — Hy,)) = —sgn( E Ruy)

n=1 n=1
= —sgnpy, = —sgn(Va), (2.24)

from (2.18), since the eddies have nonnegative absolute
vorticity. Thus (2.17) gives

N
ridr > h,,V,,) .

n=1

sgn(c) = —sgn( VN)-sgn( f

This yields the simple rule that the eddy moves west-
ward unless (put a little loosely) the depth-averaged
azimuthal velocity is in the opposite direction from the
flow in the lowest active layer. _

This result helps to explain Nof’s findings (his Table
1) concerning eastward flow for strong cyclones above
anticyclones. Whether eddies with such a strong vertical
shear would be baroclinically stable involves lengthy
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calculations which are not attempted here (Ikeda, 1981,
finds two active quasi-geostrophic layers to be unstable,
for example).

Two other points may be noted. First, by making
the denominator of (2.17) small (i.e., flattening the eddy
bottom), the eddy can be made to move as fast as de-
sired, subject to the restraints imposed by the approx-
imations as Nof (1985) demonstrates. Second, as Davey
and Killworth (1984) point out, (2.17) is only of use if
the eddy does move as a coherent entity, and this in-
volves sufficient nonlinearity in the dynamics. If mo-
tions are weak enough to be geostrophic, for example,
then analysis given in the Appendix shows there to be
no steadily propagating solution.

3. Propagation speeds for subsurface continuously
stratified fluids

a. Solution

We consider the equations of motion using p as a
vertical coordinate, and write X = x, Y = y, T = ¢.
Capital letters will be used in p space, with lower case
retained for physical space.

Z,r + (Uz,)x + (v2,), =0 3.1)
B, =gz 3.2)

Du B,
DT f+—0—0 _(3.3)

Dv B,
E—T‘Ff +E_O’ (3.4)

z

ty

—

S

physical space
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where B remains the Bernoulli function

B = p + pgz, (3.5)
and

D 9 9 9
—_— + —_—
Yax TY

DT aT (36)

is the horizontal advective operator on a density sur-
face.

The physical situation considered is shown in Flg
1. The fluid lies between a rigid lid (although a free
surface can trivially be included) and a rigid floor, each
of which is assumed to be a surface of constant density,
for reasons discussed below. Warm core rings with a
surface and floor density expression (Joyce, 1984) are
not directly amenable to the analysis here. (Note that
it is not closed density contours that create the problem,
but that the surface be isopycnal.) While a strong re-
striction, it is stressed that such a restriction also applies
automatically to the layered models in the literature.

We now choose a bounding contour, p = py, to de-
lineate the “bottom™ of the eddy; restrictions on the
choice of contour will be given below: The surface lies
on'p = p,, Then the volume anomaly

Q= f(z ~ 2,,),dXdYdp (3.7)

is defined, where z.(X, Y, p) is the depth of the density
contour far from the eddy. Thus
0-[-zaaxay, o=p, G

corresponds exactly with the layered case in section 2.
The centroid (X, Y) is defined by

Y
> P=Pt

S

’—\_/_‘ P=Po

Z,(p)

/ 7 d / p=pH

density space

FIG. 1. The two coordinate systems used for continuously stratified eddies.
2.(p) is the depth of the surface of density p far from the eddy.
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0% - J‘ (z — 2..),XdXdYdp. (3.9) Provided (3.15b) is satisfied, (3.13) becomes

. c=Xr= f Yuz,dXdYdp (3.17)

We note that a f oQ

or
dXdYdp = f — dXde , (3.10
de Z® P=) % b, (3:10) c =f—g r’drvz,dXdYdp = 70 ) r’drVdxdydz
0 0
so that (3.18)
=0 3.11 .

Or ( ) after reexpression, first into polar coordinates, and sec-
o _ ond into physical space. Alternatively, in coordinates
OXr= f zudXdYdp. (3.12) moving eastward at speed ¢, a streamfunction ¢ exists

Seeking again Y7 equal to zero, and further differen-
tiating (3.12) gives

_ Dv
0=QYrr= f z, m dXdYdp
= —fo0Xr — 8 f Yuz,dXdYdp
1
-+ f B,z,dXdYdp. (3.13)
0

The first two terms correspond precisely to those for
the layered case. The last (pressure) term needs a little
care. We have

f Byz,dXdYdp = — f Bz,ydXdYdp (by parts, Y)

= - f [Bzyly=sidXdY

+fgzzdedep (3.149)

and the last term is a Y-derivative and so vanishes.
Thus for the pressure contribution

- [ Bzrzpaxay

to vanish, either

z, =0, p=pp Of p=p, (3.153)

or

B = fn(z),

is required. The existence of such a surface is a necessity
for the theory; there is no reason such a surface should
exist in practice. At the upper surface p = p,, z = 0, so
that (3.15a) is satisfied there. However, we cannot re-
quire (3.15a) to hold on p = p,, since this would yield
Q = 0 and a breakdown of the argument. We are thus
forced to assume (3.15b) holds on p = pp.

A special case, corresponding to the layered case, is

(3.16)

p=p oOr p=p (3.15b)

B = constant, p = p;.

from (3.1) such that

=—y,, vz, =Yy (3.19)

so that

f YdXdYdp. (3.20)

foQ

The solution (3.18) or 1ts reexpressions is the aim of
this note, but its derivation raises some interesting is-
sues that are now discussed.

b. The water below p = p,,

It is traditional to ignore water below the eddy. Yet
either this water is motionless, or it too must propagate
at the eddy speed c. Flierl (1984) has shown, for ex-
ample, that a finite lower layer supposedly at rest leaks
Rossby waves away from the eddy. Thus the lower wa-
ter merits closer attention.

If the water is at rest, the horizontal pressure gradient
must vanish. A little consideration shows that this can
only be so if

B = constant, and

P = Pb,
p = p; below the eddy, 3.21)

so that the fluid is unstratified below the eddy. For
eddies like the “Meddy,” (3.21) would not be a very
good model, but under some circumstances it would
be quite useful. The alternative is that the lower water
also moves at speed ¢ = X;. There is now no reason
why 4 similar argument cannot be applied to this water:

Q= f :" (z — z,,),dXdYdp = —Q, (3.22)

where the integral is from p, to py, the density at the
bottom. Thus we eventually obtain
-8 (PH
¢ =Xr=—
f OQ b

as a second expression for ¢, which must be equal for

rdrvz,dXdYdp (3.23)

. a steady state, so that

0 =f dpdederder,, =fdxdysz, (3.24)
ot
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converting to physical space. This can be thought of
as a different proof of the zero angular momentum
theorem of Flierl et al. (1983), and provides strong
bounds on which density surfaces are permissible
for (3.18).

c¢. Directions of propagation

Some weak restrictions and “rules of thumb” can
be placed on the direction of propagation. Suppose first
that B = constant, p = p;. Since

V? B,
foV+—=— (3.25)
r Po
is the cyclostrophic equation,
sgn(V) = sgn(B,). (3.26)

If V'is uniform in sign dbove p = p,, and using

7] -
B = gf zdp + constant, (3.27)
- op
we find that
sgn(V) = sgn(Q), (3.28) .
or
c<0, (3.29)

i.e., westward propagation. Hence flows uniform in
azimuthal direction above a surface of no motion
propagate westward. Eastward motion requires V to
change sign above p = pp.

The requirement of a surface of no motion can be
relaxed for the simple case of solid body rotation in a
cylinder of radius a (Killworth, 1983; Nof, 1985). Sub-
ject to geometrical restrictions, let

V= ulp)for (3.30)
B=alp)r, a=pofo’u(l +p) (3.31)
Zwp =Y <0, < = constant, (3.32)
and u be linear in p:
' w=u+ (p — p)it, ., it constants.  (3.33)

Then (3.18) yields (with no assumptions at p = pp)
- 1.
sgn(c) = sgn(i) sgn[u, + 5 #lop — p,)] (3.34)
after some algebra, while (3.24) implies

o+ 3 Mow = p) = 0. (3.35)

Since py > p;, the signs of u,, it are opposite, and sgn(u,)
= sgnfw, + 3i(py — p)). Thus

sgn(c) = sgn(y,) sgn(i) <0
so that the eddy again moves westward.,

(3.36)
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Indeed, a little experimentation shows that for an
eddy to move east implies strong flows in both cyclonic
and anticyclonic directions above (and below) p = p,.
It is again unclear how baroclinically stable such an
eddy would be.

4. Approximate solution for the Armi and Zenk sal
lens . '

We apply (3.18) here to lens 3, described by Armi
and Zenk (1984), whose paper gives both dynamic
height data relative to 1900 db and background strat-
ification, which suffice for the calculation. An approx-
imate value for ¢ is easily estimated. Assuming an iso-
pycnal displacement of 50 m, an azimuthal velocity of
10 cm™!, a radius of 40-50 km and a vertical depth of
1 km, (3.18) gives ¢ ~ 3 cm s~! westward. However,
the structure of the flow is fairly crucial to the calcu-

_lation, as we shall now see. Guided by Armi and Zenk’s

Fig. 10, a quadratic in r is fitted for D, the dynamic
height, and p, the density, inside a cylinder of radius
a = 50 km:

z 2
D=-g f pdz ~ Do(z)(% ~ 1) + Do(z) (4.1)
v —1900 m ) a

r? ‘
p=ps(2) + 'Y(Z)(;z' - 1) . 4.2)

Since density excursions are small (Armi and Zenk,
1984; Fig. 1) we can move freely between z and p co-
ordinates, in particular

—Y(zpeX(r’/a’— 1)

zZ= chlp=pb ~ P > (43)
so that ,
“ Y(Zse0)2
= rdnzy — Zpe) = ———— . 4.4
(0] fo N2y = Zbeo) 0o Aon) 4.4)
Now :
V = foru(p) 4.5)
once more, so that
a 4 rO
r f ridrVdz ~ o f udz, (4.6)
zp VO 4 Zboo
and (3.24) gives .
udz =0 4.7
-H

for no net circulation. Cyclostrophy and the assump-
tion of no motion at p = p; (as yet undefined) give

2po(z)

Sfu(l + p) = o (4.8)
Doz = Dy, 4.9
Po=0, z=2zpy. (4.10)
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Guessing the value of z,, (or, equivalently, p;) gives
Po = Do — D(zbe0) (4.11)

for some unknown 2z, and we require V =u = 0
there. Now (4.8) implies u(z), and (4.7) will provide a
restriction which enables z,,, to be found.

Armi and Zenk (1984) give fits in D linear in r; it is
straightforward to convert these to the quadratic fits
required here. The fits are extended linearly from 400
db to the surface, and D is assumed zero below 1900
db, lacking data (Zenk, private communication, 1985),
though this is naturally questionable.

Equation (4.7) then yields a surface of no motion at
about 1500 m, which gives anticyclonic motion above
this level and weak cyclonic flow below it. Substitution
into (3.18) then gives

¢~ —-09cms™}, (4.12)

which is not unreasonable.

There are many uncertainties in the calculation;
however the strongest effect is caused by a lowering of
the p, surface, since the denominator (4.4) depends on
v¥(zp), which decreases rapidly below 1600 m. An in-
crease in ¢ by a factor of 2 could be achieved by choos-
ing z, at 1800 m, for example. Other imponderables
(e.g., the deep and near-surface dynamic topography)
have a weak effect on the calculation, but could easily
provide an offset (via a mean flow) that could advect
the lens eastward. While plausible, z, = 1500 m does
not agree with the current meter data at 1608 m (Armi
and Zenk, 1984; Fig. 14) which indicates anticyclonic
flow at that depth. Whether this reflects errors in the
model fit, or in the assumption of a surface of no mo-
tion, remains unclear.

5. Summary

This note serves two functions. First, it extends and
consolidates the various approaches in the literature to
the steady propagation speed for an almost radially
symmetric eddy on a beta-plane. Both multilayered
and continuously stratified fluids are included. Second,
it draws attention to assumptions that underpin the
extant theories, in particular that the eddy be bounded
by a lower density surface on which the linear Bernoulli
function be a function only of the depth of that surface, -
correct to first order in the small beta parameter. There
is also a requirement (Flierl et al., 1983; Nof, 1985)
that the eddy decay sufficiently rapidly away from its
center (although the requirement of finite mass anom-
aly Q is the strongest condition, needing the depth
anomaly to decay faster than r~2, exactly as in the pa-
pers cited). ,

At no stage has it been proved that such structures
can exist, nor that they are stable. If they exist and are
stable, however, then they propagate at the speeds given
in the text. The dependence of the theory on the struc-
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ture of the bounding density surface suggests that it
may be possible for eddies arbitrarily close to those
studied here to propagate steadily, although with a dif-
ferent dynamical balance. It merely requires the Ber-
noulli terms in (3.14) to be of order ¢, not order 1, at
each density level for which the theory is evaluated, in
such a way as to make ¢ the same over a variety of
density levels. Such a model is beyond the scope of
this work.
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APPENDIX
Geostrophic Flow

We demonstrate for the layered fluid of section 2
that no steadily propagating geostrophic solution of
any shape can normally exist. Taking axes moving
eastward at speed ¢ (assumed small, as is the beta-effect)
and measuring velocities relative to the frame, we have

(fo + Byw, = B2 (Al)
Po
(fo+ BY)tn + ©) = %y (A2)
V-(uh,) =0 (A3)
together with (2.1) to define the p,. We write
h, = h0 + eh,' (A4)

and similarly for other variables, where ¢ is the small
parameter introduced in section 2. To leading order,

0 _, 0
00 =P 0 TPy (A5)
Po Po
v. (“nohno) =0 (A6)

are assumed satisfied; (A6) is nontrivial for more than
one layer, although satisfied for radially symmetric
flows. At O(e), we find

By o

_ P

v, — =, A7

f 0Po fo ( )
—pnyl ﬁy 0

U =——x—-—=ul—c A8

Foro  fo (A8)

V- (u,'h0 + ulh,t) = 0. (A9)

Solving for v,!, u,' in terms of p,! from (A7), (A8),
and substituting into (A9), followed by a summation
over the layers to eliminate pressure gradients gives

ud 8
chyl + =
= (oh + 7

n=1

h,,°v,,°) =0, (A10)
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or

(Al1)

The right-hand side of (A11) is, except in very special
circumstances, a function of x and y and so cannot be
constant. Thus weak flows cannot propagate as a co-
herent eddy, and can only disperse like Rossby waves.
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