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ABSTRACT

The problem of assimilating satellite altimeter data into an ocean model is considered for the case in which
the ocean currents are weak, so that they can be represented by a superposition of linear Rossby waves, and
the altimeter measurements are exact and available everywhere. The state of the model at each instant is
represented by a state vector, and the process of assimilating data is represented by the projection of this vector
onto the surface made up of all the model states consistent with the observations. The projection and the
evolution of the model between assimilating each batch of data may be represented by a matrix operator, whose
eigenvalues characterize the convergence properties of the scheme.

The possibility of using aitimeter observations of the ocean surface to determine the deeper structure of the
ocean is investigated. It is found to be limited by the phase separation that develops over each assimilation
cycle between modes of the ocean with the same horizontal wavenumber but differing vertical structure. If the
phase separation is small, as occurs with baroclinic Rossby waves when the assimilation period is 20 days, then
the convergence rate may be improved by increasing the assimilation period.

Detailed calculations are made for a midlatitude ocean using a model with a barotropic and two baroclinic
modes. Using a period of 100 days between assimilating new data, good phase separation between the vertical
modes is achieved when the horizontal scale of the modes is on the order of the Rossby radius (~30 km). The
altimeter data is inefficient at separating modes with shorter horizontal scales, modes with a predominant north-
south wavenumber, and baroclinic modes with a large horizontal scale. If the assimilation period is reduced to
20 days, the altimeter is better at separating the barotropic mode from the baroclinic modes at large scales.
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However, in all other respects, the use of a short assimilation period is less effective.

1. Introduction

The problem of assimilating data into ocean models
is of interest at present because of the anticipated
launch of a number of ocean monitoring satellites
(Robinson, 1985; Duchossois, 1983). These satellites
will provide much useful information from the altim-
eters, scatterometers and other instruments carried, and
it is planned to make use of the data in experiments
such as the World Ocean Circulation Experiment
planned for the 1990s (Gautier and Fieux, 1984; Allan,
1983).

Of particular importance for studies of ocean cir-
culation are the radar altimeters, because by measuring
the position of the sea surface to an accuracy of a few
centimeters they make possible the worldwide study of
tides, eddies and other features affecting the surface
topography of the ocean. Features with a period of more
than a few days are expected to be in geostrophic bal-
ance, and so for these the altimeters also give infor-
mation on the surface current field. Measurements
made by the Seasat radar altimeter enabled the Gulf
Stream and nearby cold core rings to be detected (Che-
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ney and Marsh, 1981; Bernstein et al., 1982). In the
future, improvements in instrument design and satellite
tracking should enable weaker features to be observed
as well as the large-scale changes in the strength of the
ocean gyres (Tapley, 1982; Robinson, 1985).

Given this wealth of information on the surface of
the ocean, it is natural to ask whether it can be used
to deduce the currents deeper in the ocean. The de-
velopment of surface features certainly depends on the
deeper structure; for example, the speed of Rossby
waves depends on their vertical mode number. It might
therefore be possible to reverse the process and use the
time development of the surface field to deduce the
deep structure.

One way to do this is to assimilate the data into a
numerical model. If the assimilation method and the
model used are good, then as more data is obtained
the model should ultimately converge on the real world.
In statistics the theory of such data assimilation is usu-
ally treated under the heading of estimation theory
(Deutsch, 1965), and a number of the techniques de-
veloped have been applied successfully to atmospheric
(Bubeetal., 1981; Ghil et al., 1981) and oceanographic
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problems (Marshall, 1985; Timchenko, 1984; Cor-
nuelle et al., 1985). In the present paper, however, al-
though use is made of the projection methods of esti-
mation theory, it is assumed that the measurements
and the model are error free. This is done so that the
complexities due to random noise do not detract from
the other important limits on the assimilation process.
A similar assumption was made by Talagrand (1981)
in a study of data assimilation into a one-layer reduced-
gravity model. _

We also assume that the velocities are small enough
so that the ocean can be represented by the superpo-

sition of linear Rossby waves, each of which propagates

independently. For this approximation to be valid, the
current speeds in the ocean should be less than the
phase speed of the Rossby waves. In practice the two
speeds are often of the same magnitude, so the ap-
proximation is a poor one. However, it is a good point
from which to start analyzing the problem of assimi-
lating oceanic data, and in addition, there are some
regions of ocean, for example those near the equator,
where the phase speeds of the planetary waves are large
enough for the approximation to be valid. Elsewhere
in the ocean the effect of topography may also increase
the speed of the planetary waves.

At a given instant the numerical model used to as-
similate the data may be represented by a state vector
in a many dimensional space, whose axes correspond
to the different degrees of freedom of the model. The
height measurements made by the altimeter define a
surface in this space made up of model states that have
the same ocean surface elevation. The problem of data
assimilation then reduces to finding a projection, from
the point representing the model ocean onto the surface
defined by the data, which will ultimately give con-
vergence between the model and the real world. If there
is more than one suitable projection, we would like to
know which one will give the most rapid convergence.

Section 3 of this paper shows how this scheme of
assimilating data can be represented by a matrix op-
erator. The rate of convergence of the scheme depends
on the eigenvalues of the matrix, which for stability
must have moduli less than or equal to one. Eigenvalues
with a modulus of one correspond to degrees of free-
dom for which the assimilation scheme can neither
reduce the errors nor make them worse. It is found
that even if a scheme is otherwise suitable, such be-
havior always occurs when two of the oceanic modes
with similar horizontal wavenumbers but different
vertical structure have phase increments that differ by
an integral value of 27 over each assimilation cycle.

It is shown that when the difference from 27n is
small, the modulus of the eigenvalue, |\|, remains near
one, and as a result, the efficiency of the assimilation
scheme is poor. In practice this problem most often
occurs with the higher-order Rossby waves, which have
similar frequencies. For these,

Al &~ 1 — const(w; — w;)?8t%,
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where w; and w; are the angular velocities of the two
modes and 4t is the time interval between model up-
dates. This result is used in section 5 to show that it is
more efficient to update infrequently, so that the phase
separation (w; — w;)0t is on the order of one radian,
than to update frequently.

In section 6 these results are illustrated for a model
that includes the barotropic and the first two baroclinic
modes. With an assimilation period of 100 days, the
assimilation scheme is best at separating vertical modes
with a horizontal scale on the order of the Rossby ra-
dius. The assimilation scheme is not good at separating
modes with much shorter horizontal scales, modes with
wavenumbers predominantly in the north-south di-
rection, or baroclinic modes with much larger hori-
zontal scales. If the assimilation cycle time is reduced
to 20 days, barotropic modes with a large horizontal
scale are resolved more rapidly, but otherwise the con-
vergence properties of the scheme are worse despite
the extra data used.

Finally, section 7 discusses the main results of the
paper and some of their implications.

2. Expansion in normal modes

For simplicity we neglect the gravitational part of
the ocean spectrum and assume that the ocean current
field can be represented by the superposition of a set
of linear Rossby waves. Expanding the pressure field
in terms of the Rossby waves gives

Pz, = [ dk SILPG0

Xexplik * x —iw, (k)] +c.c., (2.1)

where P is the perturbation pressure, x the horizontal
and z the vertical coordinate, ¢ time, w the angular
velocity of the wave, and c.c. the complex conjugate.
The expansion is in terms of an integral over the hor-
izontal wavenumbers K and a sum over the vertical
modes IL,(z2).

The vertical modes are defined by the eigenfunction
equation (cf. LeBlond and Mysak, 1978),

0 1 9II, 1
—_—— +—1I1,=0. 2.2
po(azpoNz az) =0 @2
With boundary conditions at the surface and at depth,
2
an"+-—N-—II,, =0, z=0
6z g
o, _ 0, z=-H.
0z

In the ocean p, is the undisturbed density profile, N
the Brunt-Viiséld frequency, g gravity, and the eigen-
value h, the equivalent depth of the mode, (gh,/f ?)!/
being its Rossby radius.
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For an individual wave P,(K)I,(z) exp(ik-x
— iw,(k)f), the geostrophic component of horizontal
velocity u, the vertical velocity w, and the surface dis-
placement { are given by

u=i mPn(k)ﬂn(Z) expli(k - x — w.(K))],
Joo

L wi(K)

oIL,(z)
Y N i

Prk)—

expli(k - x — wa(k))],

1 .
$= ;o—an(k)Hn(z) expli(k  x — w (k)] (2.3)
where i is the unit vertical vector.
The total surface displacement seen by an altimeter
is

1
=—/ dk > P,(K)I1,
%) pogf S OO

Xexplik+x —w (k)] +c.c. (2.4)

We assume that the altimeter makes measurements
over the whole ocean. If the surface displacement is
expanded in terms of its horizontal wavenumber com-
ponents,

ax, 0= JdkH(k, Hexp(ik-x)+c.c., (2.5)
then from (2.4) and (2.5),

H(k,#)= ig 2 Py(K)I1,(0) exp[—iw,(k)f).  (2.6)

Hence the problem of assimilating altimeter data be-
comes one of using Eq. (2.6) to estimate the coefficients
P from measurements of H. If the full spectrum of
oceanic waves is included, a similar equation is ob-
tained but it also contains terms for the extra gravita-
tional waves.

3. The projection process

We assume that we have an ocean model available
that correctly represents the first N vertical modes of
the ocean and their evolution in time. In the present
paper both the model and the ocean are assumed to
be linear; however, the assimilation scheme developed
can, in principal, be extended for use with a fully non-
linear model. We also assume that at time zero an initial
survey is made with the altimeter and that for each
wavenumber k a set of coefficients P,(k) is chosen con-
sistent with the data. These coefficients, denoted by the
vector my(k), are used to initialize the model. The un-
known coefficients representing the true initial state of
the real ocean are denoted by the vector ry(k).

At a time 4t later, the model vector my(k) will have
been transformed to

m™(k) = Cmyo(k), (3.1
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where C is a diagonal matrix giving the change in phase
of each mode,

C’j] = exp(—~iwj6t)6ﬂ,

where §; is the Kroneker delta function. Here and in
the next few sections we will consider only one value
of the horizontal wavenumber at a time so the k vari-
able is dropped. If h denotes the vector whose jth com-
ponent is I1;(0)/pg, then the ocean surface height pre-
dicted by the model is

H,=h-m". 3.2)

Similarly, after a time ¢, the real ocean vector r and
the observed height H, are

r(6t) =Cry, 3.3)
Hys=h-r. (3.4)

The relationships between m~, r and h are illustrated
in Fig. 1 for the case in which the ocean has two vertical
modes. Each of the variables involved is complex, so
there is also a similar diagram corresponding to their
imaginary components.

The model predicts the ocean to have evolved to
point m~, whereas in reality it is at r. The height ob-
servation does not define r exactly, but it does constrain
it to lie on the surface S given by

Hyps=h-s. (3.5)

By the Pythagorean theorem, whatever the position of
the vector r on the surface S, the separation between
the model vector and r can be reduced by projecting
m~ along the direction h normal to S. If the model
vector resulting from the projection is denoted by m*,

m'=m +h(th-r—h-m7)/(h-h). (3.6)
In terms of the vectors at time zero,
m*=Cmy+h(h-h)"'[h-C-(ro—mg)]. (3.7)

Let the error e be defined as equal to (m — r). If its

initial value is ey, then at a time &¢ later, just before

the projection is made, the error e~ is given by Cey.

As C is unitary, the length of e is the same as ey.
After the projection is made, the error e* is

e*=(—h(h-h)"'h-)e", (3.8)

where | is the unit matrix. It is convenient to write this
in the form

e*(62) = (1—P)Ce,, 3.9)

where P; = h(Z hiu)~'hj. Iterating the assimilation
cycle n times, the error after a time nét is given by

e*(ndt) = [(1— P)Cl"e,. (3.10)

From 3.8, the reduction in the error variance during
each assimilation cycle is

le=]>—|et|? = |Pe ]2 3.11)
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m~ (before projection)

(after projection)

Xy

Fi1G. 1. The projection vector for an ocean with two vertical modes. Here m™ is the
model ocean coordinate before projection, r the real ocean coordinate, S the surface
defined by the observed ocean surface elevations H,, h the vector normal to S, m*
the model coordinate after projection parallel to h, p an alternative projection, and
m," the resulting model coordinate. (Note: This diagram corresponds to the real part
of the coordinates; there will be a similar one for the imaginary parts.)

The value Pe™, the length of the projection vector from
m~ to m* (Fig. 1), is also proportional to the difference
between the sea surface elevation predicted by the
model and that observed. The model error is therefore
reduced most where this difference is at a maximum
at the moment the projection is made.

It is of interest to note that Eq. (3.8) is closely related
to the Kalman-—-Bucy and Weiner filters (Deutsch, 1965;
Sorenson, 1966), which have been used for data assim-
ilation in atmospheric models (Ghil et al., 1981). The

" Kalman-Bucy equations corresponding to (3.8) are

e*=[—(Sh}h-Sh—R)"!(Sh)*-]le”, (3.12a)
S$*=[I—(Sh)h-Sh - R)"/(Sh)*-]S, (3.12b)

where
$=CS,.

Here e and S, are the error vector and error covariance
matrix error at the end of the previous assimilation
‘cycle, and R is the covariance matrix of the observa-
tional errors. Because Eq. (3.12b) is independent of the
detailed behavior of the model, the matrix S may con-
verge to an asymptopic form. If this is used with Eq.
(3.12a), it gives the Weiner filter.

In the assimilation scheme studied in this paper, the
observational errors are assumed to be zero, so the ma-
trix R is zero. The use of a fixed projection h is then
equivalent to using the Kalman-Bucy equations, but
with § always equal to the unit diagonal matrix.

The eigenvalue problem. Consider the eigenvalue
problem

e =Cey,

[1—P)C—A]x=0, (3.13)

with eigenvalues A,, and eigenvectors x,,,. If the initial
error is expanded in the form

€= 2, UpXpm, (3.14)

m

then
e(ndt) =[(1—P)C]" 2 ctmXpm = 2 (Ap)"CtmXm.  (3.15)

Thus the rate at which the data assimilation process
reduces the initial errors depends on the magnitude of
the eigenvalues. If they are all less than one, the model
will eventually converge to the real ocean state.

In general, the eigenvalues and eigenvectors depend
in a complicated way on the variables 4;, «; and 4.
However, it is easy to show that one of the eigenvalues
is always zero and the corresponding eigenvector is
C'h. This eigenvalue arises because at every time step
one has complete information in the direction of the
vector h.

To obtain constraints on the other eigenvalues, re-
write (3.13) in the form

AnXm = (1—P)Cx,,,. (3.16)

Multiplying (3.16) by its complex conjugate, one ob-
tains

|)\m|2|xm|2 = |xm|2 - |chm|2- (317)
All of the terms in this equation are positive, so A,
must be equal to one if PCx,, is zero and less than one
if PCx,, is nonzero.

Values of |\,| equal to one are of interest because
they correspond to degrees of freedom of the ocean
whose amplitude cannot be determined from the al-
timeter data. For these eigenvectors, from Eq. (3.17),

PCx,, =0, (3.18a)
h-Cx,,=0. (3.18b)
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Using Eq. (3.16),
Cx,, = A\ Xp.

3.19)
If (x,); represents the jth component of the vector x,,,,

then Eqgs. (3.18) become
2 h; exp(id;}(x,); =0, (3.20)
j
exp(id)(Xm)j = Am(X,m); forall j. 3.21)

The phase 0; is defined as equal to —w;ét. From Eq.
(3.21), all the components of x,,, will be zero except for
those for which A, equals exp(id)).

If only one component (x,,); satisfies (3.21), then
from (3.20), the corresponding component of the pro-
jection vector h; must equal zero. Physically, this will
occur if the jth Rossby wave has no effect on the surface
elevation. Then the altimeter data cannot improve the
initial estimate of its amplitude.

The case of more than one component satisfying
(3.21) arises either if there are two or more Rossby
waves with the same angular velocity or if their sepa-
ration in angular velocity produces, over the interval
8t, a phase difference between them of 27n with n in-
teger. From (3.20) the corresponding eigenvectors must
then satisfy the equation

h-x,,=0. (3.22)
If two components satisfy (3.21), i.e.,
A= exp(idy) = exp(i&\;), (3.23)
then the corresponding eigenvector is
1 1
=084 ——0. .24
(xm)j hk ik h[ il (3 )

If there are three components so that
Am = exp(id) = exp(id)) = exp(id,),

then there will be one eigenvector of the form (3.24)
and one of the form
1 1 2
Xm)= h—kﬁjk+ Eaﬂ - Eéj,. (3.25)
In general, NV degenerate components will give (N — 1)
independent eigenvectors. -

We conclude from these results that although a single
set of altimeter observations cannot distinguish be-
tween the different vertical modes present, it is possible
to use a sequence of observations to do this, as long as
all the modes present affect the ocean surface elevation
and have different phase changes, modulo 27, between
one set of observations and the next.

4. Useful results
a. Systems of two or three vertical modes

In general, analytic solutions of the eigenvalue
equation (3.13) are not possible, except for systems of
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two, three or four vertical modes. If (3.13) is written
as

(A— M\ Dx,,=0, “.1)
where
Ajie= 8 — hiuc/y) exp(idy)
y = hid 4.2)
k

Then the eigenvalues can be found by solving the
equation
det(A— A1) =0. 4.3)

For a system of two modes this gives a quadratic
equation for A. As in the general case, one of the ei-
genvalues is zero and the other is given by

A=Ay, + Ay,

= (1 —h*/v) exp(id)) + (hi’/v) exp(idy).  (4.4)

The dependence of \, on A, 6, and &, is illustrated in
Fig. 2. The maximum value of A, occurs when §; — &,,
modulo 2, equals zero.! In practice one would want
A, to be as small as possible. This occurs when §,
— 82, modulo 27, equals =.

When the ocean has three vertical modes, one of the
eigenvalues is again zero. The determinant equation
can then be reduced from a cubic equation to a qua-
dratic, the solutions of which give the two other eigen-
values. If

B=—[(1 —hi*/v) exp(id,) + (1 — h2*/7v) exp(idy)
+ (1 - hs*/7v) exp(ids)]
C = (hi*/v) expli(d; + 85)] + (h?/v) expli(d3 + 8,)]

+(h5*/7) expli(8, +8,)],

where
Y= hlz + h22 + h32.
Then

Ny=1[-B(B*~4C)"]. 4.5)
The expressions simplify if two of the phase incre-
ments §; are equal. Thus if 8, equals 5,,

A2 = (1 — h/y) exp(id,) + (/) exp(idy)

. (46
)\3 = exp(i&z) ] ( )

As expected, having two of the phase increments equal
results in one of the eigenvalues having a modulus of
one. However, the other eigenvalue is not affected and
has the same value as in the case of two modes.

The solution (4.5) can also be expanded to show the
behavior of the eigenvalues when the difference be-
tween 0, and & is small. This gives, for A3,

! This constraint has an analogue in time-series analysis where two
frequencies cannot be distinguished if they differ by integral multiples
of the Nyquist frequency.
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FIG. 2. Argand diagram for the nonzero eigenvalue ), in a system
of two vertical modes [Eq. (4.4)]. 8, and §, are the phase increments
of the two modes. : )

A3 &~ [1 = hs®/(hy? + hs?)] exp(ids)
+ h3?/(ha? + hs?) exp(id,).  (4.7)

If this result is plotted as in Fig. 2, it shows a similar
behavior but with 43 and é&; replacing 4, and 6.

b. Perturbation solutions

A perturbation solution can be obtained for the case
where the phase difference between two or more of the
modes is small. Consider the case of N vertical modes,
in which the phase increments of the kth and /th modes
are such that (6, — 6;), modulo 2, is small. If A is the
matrix operator of Eq. (4.1) with eigenvalues A, and
eigenvectors x,,, and if A° is the operator obtained when
the perturbation (3, — ;) is zero, with eigenvalues \,°
and eigenvectors x,0, then

Axn = )‘nxn,

A%,%=7\%,°.

4.8)
4.9)

As A% is not Hermitian, we introduce the eigenvectors
y.’ of the Hermitian adjoint matrix A%,

A™y," =Ny, . (4.10)

It can be shown (Morse and Feshbach, 1953) that A,
equals (A\,%)* and that, when suitably normalized,?

G)* - X0 = . 4.11)
Writing
A=A+ A, (4.12)

2 Equation (4.10) can be written as C*(1 — P)y® = \'y°. The lowest
eigenvalue )| is equal to 0, and the corresponding eigenvector is h.
Then, from (4.11), h-x,? equals §;,. Thus, in Eq. (3.13) all of the
eigenvectors x, except the first are orthogonal to h.
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and then if 8, remains fixed while 8, varies,
A= 8;(6;— hihj/v)[exp(id;) — exp(id)).  (4.13)

The perturbation expansion for A (Matthews and
Walker, 1965) is

An=>\no+an+ Z Q_mrlQ_r_n_g
m#n A" - )‘"‘
, (4.14)
Qanmepn
+ 2 z .o
m#n p#n O\n - Amo)()‘n - >‘po)
where
Quwm= (Ymo)* * A,xno- (4.13)

The values of x,° and \,°, needed to calculate the
first-order correction, were derived earlier in Eqgs. (3.23)
and (3.24). Using a similar method, y,° can be obtained
to give

)= (i 6jk_lajl)(%+'l2’)_l- (4.16)
hy TR AV i 7
Substituting in (4.14) gives, to first order,
An = N2+ [ /(i + hP))[exp(id) — exp(idi))
= [1 — hé/(h + hP)] explidy) |
+ A/ + b)) explid) . (4.17)

Comparing (4.17) with (4.4) shows that the equation
for a perturbed eigenvalue is similar to that for a system
of two modes. Hence, the dependence of the perturbed
eigenvalue on £ and & can be portrayed by a diagram
similar to Fig. 2.

¢. Other projections

So far we have discussed only one projection, in
which the model point m~ (Fig. 1)is projected normally
onto the surface S along the direction of the vector h.
Other projections are possible, the projection in the
direction of a general vector p giving m,*, where

(4.18)

The error (m," — r) will not be reduced by all pro-
jections p. To help identify which projections are suit-
able, consider a transformation from the coordinate
system x; to a new primed system X}, in which the
scaling of each axis has been changed,

m," =m ™ —p(p-h)"'(th-m™—h-r).

x;=Bix;.
In the new system, contravariant vectors, such as any
vector s on the surface S, transform as

s’,-=6,-s,-. (419)

We assume that the transformation has been chosen
so that in the new system p’ is normal to the surface
S. Hence,

p, -s'=H, obs-
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However, in the unprimed system,

h-s= Hobs,
so from 4.19,
pi=h;lB;. (4.20)

The results obtained earlier in this paper can now be
used in the primed coordinate system. In particular, a
projection in the direction of p’ onto the surface S will
reduce the error €', defined as

=X (m;—ry1"~ 4.21)
J

Transforming back to the unprimed space, a projection
along p, where

p;=Dj/B;=h;i/B},
will minimize the error,

e'= [E sz(mj— rj)Z]l/Z. (422)
J

Thus a projection in any direction p will converge, as
long as the coefficients 8 relating h and p are positive.

This is a useful result because it gives a degree of
freedom that can be used to improve the efficiency of
the assimilation scheme. For example, Leith (1980)
has proposed that when gravity waves are present and
nonlinear effects are important, the projection should
be made onto a slow manifold to prevent the generation
of free gravity waves. This technique was used by Ghil
et al. (1981) in a study using the shallow-water equa-
tions. The extra degree of freedom might also be used
to satisfy other constraints, such as minimizing the total
energy change produced by the projection.

5. The updating strategy

In choosing an assimilation scheme, one has a choice
of the interval 8¢ or the projection vector p. In the rest
of this paper we concentrate on the choice of 6.

Equation (4.17) shows that if two of the vertical
modes have similar angular velocities, such as often
occurs with baroclinic Rossby waves in the ocean, each
cycle of the assimilation scheme is most efficient if the
time interval ¢ is sufficiently large for the phase sep-
aration 6; — §;to be on the order of one radian. How-
ever, it is not clear whether, when much data is avail-
able, it is better to use many assimilation cycles with
the interval 8¢ small, or few with ¢ large.

To investigate this further, we consider the behavior
of the modulus of the corresponding eigenvalue |\,
as the phase separation is varied. When §; — §,is zero,
then, from (3.21), |\, equals one, and as the phase
separation increases, then, from (3.17), |\,.] becomes
smaller. Writing 8, — §; as —(wz — w))8t, this means
that for small values of ¢, the terms linear in 8 must
be zero, and if the function is well behaved,

[Arel = 1—const(w; — wy)?6e% + O(8¢3). 5.1
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This behavior can be confirmed by expanding the
first-order perturbation solution for A, [Eq. (4.17)],

A= [hP exp(—iwd) + b exp(—iot)/ (i + h?),

l)\ml = [hk4 + h14 + 2hk2h12 cos((wr— w,)&t)]‘/z/(hkz + h[z).
Expanding in a power series in 8¢, one obtains
__heh?
2(hE+hd)
When the next term in the perturbation expansion
(4.14) is included, there are further 3z contributions
to |\, from the coupling to all the other modes pres-
ent. Numerical calculations show that these give a fur-
ther reduction in |A,,| similar in magnitude to that pre-
dicted by (5.2).

Using this result with (3.12), the reduction in the

corresponding component of the error vector during
each assimilation cycle is

Al =1— (wp— w)?82+ 083, (5.2)

const(wy, — wy)*8t2. (5.3)

If instead of using a time step of &¢, assimilation is
carried out » times during this period with time step
8t/n, then the error reduction during each short cycle
is

const{wy, — w;)*6t%/n?

and the reduction after » cycles is

const(wy — w;)?6t>/n. (5.4)

Comparing (5.3) and (5.4), it is seen that although
a reduction in the time interval é¢ increases the amount
of information used, it actually decreases the rate at
which the error is reduced. This is an important result,
and it means that when trying to distinguish modes of
similar angular velocity one should lengthen the cycle
time 4t, if possible, to a value such that the two modes
have a difference in phase on the order of one radian.
A result similar to this was obtained by Bube and Ghil
(1981) in a study that introduced height information
into a single-layer reduced-gravity model. It should also
be noted that the result is not connected with the prob-
lem of allowing time for high-frequency gravity-wave
modes to decay, which limits the time interval used in
some meteorological assimilation schemes (Williamson
and Dickinson, 1972).

6. Application to a Rossby wave spectrum

The theory developed so far may be applied to many
physical systems composed of independent oscillators.
As an example of how the scheme performs with a field
of Rossby waves, we will consider an ocean with con-
stant Brunt-Viisdld frequency N(z). As discussed by
LeBlond and Mysak (1978), in the limit where
«(=N2H/2g) is small the equivalent depths and ei-
genfunctions of the vertical eigenfunction equation
(2.2) are, for the barotropic mode,

HNo(z)=4o; ho=H, 6.1
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and for the baroclinic modes,

IL,(z) = A, cos(nrz/H) }

hn,= HN*H/gn*=z?) (6.2)

The dispersion relation for Rossby waves is

_ﬂkx
k-k+(f%/ghn)

In these equations H is the ocean depth, g gravity, f
the Coriolis parameter (=2 sinf), where Q is the
Earth’s angular velocity and @ the latitude; 8 is the
northward gradient of /(=29 cosf/R) where R is the
Earth’s radius. The 4 are normalization constants.

We consider a case where data is being assimilated
for the barotropic and first two baroclinic modes. The
value of N is taken to be 2 X 107* s™', the depth H
as 4000 m, and the latitude as 40°. If the constants 4
are all taken to equal one, then the vector h used in
the projection (3.6) has all its components 4, equal
to 1/pg.

The results for an assimilation cycle time ¢ of 100
days are shown in Figs. 3 and 5. Figure 3 shows the
values of |A| on the negative k, axis, and in Fig. 5 the
values are contoured for a region of the wavenumber
plane.

In these figures, the changes in |A| arise only from
the differences in phase that develop between the

wn(k) = (6.3)

.
.
.
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N
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Rossby waves over the 100 day period. On the k, axis
at a wavenumber of (—kg, 0), the phases of the baro-
tropic and the two baroclinic waves after this period
are 236°, 118° and 47°, respectively. The differences
in phase are reasonably large and result in values of
|A2] and |A3| of 0.4 and 0.7. Inspection of the eigenvec-
tors shows that A, corresponds roughly to the separation
of the barotropic mode from the two baroclinic modes.
Thus for waves of about 170 km wavelength after 300
days, the barotropic mode would be determined to an
accuracy of a few percent, and after 600 days the two
baroclinic modes would be determined to a similar ac-
curacy.

At shorter wavelengths, or higher wavenumbers, the
angular velocities of the barotropic and first baroclinic
modes are reduced and that of the second baroclinic
mode increases slightly. As a result, at a wavenumber
of (—2kg, 0), the phase increments of the three waves
during each time step are 118°, 94° and 59°, respec-
tively. The smaller spread in phase results in [A;] and
|A;3] having values of 0.94 and 0.97. These values are
much larger than before and mean that in order to
determine the amplitudes of the waves to an accuracy
of a few percent, an assimilation run lasting for a period
of 10 to 20 years would be needed. However, ifa much
larger value of 8t were used, then faster convergence
rates could be obtained.

At lower wavenumbers, the angular velocity of the
baroclinic modes decreases, but that of the barotropic

a H 10

SIToeeey,

20 /K, 10

. 0-0
00

FIG. 3. Moduli of the two nonzero eigenvalues in a system of three vertical modes along the
negative k, axis. The time interval 8¢ is 100 days. Other quantities are defined in the text. The
solid (dotted) lines correspond to the eigenvalue of smallest (largest) magnitude. The wavenumber
ko corresponds to the Rossby radius of the first baroclinic mode. Note that at small values of &,
the finite interval used has missed some of the oscillations of |A,].
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-2:0 kx / Ko =10

FIG. 4. Fifth power of the moduli of the two nonzero eigenvalues when a time interval of 20
days is used. It thus gives the error reduction after five assimilation cycles or 100 days. All other

variables as in Fig. 3.

mode increases. The latter produces an oscillation in
one of the eigenvalues, the first minimum occurring
when the phase difference between the barotropic and
baroclinic modes is approximately w, and further min-
ima when it is 3w, 5, etc. The phase difference between
the two baroclinic modes steadily decreases, and so the
modulus of the third eigenvalue tends to one. In prac-
tice one would probably try to circumvent the oscil-
lating nature of the eigenvalues by using a slightly dif-
ferent assimilation scheme for each wavenumber and
choosing 8¢ in each case so that the eigenvalues are
near a minimum.

There are two other notable features in Fig. 3. The
first is that when the phase increment of the three waves
is similar, there is an interaction between the two ei-
genvalues and they change branches, as occurs in de-
generate perturbation theory. The second is that the
oscillations in |A\;| occur over a range of between 1 and
approximately 5. This behavior is considered in the
Appendix, and it is shown that if the phases of all of
the Rossby waves are similar [Egs. (A6)], the amplitude
of |A,] lies between 1 and 1 — 2Ah,%/(h* + h,%. . ). For
the three-mode case when the 4; are equal, this lower
limit becomes %. The perturbation due to small dif-
ferences in phase between the baroclinic modes is also
studied and gives a similar result [Eq. (A20)].

Figure 5 shows the continuation of Fig. 3 into the
kx, k, plane. Except for the complexities that occur
where the values of |\;| and |A;| are similar, the contours
follow roughly circular loci. These loci correspond ap-
proximately to lines of constant angular velocity dif-

ference between two of the modes. If the two modes
have Rossby wavenumbers of S| and S;, their angular
velocities are given by

= —Bky/(k-k+ .S
wy Bkx/( 1 )} . 6.4)
wy =—Bk/(k+k+ 85
This gives an equation for the loci,
k-ky—k-k(S:*+S,%)
2_ g2
+ [slz +82+ ﬁkxM] =0. (6.5)
W) —wy

If |kl > S| (i.e., the barotropic mode) and |k| < S, (i.e.,
the baroclinic modes near the origin), then this sim-
plifies to give an equation for a circle,

B T, 8
["" T wz)z] th= [2(«»1 — o)

Changing the assimilation interval. Finally, we con-
sider the effect of changing the assimilation interval ét.
In Fig. 4, |\]° is plotted for é¢ equal to 20 days. Thus,
as with Fig. 3, it shows the reduction in error after 100
days. As expected from the analysis of section 4, when
|\l is near one the use of a smaller value of 8¢ produces
a much worse result.

However, at low wavenumbers where |\,| has a rea-
sonably small value, repeating the assimilation cycle
five times is much more effective than repeating it only
once. In this region the minimum values of |\,| lie near

-
] . (6.6)
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ky/Ko

.FIG. 5. Moduli of the two nonzero eigenvalues in a system of three vertical modes contoured
in the wavenumber k,, k, phase. All variables as in Fig. 3.

0.333 and the minimum values of |\,|> near 0.004. The
improvement occurs for values of k, less than 0.5k,
which corresponds to waves with wavelengths greater
than 350 km and periods of less than 76 days.

Thus, for these long wavelengths, a repeat period of
20 days would be successful in separating the barotropic
wave from the higher baroclinic waves. However, for
studies of the ocean eddy field, which has scales nearer
the Rossby radius, and for studies that separate the
higher baroclinic modes, much longer time intervals
are required.

7. Discussion

This paper has shown that the assimilation of data
into an ocean model can be considered as a projection
in the appropriate vector space from a point that de-
scribes the model onto the surface defined by the data.
The rate at which the model error is reduced depends
on the eigenvalues of a matrix operator, which incor-
porates both the projection and the evolution of the
ocean during each assimilation cycle.

It has also been shown that the efficiency of the as-
similation scheme depends on how much the different’
vertical modes of the ocean, with the same horizontal
wavenumber, get out of phase during each assimilation
cycle. If the phase difference is too small, then the
scheme is unable to distinguish between the modes,
and the length of the assimilation cycle should be in-
creased until the phase differences are approximately
one radian. If the phase difference is large, then an
improvement in the assimilation scheme can be ob-

tained by reducing the time interval between obser-
vations.

Such improvements would be practical in a model
where it is straightforward to treat the different hori-
zontal wavenumbers individually, as we have done so
far in this paper. However, in most models it will be
easier to treat each spatial grid point in the model sep-
arately. This corresponds to using the same assimilation
scheme at all wavenumbers. Although the time interval
used in the scheme can then be chosen so that it is
efficient at the wavelengths and modes of most interest,
a problem does arise in that at other wavelengths and
for other modes the efficiency of the scheme will be
poor. :

An alternative strategy that might help to overcome
this problem is to use an adaptive scheme. This is based
on Eq. (3.11), which shows that the reduction in the
model error is greatest if new data is assimilated when
the differences between the observations and the model
are at a maximum. An adaptive scheme may therefore
be proposed that waits until the observed errors reach
their maximum before assimilating any new data.

When the theory is applied to a midlatitude ocean
it is found that for waves with horizontal scales on the
order of the Rossby radius, an assimilation cycle time

-of 100 days is efficient at separating the barotropic and
first two baroclinic modes from each other. The scheme
is not efficient with shorter wavelengths or for waves
with a north-south wavenumber because for these
waves the phase separation that develops between the
different vertical modes over a 100 day period is too
small. At longer wavelengths the scheme is efficient at
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separating off the barotropic mode but is inefficient at
distinguishing between the two baroclinic modes.

If a shorter time interval of 20 days is used, then the
scheme is even better at separating off the long wave-
length barotropic mode, but otherwise the scheme is
less efficient. However, in practice an interval of 20
days may not be quite so bad because topographic ef-
fects in the ocean can increase the frequency of many
of the waves present and so allow a shorter cycle time
to be used.

The results show that satellite altimeter data will be
of most use in determining the vertical structure of
oceanic features when these have horizontal scales on
the order of the Rossby radius. Such features include
mesoscale eddies and frontal regions such as the Gulf
Stream. At larger scales the altimeter data will also be
of use if it can be used with other sources of data that
give the required extra information on the large-scale
baroclinic field. However, its use in the study of small-
scale features or for features with dominant north-
south wavenumber, such as zonal current systems, will
be limited to the information it gives on the surface
currents only.

In practice, both model and real ocean will be af-
fected by nonlinearities and the data will be corrupted
by noise. As a result, the convergence rate of an assim-
ilation scheme will always be slower than the values
predicted by the theory in this paper. However, a num-
ber of modifications can be made that improve the
scheme. For example, the projection used can be op-
timized so as to give a faster convergence rate (Webb,
1986). Alternatively, if random noise is a problem, its
effect can be reduced by using a greater sampling rate
and averaging over neighboring samples.

‘Also we are not limited to integrating forward in
time, and an alternative technique is to repeatedly in-
tegrate the model forward and backward through the
period for which data is available (Bengtsson, 1975;
Talagrand, 1981). This technique is particularly useful
if other factors force the use of a short-time interval so
that during each individual assimilation cycle the re-
duction in the model error vector is small. Over the
many repeated cycles, the model error is further re-
duced to give a final solution where accuracy is only
limited by the accuracy and extent of the data.

Better observing systems should also eventually re-
duce the noise present, but the problem of nonlin-
earities will remain a serious one. If they are small it
might be possible to treat them as random noise. They
will usually degrade the performance of an assimilation
scheme because they move the point to which the
scheme is converging. However, nonlinearities are not
always a problem, and as shown by Ghil et al. (1981),
in regions where information is not otherwise available
the advection by nonlinearities can be beneficial.

In general, however, near surface currents are typi-
cally 20 cm s™! at midlatitudes, whereas the phase speed
of the Rossby waves is only a few centimeters per sec-
ond. The nonlinear terms in the equations of motion
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are therefore large and will have an important effect
on the scheme used. The time scale on which they
become important will be similar to the correlation
time found in ocean eddy fields (Saunders, 1983),
roughly 20 days.

If a data assimilation interval of 100 days is used
with such an eddy field, the nonlinearities would prob-
ably overwhelm the assimilation scheme. Instead, it
may be necessary to work with an assimilation cycle
time of 20 days and to compensate for its inefficiency
in separating the baroclinic modes, either by using other
sources of data or by using an improved method such
as the forward-backward assimilation scheme. Work
on this problem is continuing.

Acknowledgments. We would like to acknowledge
discussions with Dr. D. Anderson.

APPENDIX
" The Oscillations at Low Wavenumbers

We will consider the case that arises when all the
vertical modes except one have a similar phase. In the
ocean this arises with long Rossby waves when the time
step 6¢ is small, because all of the baroclinic modes
have small angular velocities and only the barotropic
modes have a large angular velocity.

In this case, the eigenvalue equation (4.1) has one
solution with eigenvalue A, equal to zero and one so-
lution with eigenvalue A\, having a magnitude between
zero and one. The rest of the solutions have eigenvalues
with magnitudes of approximately one. In this appen-
dix we obtain an expression for A\, by perturbing about
the state in which the phases of all the baroclinic waves
are equal.

1. The unperturbed state

Consider a system of N Rossby waves in which all
the phases 6 of Eq. (4.2) are equal to 8, except for the
first 8,. The results of section 3 show that the lowest
eigenvalue \, equals zero, and the higher ones A3, Aq4,
etc., equal e®. To calculate \,, expand the determinent
of the operator of Eq. (4.1):

det(A — )= [(1 — h,%/y)e™ — 2]

X[(1=h?/v)e® = N|(+ - ) +O"2), (A1)
= VY VYA = A peti4 - -]
+O(\M2). (A2)

The eigenvalues A\, correspond to the zeros of the de-
terminant, thus,

dettA—A)=(A; = NA2—N)+ - - (A —N),
==V +HEVTI )
+ O\,

(A3)

(A4)
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Eguating the coefficients of N — 1 in (A2) and (A4)
gives
MAN+ =1 —h/y)
+e(1—h2y+1—h?/y+---)
A+ (N—2)e? = e®(1 = h’/v)
+e [(N=1)+(1-h?/v)]. (AS)

Thus,

A =(1-hi/y) exp(i6)) + (hi*/v) exp(id).  (A6)

For the perturbation expansion, the corresponding
eigenfunction is also required. This is obtained by
writing (4.1) in the form,

A2x = AX. (A7)
For the first row this gives,
Mox; = (1— k2 /v)ex; — (hha/v)e® s, — -, (A8)

Substituting for A, from (A6) and rearranging the terms
gives

h.-x=0. (A9)
For the nth row,
MaXy = ~(hahy [¥)EP X1+ « oo +(1 = B2 7)™, + -+« -

(A10)

Multiplying (A9) by A,e”, subtracting from (A10) and
substituting for A, gives
[(1 = h¥/v)e™ + (hiP/v)e” x. = (hahi /7)

X (e®— e, +[(1 — ha’/v)e” + (hi’/v)e™ |xy.

| (Al1)
This simplifies to give .
Xn=—X1{hahy [[¥(1 — B*/7)]}. (A12)
Thus the eigenvector corresponding to A; is
x;=h—(y/h)t, (A13)

where (t); = §;,. In a similar way, the eigenvector of
the adjoint equation can be shown to be,

Y2=he 2 +t[(h —v/h)e™ —he ™). (Al4)

2. The perturbation equation

As in section 4, let the superscript zero represent the
unperturbed operator, eigenfunction and eigenvalue.

A%,0=7%,0. (A15)
Then,
A=A+ Y *A X+ - -

where A’ is the perturbation.

Consider the case when the mth mode is perturbed
from a phase 8 to 8,,. Then the elements of the per-
turbation matrix A! are,

(A= 8l (85— (hihj/ )l [exp(id,) — exp(id)].

(A16)

(A17)
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Substituting for x,°, y.° and A! in (A16),
[exp(i8,) — exp(id)1(hm"h1*/Y?)

Ay e A0+ T h Ty (A18)
Thus,
Ay~ (1—hy*/v) exp(idy)
+ (h?/7)[1 = (a2 (1)1 = hi*/)] exp(id)
+ (AN 1)L = 7)) explidym).  (A19)

If more of the baroclinic waves differ slightly from 4,
then their contribution can be added in a similar man-
ner, giving

N (1= hi/y) exp(idy) + (/) exp(is)
X[1= 3 (hm?/v)/(1 = hi*/7)]
+(h?/7) 2 exp(dm)(hm?/)/(1 = hi*/7).  (A20)
This can be represented geometrically in a similar
manner to Fig. 2 and shows that when Eq. (A20) holds,

12| = 11 = 2h4%/7)).

For the three-mode case, when all the values of 4 are
equal this predicts that 1 = A\, = %. This behavior is
illustrated in Fig. 3 where near the origin A; has a value
near one, and ), lies within the range predicted.
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