
Introduction

Over the last two decades, quantitative modeling of
forest management scheduling has been a challenging
research endeavor within a planning process. Perhaps the
most significant aspect of that challenge is developing a
sound forest modeling approach that accommodates
spatial requirements such as block size and adjacency as
well as multiple, often conflicting management objectives
such as wood supply, wildlife habitat, water quality, and
biodiversity. 

Spatial requirements and multiple forest objectives
are difficult to integrate in a forest management model.

Spatial requirements simply relate to size, shape and
juxtaposition of management units (i.e., harvest blocks).
For example, formulating and solving a spatially feasible
or applicable management plan that complies with given
minimum and maximum harvest block size limits and
adjacency (i.e., green-up delay) restrictions has been a
challenging research subject in management modeling
(Nelson and Fin, 1991; Baskent and Jordan, 1995).
Management objectives are multifaceted and spatial in
nature. As such, most often they do not share common
measurement units and are described with different
methods. For example, commodity objectives are usually
quantified with the amount of wood while biodiversity
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Abstract: Modeling forest management activities has been tackled by scientists over the last two decades. Both simulation and
optimization techniques have been used in solving forest management planning problems. With the introduction of ecosystems
management that focuses on the sustainable production and maintenance of ecological, social and economical values, neither
approach provided a credible solution technique to help design the complex structure of forest management activities. Alternative to
these, is a group of meta-heuristic or combinatorial optimization techniques which have just gained the attention of forest modelers.
In this paper, an attempt is made to introduce the concept of combinatorial optimization, to compare it to the traditional modeling
approaches, to explain some of the meta-heuristic solution techniques such as simulated annealing, taboo search and genetic
algorithms,  and to discuss their implications in forest ecosystem management. It was suggested that these techniques have great
potential in modeling ecosystem management in a near optimal fashion. 
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Kombine Optimizasyon Tekniklerinin Orman Ekosistem Amenajman› Tasar›m ve
Planlamas›ndaki Rolü

Özet: Orman iflletme faaliyetlerinin modellenmesi son yirmi y›l›n bilimsel çal›flmalar›na konu olmufltur. Simulasyon ve optimizasyon
planlama teknikleri, orman amenajman planlar›n›n yap›m›nda baflar›yla kullan›lmas›na ra¤men ne yaz›k ki, her iki planlama tekni¤i
de; ekonomik, ekolojik ve sosyal de¤erlerin sürdürülebilirli¤ini hedefleyen ekosistem amenajman› tasar›m ve planlama problemine
tatminkar çözüm imkanlar› sunamam›fllard›r. Bunlar›n yerine, alternatif olarak kombine optimizasyon (meta-buluflsal) teknikleri
gündeme gelmifltir. ‹flte bu makalede; bu tekniklerin genel iflleyifl prensipleri anlat›lm›fl, bunlardan genetik algoritmalar, tabu arama,
anneal benzetme yöntemleri ifllenmifl, ekosistem amenajman› problemine çözüm getiremeyen geleneksel planlama tekniklerine göre
üstünlükleri tart›fl›lm›fl ve bunlar›n ekosistem planlamas›ndaki rolü üzerine durulmufltur. Sonuç olarak, kombine optimizasyon
tekniklerinin orman ekosistem planlamas›na optimale yak›n çözüm imkanlar› sunan teknikler oldu¤u vurgulanm›flt›r.

Anahtar Sözcükler: Ekosistem Amenajman›, Modelleme, Optimizasyon, Sürdürülebilirlik



objectives may be described with the number of species,
amount of area or numerical and spatial distribution of
different forest types over a landscape. Furthermore, the
need in forest management to include spatial
configuration of forest conditions, as well as their aspatial
composition, increases the difficulty (Baskent and Jordan,
1995). Management objectives that incorporate spatial
configuration preclude using a simple forest description
with an a priori stratification (Nur et al., 2000). As a
result, traditional modeling approaches or solution
techniques are inefficient and ineffective in landscape
management design. Finding a better approach is not
straightforward, however.

In fact, spatial considerations along with the inclusion
of multiple forest values have given birth to ecosystem
management (EM). Essentially, it works on the premise
that a sustainable flow of various resource values can be
achieved by managing forests as ecosystems (Grumbine
1994; Baskent and Jordan, 1995; Baskerville, 1997).
Forest ecosystem management emphasizes the  control of
the spatio-temporal dynamics of forest landscapes by
orchestrating management interventions. Management
interventions and their timings are identified with
absolute geographic detail at the smallest forest
management units, i.e., stands, so that spatio-temporal
characteristics of the forest landscape, for example, size,
shape, distribution, proximity and dispersion of forest
patches, can be predicted and measured with respect to
objectives. It, therefore, embodies two challenges: first,
defining, quantifying and translating diverse social and
ecological values into forest objectives, and second,
designing spatially explicit management to achieve those
objectives. While the former is the prerequisite for the
management of forest ecosystems, the latter poses a
challenge in modeling and solving the ecosystem
management problem.

On the way to find a solution strategy for designing
and solving the ecosystem management problem, this
paper attempts to demonstrate the concept of meta-
heuristics, introduce some of the combinatorial
optimization techniques utilized and explain further the
utility of simulated annealing in providing solutions where
both forest composition and configuration objectives
along with spatial consideration exist.

In Search of a Solution Approach

Up until now, a variety of modeling approaches

involving a variety of forest descriptions and management
objectives have been developed using mathematical
optimizing and simulation techniques to solve the forest
ecosystem management problem. Simulation involves a
heuristic approach whereby important lessons in forest
dynamics, including spatial configuration, may be learned
on the way to finding a solution, i.e., intervention
schedule. It is a relatively simple approach as it does not
involve complex mathematical formulation in the solution
procedure. It does not, however, produce an optimal
solution due to its sequential search nature and failure to
make inter-temporal tradeoffs. Nor is simulation effective
where multiple management objectives exist. Landscape
management, however, involves multiple objectives
(composition and configuration), most of which are
conflicting and spatial in nature, and often an optimal or
near optimal solution is desired. 

Optimizing approaches, on the other hand, have the
appeal of guaranteeing an optimal schedule, even where
multiple objectives exist. There are, however, a number
of general limitations associated with the mathematical
optimization techniques such as linear and goal
programming in solving forest ecosystem management
problems. 

1. The relationship among the decision variables
must be linear, yet some of the relationships in
forest ecosystems management are non-linear. 

2. These techniques create a fractional solution to
treatments. For example, a solution would
indicate that 23.98 ha of 30 ha Spruce-Fir stand
or stand type must be harvested at period three
for the optimal solution to hold true. However,
on-the-ground implementation of such a fractional
solution creates operational problems as to what
portion of that stand to treat. 

3. These techniques are very sensitive to the number
of decision variables and constraints exhibiting
combinatorial explosion with spatial realities that
cause decision variables and constraints to
increase exponentially. After a certain number of
variables or constraints a solution cannot be
sought, impeding the capability to accommodate
additional decision options.

4. As a result of limitation #3, forest stands or cells
must be aggregated into a homogeneous units
such as age classes or stand types to reduce the
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problem size for a solution. However, stand level
details and spatial resolution are lost due to such
aggregation. 

5. Similar to the previous one, a priori forest
stratification must occur in order to formulate
forest management problems within the
mathematical programming techniques, since they
are deterministic-decision variables and
constraints must be described quantitatively a
priori. For example, harvest units (size, shape and
spatial configuration) must be pre-defined to
define the decision variables and associated
constraints to formulate the problem for a
feasible solution. Such a priori forest stratification
limits the capability to look for alternative spatial
configurations and arrangements of treatment
units leading to a better solution.  

6. They are almost impossible to formulate,
however, when management objectives involve
spatial configuration of forest conditions and their
composition (Murray 1999; Nur et al., 2000). 

Among these limitations, the issue of spatial
relationships such as the integration of block size and
adjacency constraints as well as patch size distribution in
the process of forest management model building and
solving, complicate significantly the process of model
solving. While some relaxed optimization techniques, such
as integer or mixed integer programming (MIP), have
been used in accommodating spatial constraints such as
block size and adjacency delay, MIP has shown little
promise in solving real problems in a reasonable time
(Kirby et al., 1986; Hof et al., 1994; Bettinger et al.,
1999). Several limitations directly related to problem size
and the non-linear nature of configuration objectives limit
the utility of MIP approaches (Murray, 1999; Lockwood
and Moore,1993; Bettinger et al., 1998). For example,
Bettinger et al. (1998) used MIP to solve a simple 700-
unit management problem with a single harvest choice
over five periods, but failed to obtain a feasible solution in
a reasonable time – it took several days to reach an
optimal solution for even a 40-unit, hypothetical
management problem. Optimization techniques do not
look promising where configurational objectives, such as
patch size distribution, are involved, even in a relatively
small management problem. Perhaps that explains why no
studies to date have shown a mathematical formulation
involving patch size and distribution objectives. 

Neither simulation nor mathematical optimizing
approaches alone are capable of solving the forest
landscape management design problem. A new
alternative approach is needed. One approach is the
aggregate-disaggregate approach, which solves forest
management problems in two hierarchical steps: long-
term strategic plan using optimization techniques
(aggregate) and a short-term tactical plan using
simulation (disaggregate) (Jamnick and Walters, 1993).
At the strategic level, stand level information is
aggregated into relatively homogeneous strata that
usually involve very coarse descriptions with no
geographical detail in order to reduce the problem size
for use in optimization techniques. Strategic level
planning determines aspatial intervention schedules and
maximum sustainable flows of various resources over a
given planning horizon. These guide subsequent tactical
level planning. At the tactical level, management
interventions are scheduled in a spatially explicit manner
using simulation techniques. Commonly known as harvest
block layout, this level of planning spatially aggregates
forest stands into cut blocks, and assigns harvest
sequences to stands subject to resource flows and
regulatory constraints such as harvest adjacency delay.

One of the drawbacks to this approach is the
dependency of the simulation approach on the strategic
harvest schedule to assign timing choices to aggregate
stand types. Furthermore, the strategic level optimal
solution is no more valid when it is dis-aggregated to
spatially allocate the schedule on the ground. In addition,
some important spatial considerations such as control of
patch size distribution, a proxy indicator of biodiversity
objective, are not incorporated as a management goal.
That said, the approach performs reasonably well in the
absence of complex spatial management objectives.

Combinatorial Nature of the Problem

The forest ecosystem management problem, in fact, is
combinatorial in nature as stands constitute basic units in
spatial forest modeling, with each having potentially
multiple treatment regimes over long planning horizons
(Nur et al., 2000; Murray, 1999), i.e., the number of
decision choices is factorially large, and as such cannot be
examined exhaustively. Even given a simple single harvest
activity, the problem still grows exponentially in the
number of periods to plan for. For example, suppose one
wishes to know how much of a given forest area can be
harvested in a single period. If the area is composed of 20
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units or stands, there are 220 or 1.049x106 potential
arrangements of those 20 stands and if the area is
composed of 100 stands, there are 1.267x1030

combinations. Now, consider that there are tens of
thousands of stands and up to 10 harvest periods, then
the number of alternatives quickly becomes
astronomically or combinatorially large. Since
deterministic algorithms like linear or goal programming
are not suitable for problems of that size, as explained
previously, the alternative is to consider meta-heuristics. 

Combinatorial Optimization

Finding a solution to large combinatorial problems
such as EM is similar to “finding a needle in a haystack”.
A particular class of algorithms, commonly labeled meta-
heuristics or combinatorial optimization, such as
simulated annealing and taboo search, have been able to
provide “good enough” solutions in reasonable
computational time, however (Lockwood and Moore,
1993; Boston and Bettinger, 1998; Baskent and Jordan,
2001). They are a class of intelligent search methods that
have been developed since their inception in the early
1980s. They are designed to solve complex optimization
problems where traditional methods have failed to be
effective or efficient. 

A meta-heuristic is defined as an iterative generation
process which guides a subordinate heuristic by
combining intelligently different concepts for exploring
and exploiting the search space (Baskent and Jordan,
2001; Beasley et al., 1993). It is based on the idea of
making incremental improvements by changing elements
of a solution iteratively. While EM offers a
combinatorially large number of alternatives, many of
them represent infeasible solutions and the feasible
region is not a continuous space. Thus the strategy is to
employ a smart search technique over the solution space.
Essentially, a meta-heuristic is a hybrid search technique
involving more than one algorithm, tailored to overcome
certain “traps”, i.e., local optima, in an extremely large
combinatorial solution space. These heuristics have the
ability to formulate a problem using discretionary rules
that would be difficult to formulate mathematically
(Glover and Laguna, 1997). In meta-heuristic parlance,
for example, an EM design problem would be represented
as either minimizing or maximizing an objective function
subject to some constraints such as (Baskent and Jordan,
2001): 

where

E0 = the objective function value for the current
treatment schedule

wi = the weighting coefficient that determines the
relative importance of objective i.

Fi = the different penalty cost functions associated
with n number of individual management
objectives such as control of timber flow,
opening size, and patch size distribution.

The objective function typically involves several
components, each expressed as a summation of
quantitative penalty function values and common non-
monetary units and used as a mechanism for making
tradeoffs among different objectives. The objective
function thereby accommodates different objectives
measured in different units, e.g., timber in cubic meters
and patch size distribution in hectares.

Meta-heuristics include, but are not limited to: hill
climbing or greedy random adaptive search procedures,
simulated annealing, genetic algorithms and taboo
searches and their hybrids. They basically differ from
each other in the use of a move selection and solution
mapping procedure. Some of these methods are
described in the sections that follow. 

Simulated Annealing 

Simulated annealing (SA) has been proven useful in
solving combinatorial problems such as bin packing,
circuit design, the travelling salesman problem, and
harvest scheduling (Kirkpatrick, 1984; Lockwood and
Moore, 1993; Ohman and Eriksson, 1998). Finding the
optimum schedule of dozens of interventions for
thousands of stands over time is an example in forest
management.

Simulated annealing strives to find an optimum
solution to combinatorial problems by iteratively using
exploration and exploitation search techniques (Beasley,
1993). Exploration is meant to investigate new and
unknown areas in the problem solution space, whereas
exploitation makes use of previously determined solution
knowledge. A combination of these two iterative solution
search techniques is quite effective; nonetheless, it is
extremely difficult to find the best, or optimum, solution

Minimize E0 = wiS
i=1

n
Fi
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(combination). For one, the number of decision choices is
usually factorially large, and cannot be examined
exhaustively. For another, choices found favorable at one
iteration do not necessarily lead to a favorable overall,
i.e., global, solution.

Four basic components are needed in formulating and
solving a problem such as EM with SA: a forest model, an
objective function, a transition schema, and a control
parameter (Baskent and Jordan, 2001). The forest model
includes a concise characterization of the forest
landscape, stand development patterns (yield curves) and
management interventions, as well as an initial solution.
The objective function is a mathematical expression
defining forest values whose optimization is desired.
Penalty cost functions are coupled with the objective
function. They provide a mechanism whereby tradeoffs
may be made among different values identified in the
objective function. The transition schema determines how
the solution is changed from one iteration to the next.
The control parameter determines the probability of
accepting inferior solutions, and provides a mechanism
for decreasing their acceptance as the simulation
proceeds.

To find the best solution, simulated annealing alters
the intervention schedule repeatedly, evaluating the
objective function value to accept or reject changes. As
improvements are made, changes are accepted; however,
unlike the hill climbing approach, changes that worsen the
objective function value are conditionally accepted
depending on a control parameter. The occasional
acceptance of an inferior solution prevents the objective
function from converging on a local optimum (Lockwood
and Moore, 1993). 

The control parameter (c) is an important parameter
in simulated annealing. Large values result in a high
probability of accepting inferior solutions. As a simulation
proceeds, c is gradually reduced, either by a constant
rate, 90% for example, or by other means, and the
acceptance probability of inferior solutions is restricted
accordingly. Ultimately c is reduced to a point where only
improved solutions are accepted. Simulation eventually
stops when a threshold value of the control parameter, or
the objective function, is attained.

Lockwood and Moore (1993) applied simulated
annealing to the problem of finding a harvest intervention
schedule that maximized sustainable wood supply while

adhering to harvest block size limits and an harvest
adjacency delay. They demonstrated that SA could handle
such spatial constraints with reasonable speed and, at the
same time, provide a near optimal solution. Liu et al.
(2000) developed an SA algorithm to solve a similar
problem and showed that SA was able to generate
solutions superior to the hill climbing algorithm. Murray
and Church (1995) and Boston and Bettinger (1998)
compared simulated annealing to other meta-heuristics,
e.g., taboo search and MCIP, and found that SA was
generally able to locate the best solution values to simple
problems. Ohman and Eriksson (1998) demonstrated SA
potential in maintaining core areas, i.e., contiguous old
growth (Baskent and Jordan, 1995), using a small forest
of 200 stands, a single treatment, a single rotation
period, and a limited set of objectives. For landscape
management problems, however, a large number of
stands, a large set of management objectives and
constraints, a large array of silvicultural treatments, and
a long planning horizon exist. Baskent and Jordan (2001)
developed and successfully demonstrated an ecosystem
management model using the tSA technique to solve such
a complex EM problem. 

Taboo Search

Rather than selecting one choice (move) and deciding
to implement it or not as is done in simulated annealing,
a Taboo Search (TS) algorithm evaluates a number of
adjacent solutions, generated by a number of smartly
selected moves, and implements the move that improves
the objective function value most (Glover and Laguna,
1997). If all of the moves are uphill moves then the TS
implements the move that reduces the objective function
value by the smallest amount. Although these occasional
uphill moves provide a means for escaping local optima, a
mechanism is required to prevent the algorithm from
immediately returning to the previous value when that
adjacent solution is revisited next time. The key feature of
TS is the use of short-term memory to guide the
searching of the solution space. It memorizes recent
moves and once an attempt is made to evaluate any one
of these moves, the algorithm remembers it and never
returns to it. On the other hand, SA is a memory-less
algorithm because its traversal of the solution space is
completely random, and it may visit the same move many
times over the iteration. In a taboo search, once a move
has been accepted, that move is made taboo for a period
of time (i.e., taboo tenure) to force the algorithm to
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explore other parts of the solution space. However,
occasional moves may be allowed if they advance to a
more desirable solution. This metaphor is known as an
aspiration criteria.

Diversification is another important feature of TS. It
is used when improvements in objective function value
become too infrequent and a change is made simply to
cause the algorithm to search another part of the solution
space in anticipation of finding better solutions.
Diversification may include complete restarts with a new
random solution, or some larger scale perturbation of the
current or candidate solution. The algorithm terminates
when a fixed number of diversification moves are made
without improving the objective function value. 

The application of short-term memory, aspiration
criteria and diversification in the search process make TS
a unique and intelligent meta-heuristic technique. As such,
it has been successfully applied to harvest unit and
transportation system problems (Murray and Church,
1995), to wildlife and aquatic resource planning
problems (Bettinger et al., 1998), and to harvest
scheduling problems (Bettinger et al., 1999).

Genetic Algorithms

Genetic algorithms (GAs) are stochastic search
algorithms designed to search large and complex non-
continuous or non-linear spaces. They are based on the
mechanics of natural selection and genetics (Goldberg,
1989). This is done by the creation within a machine of a
population of individuals represented by chromosomes, a
set of character strings. The process relates to different
individuals competing for resources in the environment.
Some are better than others. Those that are better are
more likely to survive and propagate their genetic
material. As a genetic algorithm runs, the operations
performed on the population of chromosomes guide it
toward better and better solutions to the problem. Since
genetic algorithms are most often used for complex
problems, the user may never know how close a given
solution is to the true optimum. 

What basically happens is that a pair of chromosomes
(i.e., decision choices) cross each other, exchange chunks
of genetic information and drift apart. This is the
crossover operation that happens in an environment
where the selection of who gets to mate is a function of
the fitness of the individual, i.e., how good the individual
is at competing in its environment. In the harvest

scheduling problem, for example, each chromosome may
refer to a permutation of the list of stand numbers that
are being scheduled. If there are N stands being
scheduled, then each chromosome would be a
permutation of the integers from 1 to N. As the GA runs,
the selection, mutation, and crossover operations make
gradual changes to the ordering of the integers in the
permutations on the chromosomes, i.e., the current
treatment schedule changes. This procedure is similar to
move generation in SA and TS algorithms.

These algorithms are computationally simple yet
powerful in their search for improvement and have been
applied successfully in several areas, such as scheduling,
modeling of forest owner behavior, assignment, assembly
line balancing, machine-component grouping and facility
layout problems (Kim et al., 1993; Mullen, 1996).
Application of GAs is limited in forestry. According to
Mullen (1996), GAs have successfully been used in
Southeast Forest Resources to develop operational
harvest schedules for 90% of its timberland holdings in
Florida and Georgia. For the fifteen forests that were
scheduled, the GA program found spatially constrained
harvest schedule solutions that had an average objective
function only 1.7% less than non-spatially LP optimum
solutions.

Discussions and Conclusions 

Forest management design is evolving and becoming
an intractable problem to solve. Traditional solution
techniques are unable to provide a solution to the
problem alone, since ecosystem management is a
combinatorial problem. The inclusion of biodiversity
objectives, maintenance of ecosystem integrity, social and
economical concerns, wildlife requirements, recreational
and protection (soil and water) objectives along with the
traditional commodity based objectives dramatically
increases the complexity of forest management planning
and the problem size becomes astronomically large. 

Meta-heuristics are alternative solution techniques to
the ecosystem management problem. A few meta-
heuristics are described and their potentials in forest
management are discussed. Hill climbing is the simplest
application, while taboo search, genetic algorithm and
simulated annealing are the complex methods. While
these methods belong to the same class of techniques,
they differ in application, solution tracing and move
generation methods. SA does both exploitation and
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exploration by occasional acceptance of inferior moves,
i.e., choices, while TS implements the best moves
available. However, TS uses short-term and long-term
memory to control the direction of the solution path to
guide it toward the true optimum. Genetic algorithms are
somewhat different from both TS and SA and uses GA
operators such as selection, mutation, crossover, fitness
and replacement to manipulate the permutation on the
chromosomes i.e., alternative treatment choices.
Important in GAs is the application of crossover
operations (similar to move generation), and what choice
to drop and what choice to add from a current solution. 

Murray and Church (1995) and Bettinger et al.
(1999) compared the performance of SA and TS in
solving a spatial harvest scheduling problem. According to
them, there is a slight and insignificant difference
between the algorithms, and the difference depends on
the problem formulation, parameter settings and
customized application of the algorithms. Nevertheless,
their application depends highly on the formulation and
algorithmic development of any heuristics, since they are
highly flexible and customizable compared to traditional
algorithms such as branch and bound algorithms.

All meta-heuristics generate solutions close to the
optimum and computation costs are reasonable. They
enable decision makers to assess the trade-offs between
timber production and other non-timber forest output
objectives as well as spatial conditions targeted. Thus,
they may contribute to the understanding of the complex
ecological and economic relationships within the
framework of forest management design, and to avoiding
a priori decisions due to lack of knowledge of these
interactions and the unsuitability of traditional solution
techniques.

The meta-heuristic solution techniques provide
immense opportunity to solve EM problems, since they
are powerful and considerably flexible to tailor and
customize. For example, spatial requirements such as the
harvest block size, adjacency delay issue and patch size
distributions can easily be accommodated. They
incorporate strategic forecasting and stand-specific
treatment scheduling into a single planning process,
ensuring that the integrity of information for decision
making is kept intact. Therefore, spatially explicit
management strategies can be developed to meet
spatially explicit management objectives and constraints
and thus a spatially and temporally feasible solution is
generated. The approach avoids hard constraints, which
often create an infeasible problem, and replaces them
with soft constraints whereby objective priorities are
specified. 

Given the advantages of meta-heuristics in forest
management modeling, combinatorial optimization
techniques are, however, time demanding, highly
parameterized, and may not guarantee the true global
optimum solution. To circumvent these problems,
particularly the latter, and thus to improve the solution
quality, however, researchers are trying hybrid methods
such as to combine linear programming with simulated
annealing technique (Ohman and Eriksson, 2000). While
not published yet, their preliminary results indicate that
the integrated solution approach improved the solution
quality about 9% in a simple spatial forest management
formulation. With this in mind, there is an immense
opportunity in meta-heuristics field to direct forest
modeling research to provide solutions to the emerging
ecosystem management problem where traditional
modeling techniques have failed. 
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