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ABSTRACT

We derive expressions that predict the variations of Cartesian, rotary and elliptical properties of free and
forced barotropic continental shelf waves as functions of alongshore and cross-shore location. Bottom friction
is shown to significantly complicate these expressions. Particular attention is given to the spatial variability
in the phases of forced waves as functions of the wavenumbers of the forcing and the corresponding free
wave mode. Consideration of the alongshore and across-shelf structure predicted by the theory indicates that,
for a given frequency, the relative merits of Cartesian or rotary Fourier analysis of data depends on the
location of the observation stations in the across shelf direction and on the geometry of the continental shelf
and slope. The specific case of observed, diurnal period (K,) continental shelf waves off Vancouver Island is
used to illustrate how the free and forced shelf wave models lead to different interpretations for the
wavelengths of the free wave component. The results demonstrate the nontrivial nature of the forced problem
and emphasize the need for accurate resolution of the wavenumber of the driving mechanism.

1. Introduction

Continental shelf waves have been the subject of
considerable research since their discovery by Hamon
in 1962. Documentary evidence for such coastally-
trapped subinertial oscillations is now available for
many regions of the world oceans and theoretical
studies into the nature of the waves has continued
almost unabated over the past two decades (Allen,
1980; Mysak, 1980). It is generally accepted that shelf
waves are generated primarily by the alongshore wind
stress and by tidal currents associated with the surface
tide. Despite this, however, most investigators have
tended to concentrate on freely propagating waves.
(Among the few exceptions are Adams and Buckwald,
1969; Gill and Schumann, 1974; Csanady, 1978; and
Thomson and Crawford, 1982.) The forced shelf
wave problem has not been thoroughly addressed and
therefore remains of considerable importance in
physical oceanography. Moreover, conclusive evidence
for directly-forced shelf wave motions has yet to be
published and verification of shelf waves in current
and sea level records continues to be based primarily
on free mode analysis. :

In practice, it is difficult to distinguish between
forced and free shelf wave oscillations. The main
reason for this is that the major driving mechanisms,
such as the wind, can be expressed in terms of the
free-wave cross-shelf eigenfunctions (Gill and Schu-
mann, 1974). This means, for example, that the
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across-shelf contribution to a set of current observa-
tions is determinable without regard to the origin of
the motions (Hsieh, 1982a, 1982b; Crawford and
Thomson, 1982, 1984). Such is not the case for the
alongshore structure of the waves. Here, the distinction
between free and forced oscillations is essential if a
given set of observations is to be correctly interpreted.
The distinction is especially important when only
alongshore measurements are available and the prop-
erties of possible shelf wave motions determined
through estimates of points (w, k) in frequency-
wavenumber space (e.g., Middleton et al, 1982;
Middleton, 1983).

The principal aim at this paper is to relate the
spatial difference in the phase of a forced shelf wave
of given frequency with the wavenumbers of the
forcing and the corresponding free shelf-wave mode.
It is this relationship that is used when estimating the
“wavelength” of observed shelf waves and, in certain
cases, to verify the existence of these oscillations in a
set of current or sea level observations. A secondary
aim is to discuss the relative merits of rotary versus
Cartesian representation of current vectors when de-
termining alongshore wavenumber. The paper is or-
ganized as follows. In Section 2 we present an abbre-
viated derivation of the forced vorticity equation
together with expressions for the streamfunction and
velocity components. Analytical methods for shelf
wave detection are outlined in Section 3. Solutions
to the general problem are presented in Section 4 for
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specific models of the forcing function and the appro-
priate relationships between phase and wavenumber
subsequently derived. In Section 5, the specific case
of tidally-forced, first-mode shelf waves of diurnal
frequency is considered in detail, with emphasis on
the rotary properties of the waves. A discussion and
summary follow in Section 6.

2. Formulation

We consider a homogeneous ocean of uniform
rotation rate f, variable depth H(x) and uniform shelf
width L bordered by a straight coastline and occupying
the region x € 0, ~00 < y < o0, —H < z < ( (Fig.
1). Motions are assumed to be linear and hydrostatic.
Provided the length scale L of the shelf waves is
considerably less than the external deformation radius
[i.e., f2L*/(gH) < 1], the rigid lid approximation can
be made and a mass transport streamfunction
defined by

UH =y,, VH=—y,, @.1)

where (U, V) are depth-averaged values of the instan-
taneous velocity components. Cross-differentiation of
the horizontal momentum equations and the require-
ment that the alongshore scales greatly exceed the
- cross-shelf scales (i.e., d/dy < 3/dx) leads to a wind-
forced vorticity equation in ¥ (Allen, 1980).

Solutions are obtained assuming that the cross-
shelf component of transport vanishes at the coast
and that the alongshore component of velocity van-
ishes beyond the seaward edge of the continental
shelf. Here, we further assume that the alongshore
component of the bottom stress 75 decelerates the
flow. Therefore any component of the bottom stress
that might be capable of generating shelf wave motions
(e.g., Thomson and Crawford, 1982) can be incor-
porated in a modified version of the stress 7,7 which
then includes both surface and bottom stress forcing
mechanisms.

Bottom frictional effects on wind-generated shelf
waves were discussed briefly by Gill and Schumann
(1974). The first rigorous treatment of the problem
was by Brink and Allen (1978) who demonstrated
that friction damps the free wave component and
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F1G. 1. Coordinate system. The alongshore direction (y)
is into the page.
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reduces the phase lag between the alongshore com-
ponent of the velocity and the wind relative to the
frictionless case. Bottom friction also results in a
cross-shelf phase lag with nearshore flow leading
offshore flow for a given mode. This is not necessarily
true, however, for the total response (Simons, 1983;
Brink and Allen, 1983). When stratification is incor-
porated (Brink, 1982), there is a reduction in the
effect of bottom friction and an added phase shift
with depth. As with previous models, we consider
friction to be small in the sense that the fractional
attenuation in wave amplitude per unit wavelength
is much less than unity.

A simple linear form for the bottom stress is

T8 = povv; =~ po(v/8)V = porH Yy,  (2.2)
where v is a vertical eddy coefficient, § = (2v/f)"? is
the thickness of the bottom boundary layer and r
= p/d is a friction coeflicient. Solutions to the vorticity
equation for a stress of the form (2.2) have been
presented by Brink and Allen (1978) for the case r/
fHy — 0, where H, is some scale depth (see also
Brink and Allen, 1983). )

Solutions for the above model are obtained using
separation of variables and the assumption that the
forcing term is independent of the cross-shore direc-
tion (Gill and Schumann, 1974). Substitution of

Yx, y, ) = 2 Y, (, ()

n=1

into the forced vorticity equation yields a Sturm-
Liouville eigenvalue problem for the cross-shelf wave
structure and a damped wave equation for the along-
shore structure of mode n,

cn_l‘I,n,t + ‘I,n,y + Rn‘I,n = (bn/p()f)‘rwy’ (23)
where the coefficient b, is obtained from the orthog-
onality condition for ¢, (cf., Thomson and Crawford,
1982) and ¢, is the phase speed. In the case of the
bottom stress model (2.2), the friction coefficient

R, = (fHO)—lranm (2.4)
where

0 .
anm = Ho f H 2¢m,x¢nrldx
-L

(Brink and Allen, 1978). Our requirement for weak
damping is that R,/k, < 1, where k, is the alongshore
wavenumber of the nth mode.

As stated previously, the function ¢, defining the
cross-shelf structure of the waves is the same for both
free and forced oscillations. A similar result is obtained
for the stratified case (Brink, 1982) where ¢,(x) —
¢.(x, z) now incorporates both vertical and horizontal
spatial structure. In coastal regions where horizontal
variations in density could cause significant phase
shifts over a wavelength, it may be necessary to
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include stratification when comparing phase differ-
ences in currents.

Analytical solutions for ¢, are available for certain
functional bottom topographies (e.g., Mysak, 1980)
and numerical solutions can be obtained for functional
or piecewise continuous depth profiles (e.g., Henry et
al., 1985). However, our interest is with the alongshore
rather than the cross-shore wave structure so that ¢,
is assumed known. Equation (2.3) is then solved
using the method of characteristics for two basic
types of forcing mechanisms: 1) the force vanishes
prior to some starting location y = y, and 2) the
force vanishes prior to some starting time ¢ = f,.
Setting y,, = 0 at these positions, (2.3) yields

‘I’n(ya t) = (bn/be)Fn(y)
Y
x [ Emndn, 67— ) + i, @.9)

where

F) = exp(— I Rndn) 2.6)

and where for cases (a) and (b) respectively, we have

= Yo, M= Yo — Culo. 2.7

In terms of the streamfunction (2.1), the horizontal
velocity components are

(Unr Vn) = H_l((bn\lin,y: _¢n,x‘11n): (28)

while the assumption that the alongshore flow is in
the quasi-geostrophic balance, gn, ~ fV, yields the
sea level variations,

o~ 5D~ (1T | Hdx 29)

3. Shelf wave detection

Numerous techniques exist for the detection of
propagating shelf waves in simultaneously measured
current or sea level records. For example, suppose we
had a set of simultaneous current records from m
cross-shelf locations. This allows up to m — 1 separate
modes or wave types to be least squared fitted to the
observations and provides estimates of the relative
contribution of each mode to the total signal variance.
The fitting could be based on the Cartesian velocity
components (2.8) or on the rotary vector components
(e.g., Hsieh, 1982a) and is possible irrespective of
whether the waves are free or forced. To distinguish
between the latter, it is best to have measurements
in the alongshore direction. Moreover, in the case of
wind-generated oscillations, it is imperative to have
good enough spatial coverage of the wind to resolve
the wavenumber of the prominent forcing.

Cross-spectral and cross-correlation analysis' of ob-
servations spaced alongshore are often used to verify
the presence of shelf wave motions and to provide
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estimates of wavenumbers (e.g., Middleton er al.,
1982). Cross-spectra or their normalized counterpart,
coherence, yield the relative amplitudes and phases
of two time-series records as a function of frequency
while cross-correlation gives the alongshore time lag
integrated over all frequenccy bands. If shelf wave
oscillations are present in the observations, we expect
to find significant peaks in the above functions with
phase or time lags that are consistent with those
obtained for calculated shelf waves (2.8) and (2.9).

We are concerned here with both Cartesian and
rotary descriptions of motions in the complex plane
(real equals across shelf;, imaginary equals alongshore).
The velocity vector W = U + {V at a particular
radian frequency w may be written in the following
forms

W = a cos(wt + ) + ib cos(wt + B)
— A+ei(wt+(*) + A—e—i(wt—e“)

3.1
3.2)

+ _
= e"“"'*“_)/z]{(A+ +47) cos[wz + (€ 5 - )]

. e a2
(4T — A sin[wt + (6 > ¢ )]} . (3.3)

The Cartesian description (3.1) comprises two recti-
linear components. The rotary description (3.2) com-
prises two contra-rotating circular components in the
complex plane in which 4™ and A~ are the lengths
of the rotary vectors while " and ¢~ are the respective
angles these vectors make with the x axis at time ¢
= (). The elliptical description (3.3) shows that the
resultant of either (3.2) and (3.3) is an ellipse with
major and minor axes of length |[4* + 47| and {4*
— A7}, respectively. The major axis is oriented at
angle § = $(¢* + ¢) from the x axis and the current
vector rotates anticlockwise (clockwise) when A*
— A~ is positive (negative). The velocity vector is
aligned with the major axis in direction § when wt
=3 — €.

Fourier coefficients found by use of the discrete
Fourier transform may be used to obtain the Cartesian
amplitudes and phases, the rotary amplitudes and
phases or the relevant ellipse quantities. These cal-
culations are usually made by means of the Fourier
coeflicients directly, or by the more common method
of determining spectra, cross-spectra, coherence am-
plitude and coherence phase (Mooers, 1973; Calman,
1978; Middleton, 1982). For stationary, ergodic pro-
cesses (which ocean currents are commonly assumed
to be) there is an advantage of using spectral and
coherence calculations (which require band or ensem-
ble averaging in frequency space) in preference to
individual Fourier coefficient calculations. This ad-
vantage is due to the fact that the distribution theory
for these averaged quantities is known (Koopmans,
1974) allowing confidence limits to be placed on
phase and amplitude estimates.
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To compare phases between Cartesian compdnents

from two different locations, we usually use Cartesian
coherence Cy(w) and phase vy ,(w). For example, for
-alongshore Cartesian velocity components of the form
(3.1), the Fourier coefficients ¥'(w) used to determine
these quantities are of the form V(w) = 1b exp(if)
so that the phase is given by v,, = 8; — B,. The
orientation of ellipses and the phase differences be-
tween vector motions observed at different locations
are found for the data using the rotary Fourier
techniques which are applicable to (complex) vector
series (e.g., Mooers, 1973). Coherences and phases in
this case are determined for both positive and negative
frequencies corresponding to anticlockwise and clock-
wise rotating components of the vector series. For a
given frequency, there are four coherence amplitudes
and associated phases linking “inner” and “outer”
vector products. The phases ¢ and ¢ in (3.2) and
(3.3) for two vector series are related to the inner
rotary coherence phase by -

w>0
w<0,

+ + e-l'— - 6-{’

Yilw) = —valw) =9 - _ = (3.4)

€1 €,

while the difference in orientation between the major
axes at frequency w is

1 _ _
0, —0,= El(ff +€) — (6'2F‘+ &)l

1
=3 [vi2(+w) + vi(—w)]. (3.5)
The difference in phases representing the time differ-
ence between the velocity vector of series 1 coinciding
with its major axis and the velocity vector of series 2
coinciding with its major axis is given by the phase
lag

1@ = &) = (@ — D] = 5 [rat o) = vl
' (3.6)

For a given mode and frequency, current ellipses
of continental shelf waves possess marked across-
shelf variation in amplitude, orientation and ellipticity.
Consequently it is often more advantageous to analyse
the currents in terms of their rotary components
rather than Cartesian components (Hsieh, 1982).
Close fits of observed to calculated ellipses provides
convincing evidence for these waves. Similarly, sep-
arate estimates of the alongshore phase lag can be
obtained from the clockwise and counterclockwise
rotary components. Use of rotary components also
avoids the difficulty of defining the alongshore direc-
tion, which arises when alongshore components are
compared, and enables us to take advantage of
the fact that first mode shelf waves are predominantly
clockwise (anticlockwise) rotary over
(Southern) Hemisphere shelves, especially near the
shelf break.
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4. Shelf wave models

We now use the previous derivations to obtain
shelf wave properties. Particular emphasis is on the
spatial differences in the phases and ellipse orientations
of free and forced waves. A number of forced models
are considered. (As in Section 2, the analysis is for
right-bounded waves in the Northern Hemisphere
but can readily be adapted to left-bounded waves in
the Southern Hemisphere.)

a. Free shelf waves

We begin with the case of free propagating waves
along a uniform coastline in the presence of bottom
friction. With 7,/ = 0, (2.3) yields

Y.y, 1) = Ay — cl)Fp(y)
= Ao sin(ky — wt)Fn(y); 4.1

Ap is the amplitude, F,(y) is defined by (2.7) and w
= kc is the wave frequency. Equation (4.1) combined
with (2.8) then yields the Cartesian velocity compo-
nents (dropping the subscript #7),

U = ad(R? + k)2 cosky — wt + po), (4.2a)
V = —a¢’ sin(ky — wt), (4.2b)

where ' = d/dx, a = AoF/H, py = tan™'(R/k) and,
with R < k, |ko/o'} ~ |U/V|. :

The amplitude and phases of the rotary velocity
components are obtained by equating (3.2) and W
= U + iV, using (4.2a,b); this yields

A% = Sal(ke £ ¢V + RQI2, (43)

e = Flky + tan"[R¢/(k¢ + )]} + *m*,  (4.4)

where plus corresponds to the anticlockwise and
minus to the clockwise rotary component and where
m* and m~ are positive integers. In any practical
situation, the ambiguity in phase associated with the
last term in (4.4) is removed by careful consideration
of the observations. For undamped free: waves (R

= 0), (4.4) simplifies to
€ = Fky + wm™. 4.5)

Finally, the orientation # of the major axis of the
current ellipse to the x axis is, from (4.4) with m*
+m =m,

0

i

N -

(" +¢€)
R(¢%)’
(k* + R)¢* — (')

where we have made use of the trigonometric identity

tan"'a — tan”!g = tan"(la;a%) . @D

mr + % tan"[ :I , (4.6)

1
2
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In the case of undamped waves, 6 = lam and the
major axis is either normal (# = 0°) or parallel (¢
= 90°) to the shoreline. However, in general, bottom
friction alters the currents to produce a cross-shelf
modification of the ellipse orientation as given by the
last term in (4.6). Over the inner continental shelf,
currents are mainly alongshore (i.e., |k¢/¢'| < 1) and
6 ~ 90°. Large deviations in 6 occur where the
currents are nearly circularly polarized and ellipses
are flipping orientation relative to the shore (cf.,
Fig. 3b).

Suppose we have simultaneous current velocity
measurements from two alongshore locations y;, y,
and that phase propagation is from y, to y,. In the
present coordinate system, y, > y,. Using (4.4) and
(4.7), the principal parts of the phase differences (3.4)
for the anticlockwise and clockwise rotary vectors
are, then,

Y5 = Fk(y: — »1)

R($195 — ¢201)
(kpy = ¢ )k = ¢3) + R*¢ 16,

The alongshore phase differences are not only depen-
dent on the wavenumber and alongshore separation
distance but also on the magnitude of the frictional
damping and the locations offshore where the mea-
surements are obtained. In the inviscid case, (4.8)
reduces to

+ tan"[ ] . (4.8)

Y5 = Fk(n —y), k>0 (4.9)
The same expression (4.9) holds for R # 0 if ¢ or ¢’
vanish locally at both sites or if measurements are
taken at the same distance offshore at both locations
so that ¢,05 = ¢,¢). (¢’ = 0 implies V' = 0.) Under
these conditions the wavenumber and wavelength are
given simply by

k=v3/0 —y) =vu/, —»), (4.10)

A =2x(y2 — y)/lval (4.11)
In general, however, (4.8) must be considered in its
entirety and k determined through a transcendental
equation of the form tan[g(k; y)] = G(k; x).

The wavenumber can also be determined via the
Cartesian velocity components (4.2) or the sea level
fluctuations (2.9). In fact, there are quite distinct
advantages in using these scalar quantities, as com-
pared to the rotary or ellipse components, provided
that the alongshore and cross-shore directions can be
reliably determined. (The latter necessitates a com-
paratively straight coastline with parallel bottom con-
tours.) Clearly, the phase differences for the individual
velocity components are determined by the arguments
of the cosine and sine functions in (4.2). The phase
difference between alongshore components is then
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vi(w) = Fian| S0 A

cosk(y2 — »1)

Fk(y: —») (4.12)

and is identical to (4.9) for the undamped waves.

Comparison of the Cartesian and rotary component
approaches suggests that, in general, it is more
straightforward to use the velocity components sepa-
rately when determining the relationship between
alongshore phase difference and the wavenumber of
free shelf waves. However, solutions to (4.8) are quite
tractable and the rotary analysis method is useful for
determination of the alongshore properties of free
shelf waves. Morever, it is feasible in theory to use
(4.12) to obtain an estimate of k which can then be
substituted into (4.8) to obtain an estimate of the
friction coefficient R. In practise, changes in along-
shore topography, coastline orientation or stratification
might mask any measured phase differences due to
friction alone.

b. Traveling-wave forcing: Impulsive start time
The forcing function in this case has the form

_ Jrocos(ky —'&t), t>0
T {O, /<0 (4.13)
corresponding to a progressive forcing mechanism
extending the entire length of a coast but starting
impulsively at time ¢t = 0. Substitution of (4.13) into
(2.5) gives

w—®
c

_ Ry B
o — o) sin(ky ;.ot)]

_plFy = _
R[ 0) cos(ky — wi)

Yy, ) = Do¢{ [sin(ky — @)

- cos(ky — &t)]} ,
in which 2
b c?
Dy = To9 I:_" - 2]

pof L(@ — w)* + (Rc)
and w = kc is the frequency of the free shelf wave.
As usual, friction removes the singularity at resonance
frequency @ = w.

The Cartesian and rotary velocity components are
found as before. In the case of the former, we find:

U = dko[cos(wt — ky + ) — cos(wt — ky + p)],
(4.14a)

V = d¢'[sin(wt — ky + i) — sin(wt — ky + p)],
(4.14b)
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in which

b

= ot = RO =)

®w—w

Re

ﬁ=tan"‘[A ]
W~ w

Both components consist of damped forced and free
waves of frequencies @ and « respectively. Therefore,
for an impulsively started forcing field, current and
sea level measurements made at a fixed location will
reveal oscillations at two distinct frequencies. More-
over, the Cartesian and rotary representations of each
of these oscillations can be expressed in a form similar
to that of the free waves discussed in the previous
section. Also, the wavenumber k is the same for both
the free and forced wave so that the wavelength A
= (27/v21Xy2 — y1) where, as before, v,; is the phase
difference between the two locations based on the
Cartesian or rotary components. The results clearly
suggest that impulsively generated local waves are
well served by rotary decomposition in which the
ellipse properties for each frequency are separately
determined. ‘

There are a number of additional features of the
problem worth noting. Suppose R = 0 (ie., u = g
= 0) and that we combine the free and forced wave
components in (4.14a,b) in the form,

U = 2dk¢ sinB (w— &))t:l sin[ky — % (w + &))t:l

V= 2d¢’' sinB (w — &)t] cos[ky - % (w + &;)t]

where
T()b 4

pofH (& — w)

The velocity components in this representation consist
of temporally modulated travelling waves with effec-
tive frequency w, = Hw + @) and effective phase
speed ¢, = 3(w + ®)/k. Near resonance (@ — w), the
amplitude grows as time ¢ and the effective phase
speed resembles that of the free wave. However, for
the situation where the forcing frequency is consid-
erably less than the frequency of the free waves, such
as might occur if the alongshore phase speed of the
forcing were small compared to the wave speeds of
the low mode free waves, we find w, ~ jw and c,
~ jw/k = 1c. That is, the phase speed of the combined
signal diminishes to half that of the free wave alone.
This implies that the cross-correlation between two
Cartesian velocity series (consisting of an average
over all frequency bands) can, in certain instances,
yield a phase speed which is half that predicted for a
free wave model. Similarly, for the case where the
forcing travels much more rapidly than the given free
waves, the cross-correlation between two series will

d=
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produce an effective phase speed that is close to half
the alongshore phase speed of the forcing.

¢. Traveling wave forcing: Initial start location

Here we consider a traveling wave forcing that is
zero beyond some start location y = O:
. _ {ro cos(ky — wt), y>0

0, J <0. (4.15)

This type of forcing has been considered by Gill and
Schumann (1974) and Thomson and Crawford (1982)
for wind and tidal current forcing, respectively. The
start location in the latter study was actually deter-
mined by the position alongshore where diurnal
period oscillation could first be supported by the
coastal topography. The case k = 0 for the finite
alongshore domain Y > y > 0 corresponds to the
square wave forcing model considered by Gill and
Schumann (where @ — w —~ w/2).
From (2.5) and (4.15) we obtain,

W(x, y, t) = Eg¢[F sintky — wt — 1)

— sin(ky — wt — @)],
where k = w/c is the wavenumber of the free wave,
i = tan~'[R/(k — k)] and

_ Tob !
" foo [k — kP + R}
This is distinct from the previous case in that oscil-
lations are at a single frequency and distinct from the
square wave forcing because there are two nonzero

wavenumbers. Possible resonance at k = k is removed
by friction. The Cartesian velocity components are

U = Ey¢/H {F[k costky — wt — i) — R sin(ky
— wt ~ )] — k cos(ky — wt — fi), (4.16a)
V = —Eyp'/H[F sin(ky — wt — p)
— sin(ky — wt — )] (4.16b)

The velocity components again consist of damped
free and forced waves. For R = 0 these reduce to

U = e¢lk cos(ky — wt) — k cos(tky — wt)], (4.17a)

V= ~2e¢’ sin[% (k — fc)y] cosl} (k + kyy — wt:|
(4.17b)

in which
e=Tb__1
Joo H(k — k)’
and the alongshore component has the form of a

spatially modulated traveling wave with effective
wavenumber 1(k + k). Near resonance (k ~ k)
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(U, V) =~ ylke sin(ky — wf), ¢’ cos(ky — wt)]

so that the current speeds amplify alongshore from
the start location y = 0.
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The amplitudes and phases of the inviscid rotary
constituents are

* = ¢/2{[(k¢ + ¢") — (k¢ = ¢") cos(k — k)y]?

e = ${ky + tan“'[
The ellipse orientation § = 3(e* + ¢") is then

1
§=—=tan™!

+ (ko + ¢ sin’(k — by}, (4.18)
(k¢ + ¢') sin(k — k)y ]} .
(k¢ + ¢') — (k¢ + ¢') cos(k — k)y M 1)
{ &*'(k — k) sin(k — k)y } (4.20)
2 (kK*¢? — &) + I2¢? — ¢”) — 2[kke¢? — ¢"] cos(k — kyy) * '

For k/k — 0, expressions (4.18), (4.19) and (4.20)
reduce to their counterparts for square wave forcing,
within a difference of n/2 determined by

tan~la + tan~}(1/a) = g (@>0) = — g (« < 0).

The rotary component amplitudes and phases are
seen to be nontrivial functions of along and across-
shore position. This in turn causes the current ellipse
orientation to gradually change in the x, y directions,
in contrast to the free wave case where it is either
normal or parallel to the coast. As with the free
waves, the Cartesian representation is considerably
more straightforward than the rotary representation.
Moreover, friction is easily included only for the
Cartesian components. For example, the alongshore
velocity component (4.16b) may be written

_ —Eo¢’
H

V

Gcos(y—wt+g-—p),
where R

G = (1 — 2F cos[(k — k)y] + F»)'72,
sinky — F sinky

tany = — .
i cosky — F cosky

.21

The observed wavenumber k. of a wave traveling
between stations located at y, and y, is calculated
from alongshore velocity components by

ket = Y02) = YO0 _  va
Y2 =N Y2= N
and the wavelength by

. (422)

A = 2n(y2 — 1)
cal .
Y21

Calculated values of wavenumber and wavelength are
related to those of free waves through (4.21) and
(4.22), taking into account the possible 27 ambiguity
in phase when evaluating (4.22). For distances far
downstream such that F — 0 then v = ky and key
= k (the forcing wavenumber). The response therefore

travels with the forcing and is phase locked with
phase difference /2 — u.

We noted previously that the square-wave forcing
model is obtained in the limit k/k — 0. The velocity
components (4.17a, b) are then,

U = épk cos(ky — wi)
V=-2é¢' sin(% ky) cos(% ky — wz)

for which € = 1ob/( fookH). The phases (3.4) for the
alongshore and cross-shore components are therefore

+ | +
Y5 = F3 k(y2 = y), 5 =xk(n —»)

respectively. Thus if the V' component is used to
determine the alongshore wavenumber we find that
the calculated wavelength

27
Aot = ot (2 = 1)
1 I’Y:2t|| (yZ 37

is related to the wavelength A of the free wave
component by

Ly 1
A_@()ﬁ_yl)_ikcal-

That is, the wavelength calculated using the phase
difference and alongshore distance is twice that of
the free wave solution. If the U component is used,
A= >‘cal-

5. Application of results

To this point, we have dealt mainly with the
generalized properties of shelf waves. We now apply
the results to a specific case. In particular we are
concerned with the spatial variability of rotary phases,
€%, and the ellipse orientation, § = {e* + ¢), for
first-mode, prograde waves of diurnal (K,;) frequency
propagating along a continental margin of uniform
topography. Observed waves of this type have been
described by Thomson and Crawford (1982) and by
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Crawford and Thomson (1982, 1984) for the conti-
nental margin of Vancouver Island, British Columbia.

The wavenumber k for first mode shelf waves of
K, frequency (w = 0.0417 cph) has been obtained
from the calculated dispersion curve w(k) for the
specified shelf-slope topography .appropriate to the
central coast of Vancouver Island, (Fig. 2a). We then
used this value of k (e.g., Henry et al., 1985) to derive
the cross-shelf values of ¢ and ¢’ at one kilometer
intervals seaward of the coast. The cross-shore varia-
tion in the ratio k¢/¢’ needed in the analysis is
presented in Fig. 2b.

The rotary phases and ellipse orientation for freely
propagating, frictionally damped waves are given by
(4.4) and (4.6), respectively. Frictional effects arise
solely through the inverse tangent functions whose
amplitudes versus cross-shore location x/L are plotted
in Figs. 3 and 4 for three values of R/k. At the coast,
¢ = 0, so rotary phases and ellipse orientations are
identical to those of the inviscid case. Seaward of the
coast, however, the effects of viscous induced phase
shifts become increasingly important.

In the nearshore and deep-sea regions (where |k¢/
¢'| < 1), the current cllipses for free inviscid waves
are parallel to the coast (m = 1) while in the slope
region (where |k¢/¢’| > 1) they are normal to the

o oS ‘}
‘15 1.0 _x/L 5 0
|
{3
b.
I 2
L1
e o ket
1.5 1.0 -XA

3

hediesbunetinyui e - e =
o
-

-

FIG. 2. Cross-shore depth profile (a) and corresponding velocity
component ratio k¢/¢’' ~ u/V (b) for first mode diurnal period
continental shelf waves of frequency w = 0.0417 cph (1.16 X 1073
sh ansd free wavenumber k = 3.9 X 107 m™'. The shelf width
L =10°m
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coast (m = 0). For R/k < 1, the offshore locations
where these ellipses change orientation is almost
coincident with the zeroes of (k? + R%)¢?> — (¢’)? in
(4.6). Consequently, friction only slightly alters the
locations of major (=~90°) ellipse reorientation. Tak-
ing m* = 0 and m~ = m in (4.4), we see that ¢" has
a 180° discontinuity at k¢ = —¢'(x/L ~ —0.43)
while ¢ is discontinuous at k¢ = =*¢’, as in the
inviscid case (Hsieh, 1982a). In summary, frictional
terms have a major effect on the basic patterns of
rotary phases and ellipse orientation and lead to
significant (~10°) cross-shore phase lags and cross-
isobath ellipse alignments.

We now consider the case of inviscid, tidally-forced
shelf waves of diurnal frequency. Because the wave-
length of the tidal forcing (10* km) is so much greater
than that of the free waves (102 km), the limit k/k —
0 applies in (4.19) and (4.20), whereby

£ — =y — ol sinky ]
€ Fky — tan ‘[(kd)/d)'i (1 —cosky) )’ ;.1
I (k¢/¢") sinky ] 1
o= —gtn I:(k<l>/<b’)2 ~3(1 —cosky)] T 2™
(5.2)

The corresponding expressions for the free waves are
given by (4.4) and (4. 6) with R = 0 or by (5.1) and
(5.2) with tan™'[-] =

For free inviscid waves, the principal parts of the
anticlockwise and clockwise rotary phase angles are
€= = Fky and co-phase lines are perpendicular to the
coast (dotted lines in Figs. 5 and 6). It is this form
for the waves that is used in the analysis by Crawford
and Thomson (1982, 1984). Addition of the forced
wave component modifies the phase lines such that
at only one offshore location—where the alongshore
velocity component vanishes (i.e., ¢' = 0) and k¢/¢’
changes sign—are the phases of the forced and free
waves equal for all ky. In the present example, this
occurs near 53 km offshore (x/L = —0.53). Moreover,

- there are discontinuities in the phase angles brought

about by zeroes of the denominator & = k¢/¢’ £ (1
— cosky) in (5.1). For a fixed value of k¢/¢' (ie.,
fixed offshore distance), singularities in ¢ occur in
pairs symmetric about ky = .

In the case of €' (Fig. 5), discontinuitiés in phase
are found over the continental shelf region in the
zone —2 < k¢/¢' < 0, approximately between the

- coast and 45 km offshore (cf., Fig. 2b). Except for

the vicinity of the discontinuities the anticlockwise
rotary phase changes little with location. Seaward of
this, however, €' varies continuously. In contrast, the
clockwise rotary phase (Fig. 6) is continuous in the
regions k¢/¢’' < 0 and k¢/¢’ > 2 which spans the
continental shelf and part of the slope out to about
62 km. Seaward of this location, ¢ is discontinuous
with phase values actually decreasing with increasing
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FIG. 3. Friction induced phase modifications versus cross-shore location due to the inverse tangent function in
(4.8) for the clockwise rotary phase, ¢ for first mode diurnal period shelf waves (cf. Fig. 2). « = R/k where k is the
wavenumber of the free wave component and R is the friction coefficient.

ky for alongshore location in the range /2 < ky
< 3x/2.

These results makes it clear that it is best to use
the phase angle which is continuous in the region of
interest when attempting to use the rotary properties
of currents to estimate the wavenumbers k from a
set of observations. Here, for instance, estimates
would be based on ¢ for measurements from the
shelf and inner slope regions and off Vancouver
Island on ¢* if they were from the outer slope-region.
The most reliable estimates would be for currents
measured on the inner shelf where the V-component
of the shelf-wave current is large (k¢/¢’ < 1) rather
than seaward of the shelf break where it is small.
However, even over the inner shelf, the basic nonlin-
earity of the rotary angles as a function of position
means that conversion of the phase differences (3.4)
into values for k or wavelength A cannot, in general,
be based on (4.10) or (4.11). In the present case, for
example, ¢~ changes rapidly (=90°) near the ends of
the interval 0 < ky < 2= for the zone adjacent to the

coast. Away from the ends of the interval, we find
yo1 = ak(y, — y;) for a fixed distance offshore in
this zone with § < a(x) < 1 (Fig. 7). Thus, if we had
measured v3; directly for this particular frequency
band and then converted it to a calculated wavelength
using the free wave relation (4.11) we would obtain
At = o'\ where X is the free wave length. In the
nearshore limit @ ~ }, and the “measured” wave-
length for the free wave component of the forced
wave would be estimated as 2\ = 2(2n/k) =~ 320 km
rather than the actual value of 160 km. Only for
observations taken near the offshore region where ¢’
= 0 would we have derived the correct value for A.
Using values of ¢ derived from moored current
meter records, Crawford and Thomson (1982, 1984)
find that the “observed” wavelengths of first mode
K, waves off central Vancouver Island range from
200 km in summer to 235 km in winter. The authors
link the discrepancy between these observed values
and the wavelength of 160 + 10 km obtained from
the unforced, barotropic wave model to baroclinic
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FIG. 4. Friction induced modifications to the ellipse orientations versus cross-shore location
due to the inverse tangent function in (4.6). Compare with Fig. 3.

effects and to seasonal variations due to changes in
the prevailing alongshore current. Our analysis sug-
gests an alternate explanation for at least part of the
discrepancy; namely, that there is also a forced wave
component off Vancouver Island. In this case, the
assumption that lines of constant phase ¢ are per-
pendicular to the coast is no longer valid. If we
assume that the shelf waves have a start location off
Juan de Fuca Strait, then the summer and winter
wavelengths correspond to e values of 320° and
274°, respectively. These angles, combined with Figs.
6 and 7 and the fact that the observed values are
" based on current meter measurements at the offshore
location —x/L ~ 0.13, yield respective alongshore
distances, ky, of 350° and 320° (see dotted lines in
Fig. 7). From the latter angles, we estimate that the
free wave componennt of K, shelf waves off Estevan
Point has a wavelength of 180 km in summer and
200 km in winter. These estimates from the forced
wave model are about 10-15% less than the wave-
lengths based on the free wave model and much
more closely approximate the predicted 160 km

wavelength of the free-wave component for the central
portion of Vancouver Island. Thus, baroclinic and
advective effects are presumably still important but
not to the extent required by the free wave model.

Current ellipse orientations are given (5.2) or by
its equivalent expression 6 = j(¢* + ¢). Free shelf
wave ellipses are parallel to the coast (m = 1) within
40 km of shore and seaward of 100 km, and normal
to the coast (m = 0) between 40 and 100 km offshore.
The pattern is considerably more complex for the
forced wave response and ellipse orientations depart
by as much as 45° from along or across-shore orien-
tations. Only near ky = pr (p = 0, 1, - - +), at the
coast x/L = O (where ¢ = 0) and at the offshore
distance where ¢’ = 0 are forced wave ellipses aligned
in the same direction as the free wave ellipses.

The previous results point to an obvious difficulty
in any real application of rotary components to
forced wave models: determination of the reference
location y = 0. If, as is usually the case, this is not
known with any accuracy then measured angles (¢*,
¢, 6) must be fitted to maps like those constructed
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FIG. 5. The principal part of the rotary phase ¢* (i.e., m* = 0)
for the interval 0 < ky < 2x and —1.0 < x/L < 0 for forced first
mode diurnal period shelf waves (5.1). Arrow indicates where €*
= —ky. Values in degrees.

in Figs. 5 and 6 in order to determine the locations
of current meter moorings in the intervals 2zxm < ky
< 2m(m + 1). The start location y = 0 is therefore
implied from the observations. For free waves no
such difficulty arises; co-phase lines are equally spaced
throughout the interval and (4.10, 4.11) can be applied
directly. Finally, we note that the spatial patterns of
€", € and 0 associated with forced waves could be
confused with those of free waves modified by friction
if data are available for only a few locations along-
shore. As for the case off Vancouver Island, further
complications arise because of changes in topography,
coastline curvature and stratification.

6. Discussion and summary

Forced barotropic continental-shelf waves have an
alongshore structure that is strongly dependent upon
the salient features of the forcing. A determination
of the alongshore wavenumber dependence, in con-
junction with the across-shelf structure, provides a
full description of the forced barotropic shelf-wave
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response. In this paper, we have outlined methods by
which wavenumbers (and hence wavelengths and
wave speeds) calculated from data by Fourier analysis
techniques may be related to the wavenumbers of the
free wave components of selected types of forced
shelf waves. Frictional modifications of the response
is addressed assuming frictional forces are small and
linearly dependent on alongshore velocity. The re-
sulting wavenumber dependence is compared with
that of the undamped case. While not all of the work
presented here is new in terms of forced shelf wave
theory, we provide a detailed investigation of the
alongshore wave structure that is relevant to a practical
comparison of theory with measurement. Our results
clearly emphasize the importance of knowing the
wavenumber-frequency distribution of the alongshore
forcing mechanism.

Both rotary and Cartesian current representations
are considered. Provided the alongshore direction is
readily specified (which requires relatively straight
topographic contours and coastline), there are sub-
stantial advantages to using Cartesian components
because of the simplified algebra. This is particularly
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F1G. 6. The principal part of the rotary phase ¢~ (i.e., m~ = 0)
for the interval 0 < ky < 27 and —1.0 < x/L < 0 for forced first
mode diurnal period shelf waves (5.1). Arrow indicates where €~
= ky. Values in degrees.
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true for the alongshore components because their
amplitudes are much greater than across-shore com-
ponents over much of the continental shelf. The
higher signal to noise ratio for the alongshore flow
over the inner shelf leads to improved reliability in
phase and, subsequently, wavenumber estimates.
The techniques of rotary cross-spectral analysis
between vector series permit calculation of current
ellipse orientation and differences in rotary component
phases between currents at different locations. For
cases where the coastline changes significantly over a
wavelength or for offshore regions where there is
possible ambiguity in defining the ‘“alongshore” di-
rection, rotary coherence analysis provides a more
reliable method for calculating phase differences than
Cartesian coherence analysis. However, considerable
care is required if observations are to be correctly
interpreted. In particular, there is a preferred direction
of current vector rotation leading to more nearly
circular ellipses scaward over the shelf. Consideration
of phase differences between rotary components hav-
ing the preferred direction of rotation will yield more
reliable estimates of phase lag owing to the continuous
spatial structure of phases in the region. The phase

of the oppositely rotating component, on the other
hand, has 180° discontinuities combined with small
spatial gradients in this region. The results presented
for the specific example of tidal-forced, first-mode
shelf waves of diurnal period details some of the
pitfalls associated with the rotary analysis for forced
waves. : :

- Finally, it is appropriate to note the important
effect that friction has on the amplitudes and phases
of the response in all examples given here. In particular
the effect of friction removes resonant singularities
from the solution and damps the free wave contri-
butions. However, the presence of the free and forced
frequencies (w and @) in the amplitude denominator
of the impulse start time problem, and the presence
of the free and forced wavenumbers (k and k) in the
amplitude denominator of the initial start location
problem are also important. Estimates of the friction
coefficient obtained from an assumed shallow-water
wind stress/bottom friction balance (Winant and
Beardsley, 1979) range widely and this may well be
due to these additional terms in the denominator,
which are not always small compared with the friction
term in wind-forced waves.
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