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ABSTRACT
Boyd's previous work on equatorial Rossby solitary waves, which derived the Korteweg-deVries equation

using the method of multiple scales, is here extended in several ways. First, the perturbation theory is carried

to the next highest order to (i) assess the accuracy and limitations of the zeroth-order theory and (ii)
analytically explore solitons of moderate amplitude. Second, using the refined theory, it is shown that Rossby
solitary waves will carry a region of closed recirculating fluid along with the wave as it propagates provided
that the amplitude of the wave is greater than some (moderate) threshold. The presence of such closed
“streaklines”, i.e., closed streamlines in a coordinate system moving with the wave, is an important property
of modons in the theory of Flierl, McWilliams and others. The “closed-streakline” Rossby waves have many
other properties in common with modons including (i) phase speed outside the linear range, (ii) two vortex
centers of equal magnitude and opposite sign, (iii) vortex centers aligned due north-south, (iv) propagation
east-west only and (v) a roughly circular shape for the outermost closed streakline, which bounds the region
of recirculating fluid. Because of these similarities, it scems reasonable to use “equatorial modon™ as a
shorthand for “closed-streakline, moderate amplitude equatorial Rossby soliton,” but it should not be inferred
that the relationship between midlatitude modons and equatorial solitary waves is fully understood or that
all aspects of their behavior are qualitatively the same. Kindle’s numerical experiments, which showed that
small amplitude Rossby solitons readily appear in El Nifio simulations, suggest—but do not prove—that the
very large El Nifio of 1982 could have generated equatorial modons.
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1. Introduction

Boyd (1980) used the method of multiple scales to
show that long, small amplitude Rossby waves evolved
in longitude and time according to the Korteweg-
deVries equation, which implies the existence of
Rossby solitary waves. Kindle (1982) supported this
theory through direct numerical solution of the full
nonlinear shallow water wave equations with no
approximations whatsoever. In one experiment with-
out boundaries, he initialized the flow with an exact
single soliton' (according to the theory). To the extent

that the Korteweg-deVries model is accurate, the

soliton should have propagated across the Pacific
without change in shape or form. Kindle found that
this was indeed the case: the little upstream ripples
that represented the error in the theory were so small
as to be almost invisible on his perspective plots. The
differences between the linear and nonlinear solutions
were very large, however.

! “Soliton™ will be used as a synonym for “solitary wave”
throughout this paper. The purist’s view that *“soliton” should be
reserved for solutions obtainable by the “inverse scattering” method
is falling out of favor because it is now known that the special
properties implied by “inverse scattering” apply only approximately
to solitary waves in nature.
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In a second set of experiments, Kindle added rigid
boundaries and simulated model El Nifios of various
intensities. He found—as predicted by the inverse
scattering transform theory of the Korteweg-deVries
equation—that general wind stresses readily excite
solitons and that very strong El Nifios normally
generate a train of two or three solitary waves.

A soliton wavetrain may seem almost a contradic-
tion in terms—the very word “solitary” seems to
convey the image of a single peak isolated by vast
distances from any other dynamical phenomenon,
“alone on a wide, wide sea™ as Coleridge would put
it—but in fact it is the only reasonable description of
Kindle’s results. First, the individual peaks, although
still overlapping a bit by the time the disturbance
reaches the western Pacific, closely resemble in shape,
height and speed the exact solitons predicted by the
Korteweg-deVries theory for very large times when
the peaks are completely separated. This is not sur-
prising: the solitons decay exponentially fast in x
away from the center of the soliton, so .the solitons
can be quite close together and yet have almost no
overlap at all. Figures 5, 6, and 7 of Boyd (1980)
stress this very point. Second, the nonlinear solution
in Kindle’s simulations is quite different from the
corresponding linear results because the nonlinearity
has pinched the height field into tall, narrow peaks
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instead of the low, rapid ripples created by linear
dispersion. “Soliton formation” is the most reasonable
description for this nonlinear steepening/compression
since the peaks would separate into discrete solitary
waves—with almost no further change in shape—if
the ocean were only wider.

Thus, Kindle’s results add credibility to the purely
analytic theory of Boyd (1980) and fill in some of its
gaps. Recent developments, however—one theoretical
and one observational—have raised some additional
questions which this new work will partially resolve.

The observational development is the 1982 FEl
Nifio, which is perhaps the biggest on record. Its
magnitude suggests that it may well generate very
strong Rossby solitons whose size raises two questions,
one mathematical and one physical. The mathematical
issue is the rather obvious uncertainty as to whether
the analytical theory of Boyd (1980), which was
derived through a small amplitude perturbation ex-
pansion, can be legitimately applied to the moderate
to large amplitude solitary waves created by such a
powerful El Nifo. Extending the perturbation theory
to the next highest order, as done here, is the simplest
analytical way of resolving this uncertainty.

The physical question is one posed to the author
by Dennis Moore (private communication, 1982):
can a Rossby soliton isolate a closed region of recir-
culating fluid and drag it bodily along with the wave?
Such a closed recirculation region would be of great
interest in particle tracer studies and the like. For
small amplitude, the answer is no: the Rossby wave
has a finite linear speed, and closed ‘“streaklines”
(that is, streamlines in a coordinate system moving
with the wave) can occur only if the eddy zonal
velocity is greater than (and in the same direction as)
the phase velocity. For a sufficiently large solitary
wave, however, the direct calculations presented below
show that closed streaklines are inevitable.

The theoretical development that also motivated
this work is the creation of the theory of modons by
Stern (1975) and Flierl et al. (1980). Modons come
in several varieties, but the simplest type, ‘“riderless”
dipoles in the terminology of Flierl ez al. (1980), have
many properties in common with the equatorial
Korteweg-deVries type solitons as summarized in the
abstract. On the other hand, the property of closed
“streaklines”, which is essential to midlatitude mo-
dons, is almost accidental for equatorial solitons,
which propagate as stable, unchanging solitary waves
regardless of whether the amplitude is or is not large
enough for ““closed streaklines”. In view of the interest
in modon theory in connection with Gulf Stream
rings, it seems timely (J. McWilliams, private com-
munication, 1983) to explore these similarities and
differences between equatorial solitary waves and
modons.

Section 2 extends the perturbation series of Boyd
(1980) to the next highest order while Section 3 gives
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the end results and the ensuing error estimates for
the zeroth-order theory. Section 4 discusses the rela-
tionship between equatorial solitary waves and mo-
dons while the final section is a summary and pro-
spectus. The Appendix discusses an issue which is
not part of a direct comparison between modons and
solitons, but which is nonetheless important in the
real ocean: the role of boundaries. The Appendix
shows that it is consistent, at least to zeroth order, to
neglect boundaries in applying the Korteweg-deVries
theory.

2. Derivation

Boyd (1980) applied the method of multiple scales
to the usual nondimensional shallow water waves on
the equatorial beta-plane. The wave amplitude was
assumed to be O(¢) where ¢ <€ 1 so that nonlinear
effects could be computed perturbatively. In order to
balance dispersion against nonlinearlity, it is necessary
to compute dispersive effects perturbatively also, which
can be done by assuming that the zonal length scale
is O(¢'/?). The zeroth-order equations then describe
linear, nondispersive Rossby waves. For the lowest
symmeiric mode, n = 1, the solution is (Egs. (3.35a-
¢) of Boyd, 1980) .

V0 = Ak, 7)2ye 1D, (2.1a)
_ 2
W= At 1) (9—:6L) eV (2.1b)
+ 2
# =4 iR om0

The function A(£, 7), where £ and 7 are the “slow”
longitude and time variables, is undetermined at this
order. The zeroth-order solution is extremely simple—
it contains no free parameters—because the dispersion
1s postponed to next order; the latitudinal structure
functions are the zero wavenumber limit of those for
linear Rossby waves of general wavenumber.

The solution of the first-order perturbation equa-
tions requires two steps which each yield different
information about the wave. The first step is to
impose a ‘“nonsecularity” condition on the zeroth-
order solution so that the first-order solution is
bounded. This demands that A(£, 7) satisfy the Kor-
teweg-deVries equation as shown in Boyd (1980).
The second step, which is accomplished here for the
first time, is to actually solve the first-order pertur-
bation equations to obtain the first-order corrections
to what is given in (2.1).

The general first-order equations can be written
[(3.24)-(3.26) in Boyd, 1980] as

—cu! — ' + ¢! = —u.® — 1lul — 'u0, (2.2a)

yut + ¢! = cvd, (2.2b)
—cpg' + u' + 0! = —¢.° — (¢ — (1°¢%),, (2.2¢)
where c is the linear, nondispersive phase speed.
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Equations (2.2) are completely general, .but in the
rest of this work, we will specialize A(¢, 7) to a single,
isolated solitary wave. Furthermore, since the n = 1
mode is dominant in Kindle’s (1982) simulations and
leads the wavefront across the ocean (being the fastest
Rossby waves), explicit calculations will be limited to
this one mode. For the n = | wave,

1

c=— 3 (2.3)

A(E, 7y = 0.771B? sech?{Blx — (c + )]}, (2.4)
where

¢! = —0.395B? (2.5)

is the nonlinear correction to the linear phase speed.
To simplify notation and also to shift into the

reference frame moving with the wave, let

(2.6)

X=x-— (—, - 0.39532)t.

1
3
Since (2.2a) and (2.2¢) involve u;' and ¢;' whereas
(2.2b) involves these same quantities in undifferen-
tiated form, it is useful to differentiate the y-momen-
tum equation so that three unknowns are consistently
taken as (', v', ¢;'). Then

—cuy' — y' + ¢x' = Fi, (2.7a)
yux' + ¢ly = Fy, (2.7b)
—C¢X1 + uX' + Uyl = F3, (27C)
where for the n = 1 mode
F, = ca, 21 D gy
4 ’
81 + 212y
L0 210D e 84
16
Fy = cAxxx2ye 7, (2.8b)
2
Fy = cdy SO pmamy
4 3
(=30 + 242 — 24y
—aa, 2 4 YD o (2.80)

16

[Note that the zeroth-order phase speed appears in
(2.8b) while only ¢! appears in (2.8a) and (2.8¢).]

As in Boyd (1983), the most efficient way to solve
(2.7) is to expand both the unknowns and the forcing
functions F; as series of Hermite functions, i.e.,

o' = e T 0,(XOH,()
n=0

(2.9)

and similarly for the other variables, to introduce
sumr and difference variables defined by

S'=¢'+u,
Dl=¢1_‘ul

(2.10a)
(2.10b)
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to replace ¢' and u' as unknowns, and finally to use
the “raising” and “lowering” operators to reduce the
problem down to a set of algebraic equations for the
X-dependent Hermite coefficients of Sx!, v' and Dy'.
One equation is the singlet (forced Kelvin wave)

3
Sox = Z(FIO + F3g) (2.11)
plus the triplets, one for each odd integer m,
4
3 -1 0 Sxm+1
1 Fl,m+l + F3,m+1
(m + 1) 0 '—5 Um = F2,m s
2 FS,m—l - Fl,m—l
0 2m _'3' DX,m—l
2.12)

where F;, is the mth Hermite coefficient of F;, i
= 1, 2, 3. Details of the derivation of (2.11) and
(2.12) are omitted since, apart from minor changes
in notation, they are identical with the “forced long
wave” equations (3.27) and (3.28) of Boyd (1983)
except for the replacement of the group velocity ¢ (k)
by ¢ = —'4, the zeroth-order linear phase (and group)
speed of the wave. The solution of (2.11) is trivial;
defining

(2.13)

(2.14)

Om = Fl,m+1 + F3,m+l,
5m = F3,m—l - Fl,m—l,

the solution of (2.12) is

_ 3 1, 2
SX,m+l = 2m— 1) (mo'm + 3 O 3 Fz,m) s (2153')
(m + Do + 6 —ng,m
v= m=1 , (2.15b)
D = ———3— [Zm(m + 1o
X,m—1 2(m _ 1) m

+(m+ 1)0, - g sz,,,,] . (2.150)

Since the X and y dependence of forcing function
F; is separable, computing the coefficients needed for
(2.15) via Gauss-Hermite quadrature is trivial. The
“linear” terms in (2.8), i.e., those proportional to Ay
rather than A4A4,, can be represented as exact finite
sums of Hermite functions; the corresponding solu-
tions are given in the next section. The nonlinear
terms generate an infinite series because of the extra
factor of exp(—4y?), but the series converges rapidly;
the coeflicients are listed in Table 1.

The one snag is that the denominators in (2.15) all
vanish for m = 1, which in turn demands that the
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TABLE 1. The Hermite series coefficients for the first-order lati-
tudinal structure functions V'(y), U'(y), and ¢(y). The first part of
the table lists the unnormalized coefficients while the second gives
the corresponding normalized coefficients. The latter are useful for
error analysis: the normalized Hermite functions are rather tightly
bounded by 0.785, so the error in truncating these series is less than

the sum of the absolute values of the neglected coefficients.

Vn Un [
Unnormalized
0 0 1.789276 —3.071430
1 0 0 0
2 0 0.1164146 —0.3508384E-1
3 —0.6697824E-1 0 0
4 0 —0.3266961E-3 —0.1861060E-1
5  ~0.2266569E-2 0 0
6 0 —0.1274022E-2 —0.2496364E-3
7 0.9228703E-4 0 0
8 0 0.4762876E-4 0.1639537E-4
9  —0.1954691E-5 0 0
10 0 —0.1120652E-5 —0.4410177E-6
11 0.2925271E-7 0 0
12 0 0.1996333E-7 0.8354759E-9
13 ~0.3332983E-9 0 0
14 0 —0.2891698E-9 —0.1254222E-9
15 0.2916586E-11 0 0
16 0 0.3543594E-11 0.1573519E-11
17 —~.1824357E-13 0 0
18 0 —0.377013E-13 —0.17023E-13
19 0.4920951E-16 0 0
20 0 0.35476E-15 0.1621976E-15
21 0.630264E-18 0 0
22 0 ~0.2994113E-17  —0.1382304E-17
23 ~0.1289167E-19 0 0
24 0 0.2291658E-19 0.1066277E-19
25 0.1471189E-21 0 0
26 0 —0.1178252E-21 —0.1178252E-21
Normalized
0 0 2.382126 —4.089104
1 0 0 0
2 0 0.4383689 —0.1321112
3 ~0.6177913 0 0
4 0 ~0.8523089E-2 —0.4855271
5 ~—0.1869916 0 0
6 0 —0.3641001 —0.7134305E-1
7 0.9868437E-1 0 0
8 0 0.2037216 0.7012758E-1
9 ~0.3547170E-1 0 0
10 0 —0.9094727E-1 —0.3579110E-1
11 0.1113516E-1 0 0
12 0 0.3722793E-1 0.1558009E-1
13 ~0.3169244E-2 0 0
14 0 —0.1454972E-1 —0.6310672E-2
15 0.8037800E-3 0 0
16 0 0.5524352E-2 0.2453068E-2
17 —0.1658389E-3 0 0
18 0 —0.2056290E-2 —0.9284615E-3
19 0.1654515E-4 0 0
20 0 0.7543701E-3 0.3449009E-3
21 0.8685529E-5 0 0
22 0 —0.2736964E-3 —0.1263585E-3
23 ~0.7992579E-5 0 0
24 0 0.9843520E-4 0.4580056E-4
25 0.4468420E-5 0 0
26 0 —0.3515194E-4 —0.1646057E-4

numerators in (2.15) all vanish, too. Although there
would seem to be three conditions, in fact the nu-
merators of (2.15b) and (2.15¢) are two and four
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times the numerator of (2.15a), respectively, so the
single nonresonance condition is

2(Fia+ Fs) +2(Fso— Fig) = Fyy =0, (2.16)

which explicitly is (using o, = 0.21688 and &,
= 6.48094)

—CIAX - (8/81)AXXX - 15366AAX = 0. (217)

This is the usual Korteweg-deVries equation for
the n = 1 mode [(3.35¢) in Boyd (1980)], specialized
to the case of a single soliton.

The mathematical reason for the singular denom-
inators in (2.15) is that the equations in (2.12) are
not linearly independent for m = 1. Consequently, -
one can arbitrarily choose one of the unknowns, say
v;, and then solve two of the three equations in (2.12)
fthe top and bottom rows, for example] to obtain
S>x and Dgx. Physically, this arbitrariness arises
because the free » = 1 Rossby wave is an exact
solution of (2.12). To exclude the free wave from the
first order solution so that it consists of forced waves
only, it suffices to set

v(X) = 0. (2.18)

The remaining steps are then simple: solving for
Sx' and Dy', taking their sum and difference to
recover uy' and ¢,', and finally integrating in X to
obtain u' and ¢'. The results are presented and
discussed in the next section.

3. First order solution: Discussion

The first order solution for # = 1 mode is

v = A4,V (), 3.1)
u' = AU (y) + A22U\(y), (3.2)
o' = ' 41 (y) + 4%6'(y), (3.3)

where
AX) =0.7713 sechz(BX ), (3.4)
¢' = —0.395B2, (3.5)
X=x—-(c+cMHt=x— (— —;— - 0.39532)1, (3.6)
0\ = =B+, ()
D' = Z (=5 + e’ (38

and where V'(3), U'(y), and ¢!(y) are given by
infinite Hermite series whose coefficients are listed in
Table 1.

Figures 1, 2, and 3 graph the latitudinal structure
functions at both zeroth- and first-order. Each of the
first-order functions must be multiplied by either
A(X) or c'—both of which are proportional to B>—
in comparison to its zeroth-order counterpart to
reconstruct the total v, u and ¢. One finds
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FiG. 1. A comparison of the first- and zeroth-order latitudinal
structure functions for the north-south current. Solid line is v°/
(5Ay); dashed line is V'(y) (note scaling factor).
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= (0.277B2
max|v°/ 4y 0.2778°,
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max|u'/A|
max|u®/A|
max|¢!/A|
max|¢°/A4|
These ratios are probably the best measures of the

relative importance of the first- and zeroth-order
terms since the pointwise ratios of #!/10, etc., fluctuate

= 0.334B2, (3.10)

= 0.924B2. 3.11)

2 Se— _

_3u_

FI1G. 2. A comparison of the first-order and zeroth-order latitudinal
structure functions for the zonal current. Solid line is 1°/A; dashed
line is U'(y), dotted line is U'(y) (multiples c'A).
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FI1G. 3. A comparison of the first-order and zeroth-order latitudinal
structure functions for the height. Solid line is ¢°/4; dashed line is

¢'(y); dotted line is ¢'().

wildly because #° and ¢° have zeros in y. There is a
partial cancellation between the terms proportional
to ¢'A and those proportional to 4% in u' and ¢' that
keeps the ratios comparatively small.

The first-order height field is far larger than either
of the velocity corrections. The reason is that the
strong advection tends to fill in the (relative) trough
at the equator, but the currents are only weakly
affected by ¢', which decays rapidly away from the
equator so that it is small at the ridges of ¢° at
y = 1.22. For comparison purposes,

max|¢}® = 1.093B2, (3.12)
which is only slightly larger than the ratio in (3.11).
Thus, the relative error in ¢° (if we assume the
absolute error approximately equals ¢!) is roughly
equal to the nondimensional magnitude of ¢° itself.

For the “prototype” soliton of Boyd (1980), B
= 0.394, which implies that the error ratios (3.9)
through (3.11) are only 4.3, 5.2 and 14.3%, respec-
tively. Since these ratios are rather conservative in
the sense of being defined by maximums, one is not
surprised that Kindle (1982) found only very small
differences between the zeroth-order analytic solution
and the exact numerical circulation.

For the “modon™ graphed in Fig. 4 and discussed
in the next section, B = 0.6 and the error ratios are
still only 10.0, 12.0 and 33.3%. Only the first two
ratios—both small—are relevant to Fig. 4.

The conclusion is that the zeroth-order solutions
of Boyd (1980) remain accurate even in the “modon-
like” range of moderate amplitude. One can therefore
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FIG. 4. Streamlines in the coordinate system moving with the
wave (“streaklines”) for the n = 1 Rossby soliton for B = 0.6. The
dashed line is the outermost closed streakline as computed using
the zeroth-order solution alone. The solid curves are the streaklines
calculated using the sum of the zeroth- and first-order terms. The
solid near-circle of largest radius is the outermost closed streakline.
The crosses mark the interior stagnation points.

use the analytic theory to discuss “equatorial modons”
as done in the next section.

4. Solitons and modons

The “streaklines”, which, following Flierl et al.
(1980), are defined to be the streamlines in a coor-
dinate system moving at the nonlinear phase velocity
of the wave, can be calculated by numerically inte-
grating the ordinary differential equation

& _ o

R 4.1)

where v(x, ) and u(x, y), the velocities in the
moving system, are given by

us=u(x,y) — c—c, (4.2a)

vs = v(x, y) (4.2b)

with u(x, y) and v(x, y) evaluated from the Korteweg-
deVries soliton solutions given in earlier sections. By
choosing several different arbitrary starting points, it
is trivial to map the general pattern of the circulation.
The outermost closed streakline, which is the bound-
ary between the recirculating fluid that always travels
with the wave and the other external fluid particles
that are eventually left behind as the wave propagates
westward, must intersect both equatorial stagnation
points. These can easily be found by simply printing

JOHN P. BOYD -~ 51

out u,(x, y = 0); the appearance of these stagnation
points as the soliton amplitude is increased marks
the threshold of the transition from nonrecirculating
waves to those with closed streaklines.

Figure 4 shows the results of such an analysis for
B = 0.6. The solid streaklines were computed using
the first-order solution including the one bounding
the recirculation region; for purposes of comparison,
the corresponding outermost closed streakline as cal-
culated from «° and 1° alone is shown as the dashed
line. One sees that the first-order corrections shrink
the recirculation region only a little. The threshold
for recirculation, which is B = 0.532 at first order, is
only 7% smaller at zeroth order. Thus, as found
through different criteria in Section 3, the formulas
of Boyd (1980) are accurate even well into the
moderate amplitude, recirculation regime. “Moderate”
is the appropriate description for the wave illustrated
in Fig. 4 since, taking the undisturbed thermocline
to be 100 meters, the solitary wave deepens the
thermocline to about 140 m at the two off-equatorial
peaks of the wave height ¢. What is most striking
about Fig. 4, however, is its close resemblance to the
modon graphs of Flierl et al. (1980). In each case
(assuming the modon is what Flierl ef al., 1980, call
“riderless”), the solitary wave is a dipole vortex: the
vorticity pattern north of a line drawn parallel to the
x axis and through the two stagnation points is the
exact mirror image (with reversed sign) of the vorticity
pattern to the south. In each case, the mutual inter-
action of the two vortices accelerates the total nonlin-
ear phase speed outside of the linear range. The phase
speed for linear equatorial Rossby waves for example,
lies in the range —15 < ¢ < 0 for all wavenumbers
and mode numbers while the total phase speed of the
nonlinear n = 1 soliton satisfies ¢ + ¢! < —15. In
each case, the north-south phase velocity is 0: because
of the beta effect, the soliton/modon can only prop-
agate along a latitude circle even though it is possible
for (dispersing) packets of linear Rossby waves to also
move north-south. Finally, the streakline bounding
the recirculating flow is roughly circular in shape for
both solitons and modons. Strictly speaking, the
outermost streakline is a circle in the theory of Flierl
et al. (1980), but this is probably an artifact of the
analysis: McWilliams and Zabusky (1982) give ex-
amples of numerically generated modons for which
the analytic theory with its perfectly circular boundary
is not applicable. The outermost closed streakline in
Fig. 4 is not exactly circular, but a circle can approx-
imate the curve to within about 2%.

These similarities are very striking, but there is
also at least one noteworthy difference. Closed streak-
lines are absolutely essential for modons; numerical
experiments by McWilliams ez al. (1981) have shown
that when a modon is weakened by dissipation so
that there is no longer a recirculation region, the
modon rapidly disperses as a packet of linear Rossby
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waves. In contrast, experiments with the Korteweg-
deVries equation plus dissipation show that the soliton
gradually becomes shorter and broader but never
enters a second, more rapid decay phase dominated
by dispersion. No experiments have yet been done
with dissipative equatorial solitons per se, but the fact
that there is a smooth and uneventful transition for
undamped solitons from closed streaklines to no
closed streaklines suggests that they will behave like
any other Korteweg-deVries solitons when weak
damping is applied. In summary, the existence of a
region of recirculation is life-and-death to the modon,
but is irrelevant to the structure and longevity of an
equatorial solitary wave. The equatorial trapping,
which prevents the north-south dispersion that mid-
latitude linear waves experience, is probably respon-
sible for this difference.

Another difference (perhaps) is that modon theory

is richer than equatorial soliton theory in the sense -

of including (i) “riders” and (ii) eastward-traveling
waves, Riders, to use the term coined by Flierl et al.
(1980), are radially symmetric terms that may be
added to the basic dipole modon. These riders have
been important in attempts to apply modon theory
to Gulf Stream rings since the rings appear to be
monopoles, i.e., vortices of a single sign, rather than
dipoles. The equatorial analogue would be solitons
that lack the symmetry with respect to the equator
of the n = 1 solitons discussed in Sections 2 and 3.
The eastward-traveling modons have the positive
and negative vortices interchanged so that the mutual
vortex pair interaction drives the wave east instead
of west. Far from the center of the vortex; a solitary
wave or modon has negligible amplitude and the
dynamics is linear, so it is easy to show—for either
the midlatitude beta-plane or the equatorial beta-
plane—that a necessary condition for a disturbance
to be isolated by decaying exponentially in the zonal
direction is that ¢ lie outside the range allowed to
linear waves. Thus, solitary waves whose nonlinear
interaction drives them eastward must have ¢ > 0 on
either beta-plane. This in turn implies that if an
equatorial analogue to an eastward-traveling modon
exists—and there seems no reason why not—a small
amplitude perturbation theory like that of Sections 2
and 3 will not work. Eastward-traveling modons must
have large amplitude so that the vortéx pair inter-
action is strong enough to drive the wave towards the
east in spite of the strong tendency of all long, linear
Rossby waves to propagate in the opposite direction.
It is possible, however, to create a simple heuristic
model that is highly suggestive that eastward-traveling
equatorial modons exist. The Korteweg-deVries equa-
tion is always derived as a long-wave approximation.
Benjamin et al. (1972) and Peregrine (1966) indepen-
dently pointed that it is therefore legitimate to replace
the Korteweg-deVries by any other model equation
which has the same solutions in the long-wave limit.
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Specifically, they suggested the so-called “Regularized
Long Wave” (RLW) equation, which for the n = 1
equatorial Rossby wave is

8

34— -;-Ax — 1.536644, = 0. (4.3)

A__
L7

(Note that this is not written in a moving coordinate
system.) For linear sine waves, the dispersion relation
for (4.3) is

-1

c=
3 9

[RLW], 4.4)

where k is the zonal wavenumber. When Taylor
expanded in powers of k, (4.4) agrees to within O(k*)
with the corresponding dispersion relation for the
KdV equation )

=1, 8,2
c 3 + m k* [KdV]. 4.5)
More important, however, the RLW formula “4.4)
closely agrees with the approximation

-1
T3

which was shown in Boyd (1983) to have a relative
error of no worse than 1.5% for all k, not just k < 1.
The factor of & in (4.4) gives a better approximation
than (4.6) for small k at the expense of a larger error
for large k, but the linear RLW dispersion relation
(4.4) is nevertheless uniformly accurate to within no
worse than 12% for all k.

The reader may allow himself a chuckle: ironically,
the “Regularized Long Wave” equation is really more
appropriate for Rossby waves than for the long water
waves to which it was first applied. The RLW model
captures the linear dispersion very accurately, so the
only approximation embodied in it is the nonlinear
term.

Kasahara (1977), Cane and Sarachik (1976) and
Ripa (1982) have independently shown that the linear
eigenfunctions of the shallow water wave equations
are a complete set. The RLW equation can then be
interpreted as a straightforward application of Galer-
kin’s method in which the expansion is truncated to
but a single Rossby mode. The multiple scales per-
turbation theory provides a rigorous justification for
such a drastic truncation in the long wave/small
amplitude limit: the » = 1 mode is in resonance with
itself, but not with any of the modes which are
discarded by the truncation. For solitary waves which
do not have long zonal scales or small amplitudes,
however, the only justification we can offer for the
RLW model is to point to its success for westward-
traveling modons as shown above.

The reason for pursuing this alternative RLW
model is that it predicts eastward- as well as westward-
traveling solitary waves. The soliton solutions of (4.3)
are

(4.6)
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A(x = ¢f) = —2.31B%c sech’[B(x — ct)], (4.7)

where

. —3
‘Tl -1.184B7"

When B > 0.92, ¢ is positive and A(x — cf) is
everywhere negative, just as expected from the analogy
with eastward-traveling modons. As noted earlier,
{4(0)} must be greater than some minimum so that
the nonlinear interaction of the two vortices can push
the disturbance eastward in spite of the westward
phase velocity of all linear Rossby waves: (4.6) and
(4.8) show that

(4.8)

—A(0) > 0.65

for all RLW solitary waves with ¢ > 0.

Unfortunately, even this limiting amplitude is more
than double that of the westward-traveling modon
graphed in Fig. 4, so the RLW model is likely to be
only qualitatively accurate. Still, it is highly suggestive.
Numerical work to confirm the existence of eastward-
traveling equatorial modons is now in progress, using
the RLW solution (4.7)-(4.8) to provide a first guess
for the Newton’s iteration.” :

Finally, one can mention “monopoles” (Mc-
Williams, 1982). Because these are only quasi-solitons,
slowly radiating energy away, they are not part of
modon theory except in the generalized sense. None-
theless, one would like to know whether equatorial
analogues exist or not, and the analysis of Sections 2
and 3 gives no answer. Since the monopoles—at least
in the middle latitudes—must propagate north-south
as well as east-west, the strong equatorial trapping
that confines equatorial waves to a low latitude
channel would seem to preclude equatorial monopoles
unless the monopoles are somehow reflected off the
turning latitudes to pursue a zig-zag course within a
limited latitudinal range.

4.9)

5. Summary

The extension of the perturbation theory to first
order shows that the zeroth-order theory of Boyd
(1980) is accurate even for solitons of such large
amplitude that closed regions of recirculation appear
in a coordinate system moving with the wave. The
similarities between these » = | equatorial Korteweg-
deVries solitons and the midlatitude dipole modons
of Flierl et al. (1980) are so striking that it seemed
reasonable to entitle this paper ‘“Equatorial Modons™.

2The RLW model is equally appropriate as a substitute for the
Korteweg-deVries equation in other solutions such as Rossby waves
in a midlatitude shear flow (Redekopp, 1977) or a flow over bottom
topography (Malanotte-Rizzoli, 1982). It is a little surprising that
there have been no attempts to investigate eastward-traveling
Rossby solitons except within the framework of Flierl et al. (1980)
modon models.
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However, the presence or absence of closed
“streaklines” and recirculation does not have the life-
or-death significance for equatorial solitary waves that
it does for modons, and the perturbative analysis
given here is silent on the subject of equatorial
counterparts to “riders,” eastward-traveling modons,
and “monopoles.” There seems no reason why large
amplitude eastward-traveling equatorial solitons could
not exist, so this work has raised as many questions
for the future as it has resolved.
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APPENDIX

Solitons and Continental Boundaries

The author’s earlier work on Rossby solitons, Boyd
(1980), completely ignored the effects of boundaries.
The practical reasons for this are that the Korteweg-
deVries equation can be solved by the inverse scat-
tering method only when the spatial domain is infinite
and that a full nonlinear treatment of boundary
effects would be extremely complicated. What Boyd
(1980) should have done—and did not—was to point
out that this neglect of boundaries is in fact consistent
with the perturbation theory to lowest order. -

To recognize this, one must examine the key
assumptions of the perturbation scheme, which are
the following: (i) the wave amplitude is O(¢) where
¢ < 1 and (ii) the longitudinal scale of the wave is
O(¢™'/2). Together, these assumptions imply that the
effects of both nonlinearity and dispersion are so
weak that neither can effect the wave except upon
the long time scale O(1/¢). However, the soliton
travels away from a continental boundary such as
Peru with a phase speed which is O(1). Since its
width is O(e~'/2), the soliton will be clear of the coast
(except for its exponentially small tail) after a time
of only O(e!/?)—before nonlinear effects and dispersion
can significantly alter it. Thus, to within an error of
O(¢'?), which is the magnitude of the nonlinear and
dispersive changes in the wave during the time it is
close to the coast, one can calculate the boundary
generation of solitary waves using a linear, nondis-
persive theory. In this context, nondispersive means
that in the linear computation, one may make the
so-called “long wave” approximation of perfect geo-
strophic balance in latitude. One can then take this
solution at ¢t = O(¢"?) and use it as the initial
condition for the Korteweg-deVries model, which
will then describe how nonlinearity and dispersion
modify the wave packet as it propagates further
towards the west.
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This computational scheme is not recommended
for practical calculations; since ¢ = — for the n
= | mode, the errors in applying it are more like
O(3¢!”?). The physically interesting solitons and mo-
dons, i.e., those that are well-formed by the time they
arrive in the western Pacific, must have ¢ large
enough, i.e., sufficiently large amplitude, so that the
errors in this linear boundary generation/Korteweg-
deVries model would be substantial. Nonetheless, this
model is of considerable conceptual value. It shows
us that the neglect of boundary effects or wave
generation at the boundaries as in Boyd (1980), is
consistent with the lowest-order perturbation theory.
It also reminds us of the physical reason for this
consistency: for long, small amplitude Rossby waves,
dispersion and nonlinearity can alter the wave packet
only at a slow rate. However, since these changes in
the wave packet are secular, i.e., they steadily accu-
mulate as the packet propagates towards the west,
the wave can be altered by O(1) by weak dispersion
and nonlinearity—but only after the wave has long
since left the eastern continental boundary behind.

For equatorial Rossby waves of large enough am-
plitude to behave like modons, the arguments given
above may not be quantitatively accurate; one would
really like to calculate how nonlinearity and dispersion
alter the generation of the waves at the boundaries
instead of being content to consider the effects only
far downstream. Unfortunately, such a calculation
would be very messy and complicated, and therefore
is not attempted here.

Nonetheless, one can qualitatively predict what
will happen: just as for smaller amplitude, any wind
stress that tends to deepen the thermocline will
generate one or more solitons at the eastern boundary
of the ocean, and if the amplitude of these solitons

VOLUME 15

is large enough, they will behave like modons as they
propagate towards the west.
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