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ABSTRACT

We consider the response of a two-layer fluid in a coastal trench to the incidence of low-frequency Rossby
waves from the open ocean. While both barotropic and baroclinic incident waves have been incorporated
into the theory, the focus of this paper is on the nature of the response in the trench to first-mode baroclinic
Rossby waves. In particular, we show that in both the Izu and Peru trenches, deep (lower-layer) longshore
currents of O(5 cm s™!) are generated by annual-period Rossby waves whose interfacial amplitude is 5 m.
The longshore current speed is particularly large (up to 8 cm s™') when the longshore wavenumber (/) and
frequency (w) of the incident wave are close to the complex (w, /) roots of the free trench-wave dispersion

relation for a 8-plane.

In view of the published evidence (summarized by Magaard) of annual-period Rossby waves in the vicinity
of the Izu trench, it is conjectured that forced trench waves of the type described here may be detected in
this trench from measurements of subthermocline currents.

1. Introduction

Recently two mechanisms have been proposed for
the generation of trench waves: (i) transverse oscilla-
tions in a western boundary current flowing across
the trench and (ii) a traveling wind system that moves
parallel to the trench (Mysak and Willmott, 1981).
However, since the basic model used by Mysak and
Willmott is barotropic, the results appear to have
limited applicability to the strongly stratified trenches
of the Pacific Ocean. Indeed, Brink (1983) showed
that when continuous stratification is incorporated
into the theory for wind-generated long trench waves,
the results regarding mechanism (ii) of Mysak and
Willmott change considerably. Since in a stratified
ocean the trench waves are bottom-trapped, Brink
found that the coupling between the wind-driven
surface currents and those associated with the trench
waves is very weak. (This result is also consistent
with the findings of Suarez (1971) who showed that
the wind is not an efficient generating mechanism for
bottom-intensifed topographic Rossby waves in the
open ocean.)

The main purpose of this paper is to describe a
third mechanism for trench wave generation: incident
baroclinic Rossy waves. In the theory presented here,
the stratification is modeled by a two-layer fluid, and
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in both the trench and offshore region, the 8-plane is
employed. The important effects of a variable Coriolis
parameter on the propagation of free barotropic
trench waves have been recently described by Willmott
and Bird (1983). From the results of numerical
calculations for the Izu and Peru trenches, we conclude
that this generation mechanism may be the most
efficient of the three proposed.

The results obtained in this paper may also shed
some light on the fate of annual-period Rossby waves
in the central North Pacific. In the latitude band 30-
40°N, Kang and Magaard (1980) and others have
observed the presence of free first-mode baroclinic
annual Rossby waves which travel in a generally
westward direction (with respect to both phase and
group velocities). Such waves are generated in the
eastern Pacific by the strong annual signal in the
wind stress off California (White and Saur, 1981) and
by north-south oscillations of annual period in the
eastern boundary current off the British Columbia-
Washington coast (Mysak, 1983). However, to date
there have been no theoretical or observational studies
of the behavior of these surface-intensified waves in
the western North Pacific. It is shown in this paper
that in the southwestern Pacific (at around 30°N),
the westward-traveling Rossby waves are reflected by
the Izu trench (the southern extension of the Japan
trench). However, because of the mismatch of the
vertical structure between baroclinic Rossby waves
and free trench waves at the outer edge of the trench,
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northward-traveling trench waves are generated in
the reflection process. It is suggested that the deep
longshore currents associated with the forced trench
waves should be detectable by an array of moored
current meters in the Izu trench.

The outline of this paper is as follows. In Section
2 the coupled vorticity equations for the trench and
Rossby waves are derived. In Section 3 these equations
are solved for the mass transport streamfunction
which describes the trench wave motion that is excited
by an incident Rossby wave field. In Section 4 the
results are applied to the Izu and Peru trenches for
the case of annual and semiannual incident baroclinic
Rossby waves. The conclusions are given in Sec-
tion 5.

2. Governing equations

We consider the motion of a two-layer fluid on a
midlatitude B-plane bounded on one side by a coastal
trench (Fig. 1a). To allow for arbitrary trench orien-
tation, the x, y coordinates are rotated clockwise
from the usual east, north directions through an angle
v (see Fig. 1b). Note that in our model, the continental
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FIG. 1. (a) Cross-section of trench geometry, with longshore
coordinate y pointing into the plane. Quantities in the upper and
lower layers have a subscript 1 and 2 respectively. Total depth H
= H| + H,. Over the trench region (0 < x < L) the slope parameter
s = —Hj3/H, is a positive constant. (b) Orientation of x, y
coordinates relative to east and north.
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shelf has been replaced by a vertical wall at x = 0.
This approximation filters out the relatively high-
frequency (periods of days) shelf waves from the
problem. In practice, such waves would not be gen-
erated by incident baroclinic Rossby waves because
of the mismatch in frequency scales: the latter waves
have typical periods of several months to years. Also,
we remark that Mysak and Magaard (1983) used this
vertical-wall approximation in their study of baroclinic
Rossby waves incident on the Hawaiian Ridge. The
Coriolis parameter for our rotated coordinate system
is given by (Willmott and Bird, 1983)

S=Jo+ By — Bsx .1

where 8. = 3 cosv, B, = B siny, f = 2Q sinfy and B
= 29 cosflp/R with 6, the reference latitude of the (-
plane, Q the earth’s angular velocity and R the earth’s
radius.

The linearized equations for two-layer, nondivergent
motions on a $-plane with a nonuniform lower layer
depth Hy(x) are

Uy ~ for + py 'pix =0, (2.2a)
vy + fuy + pl‘-lply =0, (2.2b)
(uix + v)H, — 9, = 0, (2.3)
and
Uy~ for + p2 7 'pix t+ g =0, (2.42)
Uy + fio + p27'pyy + 8"y = 0, (2.4b)
(uyHy)y + voHy + 1, = 0, (2.5)

where u,, v, and u,, v, are the velocity components
in the X, y directions in the upper and lower layers
respectively, p; is the pressure just below the surface
(assumed rigid), n is the displacement of the interface
from its equilibrium level at z = —H,; and g’ = g(p»
— p1)/p2 is the reduced gravity. We make the Bous-
sinesq approximation and assume that the difference
between p,; and p, is only important in the buoyancy
terms involving g'.

Adding the two mass-conservation equations, (2.3)
and (2.5), gives

(ulHl + quz)x + (lel + UzH2)y = (. (2.6)

Hence we define the streamfunction ¢ for the vertically
averaged velocity by

\bx = DlHl + vsz (2.73)

¥, = ~(uH + w ). (2.7b)

Following LeBlond and Mysak (1978, p. 139), we
will obtain two coupled equations for ¥ and A, where
h=mn—p/p g (2.8)

For the terms in (2.4) to be of the same order, 75
=~ p/p>g’ and so, since g > ¢’, n > p;/p g Thus

h =~ 1. 2.9)
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Letting L = 8%/8t> + f2, (2.2) and (2.4) give

Lu, = —p, " (D1 + f01)), (2.10a)
Loy = —py " (Piy — 1) (2.10b)
Luy = —[gng + p27 'Pixe + (027 'D1y + &'0))], (2.112)

Lv, = _[g”lyt + p2_1plyt _f(p2_1p1x + g,nx)]- (2.11b)
Subtracting (2.10a) from (2.11a) gives

Luy — Luy = — g'(hy + fhy), (2.12a)
and, from (2.7b) operated on by L,
| H)Lu, + HiLu, = —Ly,,. (2.12b)
Solving (2.12) for Lu, and Lu, gives
Luy = [-Ly, + g'Hylhy + fh))/H, (2.132)
Lu, = [-Ly, — g'H\(hu + fhy)I/H, (2.13b)
where H = H, + H,. Similarly we obtain
Lv, = [Ly, + g'Hyhy — fh))/H, (2.14a)
Lv, = [Lyx — g'Hy(hy — fh)V/H.  (2.14b)

We now use the vorticity equations in the two layers
to eliminate u; and v;. In the upper layer

(t1y — V) — By + Bsuy — fa/H, =0, (2.15a)
and in the lower layer
(uZy - va)t - 13002 + (ﬁs +fH,2/H2)u2
' + fa/Hy = 0. (2.15b)

Multiplying (2.15a) by H, and (2.15b) by H, and
adding gives, using (2.13) and (2.14),

th\bt + 66‘10): + ﬁs‘py
+ HYfy — ¥ + gHih))/Hy, = 0, (2.16)

where V2 = 3*/0x* + */dy?, the horizontal Laplacian.
Subtracting (2.15a) from (2.15b), operating with L
and taking care because L and d/dy do not commute,
gives finally,

L(vhzht + ﬁchx + 6shy) - 2ﬁc(hxlt +fhyt)
= 2By — fhy) — L*h/r’f* + H5L
X [Lyy + g'Hy(hy + fh)]/g'H3 = 0, (2.17)

where r = {g'H\H,/[f*(H, + H,)]}"?? is the internal
Rossby radius of deformation. Equation (2.16) and
(2.17) are the required coupled equations for ¥ and
h. If 8 = 0 the equations reduce to the two-layer
variable depth equations given by Mysak (1984). On
setting g’ = 0 in the barotropic equation, (2.16)
reduces to the single-layer 8-plane equation of Will-
mott and Bird (1983).

We look for solutions to (2.16) and (2.17) with
time-dependence exp(—iwt), with w > 0. Since we are
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interested in low-frequency waves (periods of order
one year) we assume

w<|f]. (2.18)

This approximation will filter out internal Kelvin
waves and internal gravity waves. In conjunction
with (2.18) we assume

(2.19)

i.e., that length-scales in x are comparable to length-
scales in y. We also assume that

H, < H,, (2.20)

i.e., that the upper layer is thin compared to the
lower layer. Hence H ~ H, and r* ~ g'H,/f%
Finally, we remark that in topographic wave theory,
we have that H5f,/H, [the dominant bottom slope
term in (2.16)] is of the order of V,2y,.

Using the above approximations and the scaling
Y/h = O(r%*), which implies that baroclinic waves
force the topographic waves (and not vice versa),
(2.16) and (2.17) simplify to'

Vh\(’+w‘px+w\by+wH2[¢y+rfhy] Oa
(2.21)
v,k + Bepy 4 B hy — —}12 =0. (222
w w r

There is a possible alternative scaling for ¥/h, which
determines the nature of the coupling between (2.16)
and (2.17), namely, y/h = O(H.r?f/H,). This was the
scaling used by Gratton (1983); it is the appropriate
scaling for wind-driven motions in lakes and straits.
Gratton’s scaling leads to surface-intensified motions
in which the topographic waves force the baroclinic
(interfacial) field. The scaling ¢/h = O(r*f) leads to
bottom-intensified motions in the trench, which is
the expected effect of stratification on trench waves
(Brink, 1983); further, it is the only scaling consistent
with our approximations. The bottom slope H% only
appears in the barotropic equation (2.21), which, we
note, is forced by the free solution of the baroclinic
equation (2.22). Equation (2.22) is the standard baro-
clinic Rossby wave equation; hence we see that to
the order of our approximations, baroclinic Rossby
waves are not affected by the bottom topography in
this model. We will solve (2.21) and (2.22) by looking
for plane-wave solutions in x and y. This is appropriate

! A rigorous derivation of (2.21) and (2.22) based on dimensionless
variables can easily be done along the lines given in Mysak (1984,
p. 92). The key features which allow us to neglect the coupling
term involving H% in (2.17) are that ¢ = O(rfh) and the assumptions
(2.20) and V%, = O(H4 fi,/H,) (see end of last paragraph).
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if we consider bottom profiles with H,/H, = constant
and if we replace f by f, in (2.21) and consider r
independent of x. The constant f approximation is
justifiable provided that the waves under consideration
do not travel as far as fo/3 north or south of our
reference latitude. For the cases we consider this
distance is several thousand kilometers.

3. Reflection and trench wave generation

We suppose that a Rossby wave is incident on the
trench shown in Fig. 1. We first determine the
solution for the waves generated over the trench and
the reflected wave. Then the longshore velocity in the
trench will be found. The bottom profile is taken to
have the form :

Hpe™™ for x<L

3.1
Hpe™L for x=1L. G-

Hy(x) = {

At x = 0 we require no flow normal to the wall,
which implies, from (2.13),

v=0, h=0 at x=0 3.2)

to O(w/f). At x = L, the bottom slope is discontinuous
and continuity of velocity, pressure and interfacial
displacement has to be imposed. This results in the
jump conditions

(A =0, [A]=0
Wl=0 [.]=0

at x = L. At infinity we specify the incoming wave
energy, and require that the reflected wave has an
outgoing group velocity.

We look for plane-wave solutions proportional to
exp(ily — iwt). In the deep-sea region x = L, the slope
is zero and (2.21) and (2.22) give

(3.3a)
(3.3b)

h = Cyexplik(x — L)] + Cg explikg(x — L)], (3.4a)
¥ = Tyexp[ip{x — L)] + Tr explipa(x — L)], (3.4b)
with

2 24172
kz}=__ﬁ_c+[3___‘5_(1+fi)] ., (3.53)

kg 20 (40 1 2w

)[BT
Dr 20 [4e? 2w )
In (3.5a, b), 8 = (82 + B,2)"?, which follows from
(2.1). Equations (3.5a, b) give the dispersion relations
for baroclinic and barotropic Rossby waves. The
positive signs give waves whose energy is incident on
the trench (e.g., from the east in Fig. 1), and the

negative signs give reflected waves. This follows from
the classical slowness curves used for Rossby waves

(3.5b)
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and the fact that energy travels in the direction of
the group velocity (LeBlond and Mysak, 1978). Thus
the first term in (3.4a) represents an incident baroclinic
wave, which will have a known amplitude C;. The
second term is the reflected baroclinic wave, whose
amplitude is to be determined. The first term in
(3.4b) allows for the possibility of an incident baro-
tropic wave with known amplitude 7. In this paper
we only do numerical examples for the case 77 = 0,
but we retain the 7; term in the analysis because the
same equations could be used to solve the problem
of barotropic Rossby waves incident on a trench. It
can be seen from (3.11) and (3.12) below that if 7
= O(r*fC)), then the trench wave amplitude generated
by an incident barotropic Rossby wave will be of the
same order as that generated by an incident baroclinic
Rossby wave. However, at annual or semiannual
periods (which are used in the numerical examples
below), there are no observed barotropic Rossby wave
signals in the North Pacific. The second term in
(3.4b) is the reflected barotropic wave, which is
required to perform the matching at x = L, whether
or not T; = 0. Thus in summary, C; and 7; are
regarded as known and Cg and T are to be found
by matching at x = L.
Over the trench (0 < x < L) the plane-wave
solutions of (2.21) and (2.22) are given by
h = C4e™™ + Cge™®, (3.6a)
5 CA eiklx + CBeika

v=-r/ 1 + w/(r*fls)
+ exp(—iB.x/2w)(T ™ + TBe-i7x), (3.6b)

po [ T (1 2)]"

m w 2w

where

3.7 .

For trench waves, where s is positive, v is real. The
term proportional to rf in (3.6b) is the particular

‘solution of (2.21) forced *by the baroclinic solution

(3.6a), whereas the remaining part of ¢ represents
the trench wave solution, whose amplitude will be
determined by the incident waves outside the trench.
We shall call this part Yt. Another form of Yyt is
given in (3.13) below.

The boundary conditions (3.2) at x = 0 imply

Cg=—C4, Tp=—-T4. (3.8)
Then matching at x = L by using (3.3) determines
the remaining coefficients C,, Cgr, T4, and T in
terms of the known coefficients C; and 7;. From

(3.3a) we find
CA = C[ CXp("ik,L), (3.9)

CR = _Cl exp[i(kR - k])L]. (3.10)
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From (3.3b) we obtain
ZTA[i(pR + &) sinyL — vy cos'yL]
2w
_ { r’fC,
(1 + w/r?fls)

—-r 2fCI

Be
T [ (pR + e ) sinyl — vy cos'yL] ———(1 + /)

- k,)L][ (kR + f ) sinyL — vy cosyL]}

The (forced) trench wave part of the stream functlon
solution (3.6b) is given by

Y1 = 2T 4i exp(—iB.x/2w) sinyx, (3.13)

where (3.8) has been used and T, is given by (3.11).

If there are no incident waves (T; = C; = 0), we
obtain the dispersion relation for free trench waves
on a two-layer S8-plane. By (3.11) it is

[i(pR + éﬁ—;) sinyL — v cos'yL] =0. (3.149

This dispersion relation is the same as that obtained
by Willmott and Bird (1983) for waves on a single
layer $-plane if we set the shelf width to zero in their
model and make the low-frequency approximation.
The presence of the two layers does not affect the
dispersion relation. There are no solutions to (3.14)
with / and o real. This implies that there are no
unattenuated “leaky” modes which consist of incom-
ing and outgoing waves; such “leaky” propagating
waves, however, can exist in edge wave theory (e.g.,
see LeBlond and Mysak, 1978). The “leaky” trench
waves plotted by Willmott and Bird (1983) are not
true leaky modes in the above sense since they
contain only outgoing wave energy. Further, since
the (w, /) pairs chosen by Willmott and Bird for
plotting purposes do not satisfy the dispersion relation,
the jump conditions analogous to (3.3) are not satis-
fied.

If there were real solutions to (3.14) we would get,
for suitable parameters of the incident wave, a true
resonance with infinite amplitudes for the (forced)
trench wave. There will, however, be large values for
the trench wave amplitude when the values for / and
w are close to complex solutions of (3.14), the so-
called normal modes.

In the Appendix we obtain the energy equation for
the model and show that to within the approximations
made here, the incident energy equals the reflected
energy.

Since topographlc waves trapped along a coast
generally have larger longshore velocities than offshore
velocities, it is useful to analyze the expressions for
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(3.11)

{i(k, + %) sinyL — v cosyL — expli(kr

[ (Pz + f ) sinyL — v cosyL] . (3.12)

v; as given by (2.14). Invoking the approximations
(2.18)-(2.20) in (2.14), we obtain

v, = (Yx — r’fHh/H))/H, (3.153)
v, = (Yx + rfhy)/H. (3.15b)

Since Y/h = O(r*f) and H, > H,, (3.15a) implies
that v, is dominated by the longshore velocity asso-
ciated with the incident baroclinic Rossby wave, viz.,
—r’fh./H, [to O(H,/H,)], unless the trench wave has
a resonant response O(H,/H,) larger than the typical
response. In (3.15b) we substitute for ¢ the expression
given by (3.6b), in which (3.6a) has been used in the
first term and the definition of Yt has been used; this

yields
1 hy !
v2=§[¢/n 2 (1 2ﬂ) ] (3.16)

(1) )
Since (2)/(1) = O(w/r?*fls) in (3.16), it follows that if
w/rifls < 1, (3.17)

the longshore current in the lower layer is dominated
by the trench wave contribution, viz., y¥1./H. For
annual-period, midlatitude waves with wavelengths
on the order of several hundred kilometers, we find
w/(r*fls) = O(107%) using s = O(10™> m™') (which
characterizes most Pacific trenches—see Mysak et al.,
1979). Only if w/f = 107!, does the inequality (3.17)
break down. Thus we conclude that low-frequency
baroclinic Rossby waves incident in a midlatitude
trench will generate deep longshore currents that are
almost exclusively associated with the trench waves.
This analysis also indicates that in order to detect
Rossby wave generated trench waves with current
meters, one should make measurements below the
thermocline, since above it the (longshore) currents
will be mainly due to the Rossby waves. Combining
d/dx of (3.13) with e~ letting T, = |T4le? and
then taking the real part, we arrive at the following
expression for the trench wave longshore velocity in
the lower layer:



@

_\I’Tx_[TA[{(ﬂc )( &
UZT-—H~H 2w+7 51n7x+2 X

X sin[yx - (& x—ly+ owt— 0)]} . (3.18)
2w

A good estimate for the maximum longshore lower-
layer velocity in the trench is given by 2|7, max(y,
B./2w)/H. This is the maximum modulus of (3.18)
when it is written in its complex exponential form
and it occurs at x = 0, /vy, 27/v, . . . . The maximum
value of v,r as given by (3.18), on the other hand,
will vary with x, y and ¢. Generally, 8./2w < v; hence
we shall use 2|7,|v/H as a measure of the (lower-
layer) longshore current speed associated with a trench
wave (see Section 4). The maximum longshore velocity
will in fact always be less than or equal to this
measure. However, there will always be a value of y,
for fixed ¢, and a value of ¢ for fixed y, for which
2|T4v/H is the true maximum speed.

4. Forced trench waves in the Izu and Peru trenches
a. The Izu trench

The southern extension of the Japan trench, the
Izu trench, is one possible region where trench waves
may be generated by incident Rossby waves. The Izu
trench is oriented north-south and is centered at
30°N; hence it is fairly far removed from the intense
eastward-flowing Kuroshio, more than 5° to the
north. At around 30°N and to the east of the Izu
trench, annual-period (w = 2 X 1077 s71), first-mode,
westward-traveling baroclinic Rossby waves have been
detected by an analysis of subsurface temperature
records (e.g., see Kang and Magaard, 1980; Magaard,
1983). In view of these observations, it is of consid-
erable interest to estimate the lower-layer longshore
trench wave current excited by these incident waves.

The values of the model parameters which char-
acterize the Izu trench region are given by

=073 %X 107*s7!
=20X10"m s}
r=45km, Emery et al, (1984)

v=10° roe

} at 30°N

@.1)

H = 5km, ambient ocean depth
§s=6.5X10"°m™" (= —HYH,)
L =45 km, trench width

Hence we find that at the annual period, w/(fr%ls)
= 0O(107?) for / = O(10~> m™") (typical Rossby wave
longshore wave number). Thus according to our
criterion (3.17), the lower-layer longshore current in
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the trench excited by the incident Rossby waves will
be that associated with a trench wave.

Figure 2 shows our upper-bound estimate of the
lower-layer longshore current (2|7 4|v/H—see Section
3) as a function of the longshore wave number / (of
both the incident Rossby wave and the forced trench
wave) and the incidence angle a [obtained from
(A6)]. From the slowness circle in Fig. 2, we note
that if 0 < a < w/2, then / > 0 also. Thus in this
range of a the incident wave energy is propagating
toward the southwest, and the forced trench-wave
phase propagation is northward along the trench, in
the same direction as for a free trench wave. (In the
northern hemisphere, free trench waves travel with
the coast on the left.) The forced trench waves only
have large amplitudes when they are excited by
incident Rossby waves for which 0 < o < #/2.
Southward-traveling forced waves will be excited by
incident Rossby waves for which —7/2 < a < 0 (i.e.,
[ < 0), but their amplitudes are very small since they
travel opposite to the direction of free trench waves.

From Fig. 2 we note that an incident wave of
interfacial amplitude 5 m, which is characteristic of
this region (Kang and Magaard, 1980), produces an
ambient trench current of about 1.5 cm s!. The
amplitudes at the “resonant” peaks (labeled A, B, C,
D) are, however, several times larger, ranging from
about 3 to 7.5 cm s~!. The properties of the incident
waves at these peaks are given in Table 1. As remarked
in Section 3, such peaks correspond to w, / pairs
which are close to the complex solutions (normal
modes) given by the free wave dispersion relation
(3.14). If (3.14) had real solutions for (w, /), these
peaks would have infinite amplitudes. On an f-plane
long trench waves are nondispersive, and have a real
dispersion relation of the form

4.2)

for each offshore mode j, where ¢; is independent of
land ¢; > ¢, > -+« (Mysak et al, 1979). On a 8-
plane the normal modes, at long wavelengths, have a
dispersion relation whose real part is similar to (4.2).
Note that for fixed w, (4.2) implies that as / decreases,
we jump to a larger value of ¢, i.e., to a lower mode.
Thus as one moves to the left in Fig. 2 (i.e., to lower
wave numbers), successively lower “modes” are gen-
erated at the resonant peaks. As a general rule, the
number of zero crossings of the wave amplitude in
the offshore direction decreases with mode number.
Figure 3 shows the offshore structure of the forced
trench-wave longshore current excited by the resonant
wave number at B in Fig. 2 at y = 0, ¢ = 0, found
from (3.18). At other values of y and ¢, the structure
will be similar. For this value of I, w/fr’ls = 0.86
X 1072, in accordance with (3.17) and our remarks
made earlier in this section. Note that the largest
current amplitude (6.8 cm s™!) occurs at x = 39 km,
near the outer edge of the trench, and that this value

w=le
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FiG. 2. Estimate of lower-layer longshore current in Izu trench generated by an annual-
period Rossby wave of amplitude C; = 5 m. Since the current depends linearly on C;, the
response for other incident wave amplitudes can readily be obtained from this figure. The
longshore wavenumber is / and « is the incidence angle (the angle between the incident group
velocity ¢, and the normal to the coast—see inset). The incident wave properties at the
“resonant” peaks (labelled A, B, C and D) are given in Table 1.

is only a few percent less than the Fig. 2 upper-bound
estimate of 7.1 cm s™' for this value of /. Thus it
appears that the estimated current magnitude given
in Fig. 2 is a good indication of the actual maximum
current speed, at least for this example. Finally, we
observe that the excited wave is most closely related
to the third mode since Y1 for such a mode will have
three zero crossings in 0 < x < L, and when differ-
entiated with respect to x, would yield four zero
crossings for v,t, as shown in Fig. 3.

For a 6-month period baroclinic Rossby wave the
slowness circle is considerably smaller (radius = 1.12
X 107> m™') than that for the annual wave (radius
= 4.47 X 107> m™!). Thus the range of longshore

TABLE 1. Properties of the incident annual Rossby wave at each
of the “resonant” peaks in Fig. 2 (Izu trench). Also given for each
peak is the estimate (upper bound) of the longshore current generated
in the lower layer.

Incidence Generated
Incidence Longshore wavelength longshore
Resonant angle a wavenumbert  2x/(k? + 12 current
peak (degrees)  1(X1073m™) (km) (cm s™')
A 67 4.12 119 7.53
B 33 244 230 7.06
C 16 1.2 423 491
D 4.8 0.375 951 2.86

¥ For both the incident Rossby wave and the forced trench wave.

wave numbers which can generate a trench wave is
reduced to 0 < / < 1.12 X 107° m™}, which charac-
terizes relatively long Rossby waves (wavelengths
> 400 km). Accordingly, the number of resonant
peaks (and hence the number of modes) is reduced
to two in this case (Fig. 4). Also, for the same
amplitude incident wave (C; = 5 m), the longshore
current generated in the trench is much weaker than
in the annual case, ranging from about 0.4 to 1.2 cm
s~!. Thus the detection of 6-month forced trench

81 1ZU TRENCH
PERIOD, 1 YEAR

[«

»

>

L—ex (km)

\17 20 30 40 50

Var = Y5 / H (cm s1)
)

)
[N
T

'
o]
T

-st

FiG. 3. Lower-layer longshore current of forced annual-period
trench wave in Izu trench as a function of offshore distance x. v,r
is computed from (3.18) with y = 0,¢=0,C;= Smand [/ = 2.44
X 1073 m™! (corresponding to B in Fig. 2).
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FIG. 4. Estimate of lower-layer longshore current in Izu trench generated by a 6-month
period Rossby wave of amplitude C; = 5 m. / and a are the longshore wavenumber and
incidence angle respectively (see inset). The incident wave properties at the “resonant” peaks

(labelled A’ and B') are given in Table 2.

waves is highly unlikely. The offshore structure of the
longshore current excited by a Rossby wave resonant
at A’ in Fig. 4 is shown in Fig. 5. With two zero
crossings, v,r in Fig. 5 would be associated with a
first-mode wave. Note that the maximum amplitude
(1.21 cm s7') occurs at x = 30 km and is also just
under the upperbound estimate shown in Fig. 4 (1.22
cm s7!, see also Table 2).
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F1G. 5. Lower-layer longshore current of forced 6-month period
trench wave in Izu trench as a function of offshore distance x. vy
is computed from (3.18) with y = 0,2 =0, C;= 5m and / = 0.87
X 107> m™! (corresponding to A’ in Fig. 4).

b. The Peru trench

The Peru trench lies in the southeastern part of
the South Pacific at a central latitude of about 15°S
and with a southeast—-northwest orientation. The sur-
face winds in the central tropical Pacific have (among
others) a notable annual signal which appears to
generate, through a remote forcing mechanism in-
volving the equatorial wave guide, a local warming
(the annual El Nino) off Peru every January-March
(Busalacchi and O’Brien, 1981). It is conceivable that
such winds could also generate low-latitude annual
Rossby waves in the central South Pacific whose
energy is partly directed toward the east, i.c., incident

TABLE 2. Properties of the incident 6-month Rossby wave at each
of the “resonant” peaks in Fig. 4 (Izu trench). Also given for each
peak is the estimate of the longshore current generated in the lower
layer.

Incident . Generated
Incidence Longshore wavelength longshore
Resonant angle « wavenumbert 2rf(kp? + )\ current
peak (degrees) 1(X107* m™) (km) (cm sty
A’ 51 0.87 315 1.22
B 6.2 0.12 451 0.50

1 For both the incident Rossby wave and the forced trench wave.
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Fi1G. 6. Estimate of lower-layer current in Peru trench generated by an annual-period Rossby
wave of amplitude C; = 5 m. / and « are the longshore wavenumber and incidence angle
respectively (see inset). The incident wave properties at the “resonant” peaks (labelled A”, B,
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C” and D"} are given in Table 3.

on the Peru trench. The slowness circle for the annual
wave implies that such waves have a much shorter
wavelength (<100 km) than those incident on the
trenches in the western Pacific (compare insets in
Figs. 2 and 6).

The values of the model parameters which char-
acterize the Peru trench region are given by

f=-0.376 X 10~*s~! ]

B=22X10"m!s!
r=61km, Brink, (1982)

} at 15°S

y = 135° L. @4.3)
H=35km

5§=1568X10%m!

L =50 km

/

Hence we find that at the annual period, w/(fr%ls)
= O(5 X 1073) for I = O(=5 X 107> m™!) (see Fig.
6). Thus according to (3.17) the lower-layer longshore
current in the trench will be associated with that of
a forced trench wave travelling toward the equator.
Figure 6 shows our upper-bound estimate for the
lower-layer longshore current as a function of the
incident longshore wave number. As in the case for
the Izu trench only those wavenumbers which have
the same sign as those for free trench waves (namely,
[ < 0 in this case) produce currents of substantial

amplitude. Figure 6 also shows four resonant peaks
with amplitudes comparable to those found in Fig. 2
(see also Tables 1 and 3). As an example of the
offshore structure for one of the resonant wavenum-
bers, Fig. 7 shows vy1(x) evaluated at point A” in Fig.
6. The maximum current speed (at x ~ 45 km) is
7.6 cm s!, which is again very close to the upper-
bound estimate (7.75 cm s~'—see Table 3). The five
zero crossings in Fig. 7 indicate that a fourth-mode
wave has been excited at point A”.

8 PERU TRENCH
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FiG. 7. Lower-layer longshore current of forced annual-period
trench wave in Peru trench as a function of offshore distance x.
v, is computed from (3.18) with y = 0,7 =0,-C; = 5 m and /
=—7.31 X 107° m™! (corresponding to A” in Fig. 6).
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TABLE 3. Properties of the incident annual Rossby wave at each
of the “resonant” peaks in Fig. 6 (Peru trench). Also given for each
peak is the estimates of the longshore current generated in the lower
layer.

Incident Generated
Incidence Longshore wavelength longshore
Resonant angle o wavenumbert 2x/(k? + 132 current

peak (deg) 1(X10™* m™) (km) (cm s7!)
A" -40 -7.31 58.4 7.75
B” -3.8 —4.25 62.3 5.88
c 20 -2.07 69.3 4.19
D" 39 —0.60 78.3 2.33

1 For both the incident Rossby wave and the forced trench wave.

5. Conclusions

We have shown that annual-period, first-mode
baroclinic Rossby waves can generate deep (lower-
layer) longshore currents of O(5 cm s7!) in both the
Izu and Peru trenches. The forced trench waves have
relatively large amplitudes (“resonances) when the
longshore wave number and frequency of the incident
wave are close to the complex roots of the free trench-
wave dispersion relation for a f-plane. For each
trench there are four such resonant responses in the
graph depicting the estimated longshore current speed;
these peaks range from 3 to 8 cm s~!. For incident
waves with longshore wavenumber of opposite sign
to that of the free trench waves, the forced longshore
currents in the trench are negligible. Also, for incident
baroclinic waves of 6-month period, the longshore
currents associated with the forced waves appear to
be quite small [of O(1 cm s7!) in the Izu trench].

Although the focus in this paper has been on trench
wave generation by incident baroclinic Rossby waves,
the analysis has been carried out in a manner which
would enable one to determine explicitly the response
due to barotropic waves. Also, by changing the sign
of H% but still allowing the interface to intersect a

ot

Then using (2.3) and (2.5) in (A1) we obtain

or L2

This is the energy equation for a two-layer -plane
model with arbitrary H,;, H, and p;, p,. The energy
per unit area is given by [see (A2)]

1
E= Elel(ulz +v,?)

1 1 ;
+3 p2Hy (1% + v, ) + 3 P28 7. (A3)
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vertical wall at x = 0, (i.e., on-shelf stratification over
a deep shelf), the solution obtained here could be
used to find the amplitudes of low-frequency shelf
waves generated by either baroclinic or barotropic
Rossby waves. Since we have used the low-frequency
approximation « < |f|, no internal Kelvin waves
would be generated along the coast and hence the
difficult problem of shelf-Kelvin wave coupling over
a two-layer stratified shelf is avoided (e.g., sec Allen,
1975).

Since the Rossby waves with a westward component
to the group velocity are substantially longer than
those with an eastward component and hence are
less susceptible to dissipation and nonlinear affects,
the Izu trench is a likely region to search for annual-
period trench waves that are excited by westward-
traveling Rossby waves. Magaard (1983) has shown
that to the east of the Izu trench the first vertical
mode Rossby wave potential energy density at the
one-year period has a relatively large amplitude (see
lower left corner of his Fig. 3). We conjecture that
this intensification of the wave energy may be an
indication of Rossby wave reflection by the Izu trench
and hence, by the theory presented in this paper,
indirect evidence of forced annual-period trench
waves.
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APPENDIX
The Energetics for the System

Taking the scalar product of (2.2) with p,Hu; and
adding the scalar product of (2.4) with p,Hu, gives,

af1 1
- [5 p1H(u, 2 + 0‘12) +3 poHy (1% + 022)] + pidHuy + Howy)

(A1)

ofl 1 1
= I:_ pHy(u,? + 0,9 + 5 p2H(ur* + 1% + 3 Pzg'ﬂz:l + Ve[pi(uH, + wH5) + p2g’'Houpn] = 0. (A2)

Outside the trench, where the waves are propagat-
ing, the energy comes in as a baroclinic and a
barotropic part. Using (2.13) and (2.14) in (A3) it is
easy to show that the average energy per unit area is
given by

&= Logr (i + P )P (a9



MAy 1985

for baroclinic Rossby waves, and by

|
EY = — p(k? + P)|yl? A5
(E) i o( ol (AS)
for barotropic Rossby waves, where A, and v are the
complex amplitudes of the baroclinic and barotropic
waves respectively. For baroclinic waves the group
velocity is

¢z = (0w/0k, dw/dl)

= —(k2+ P+ r)7 B, + 2kw, B; + 2lw], (A6)
and for barotropic waves,
¢ = —(k* + I2)7'[B. + 2k, B, + 2lw]. (A7)

Thus the energy flux incident on the trench is, using
(3.4) and (A4)-(A7),

1 1
2 pg'r* (B, + 2kw)|C/? + ap "Bt 2p)|T,P. (A8)

The energy flux away from the trench is

— 2 08P (B + 2Uen@)| 1

1

~aH p(B. + 2prw)| Txl, (A9)
since by (3.10) {Cg| = |Cy|. The baroclinic contribu-
tions to the energy (oc|Cj|?) are equal in (A8) and
(A9) because, by (3.9), 8, + 2kw = —(8, + 2kzw),
and baroclinic wave energy is conserved. Since y/h
= O(r?f), the barotropic contribution to the energy
is smaller than the baroclinic part by a factor of H,/
H,. Thus within the approximations of this model,
the energy in the free barotropic mode in the deep
ocean is negligible.
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