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1 Introduction

The algebraic method for stream-cipher key recovering was developed
in [5]. The essence of this method is in solving the system of nonlinear equa-
tions which are the simplified consequences of the enciphering equations.
The different questions on this method were investigated in [5, 6, 7]. We
are using the group-theory methods for justification of algebraic method in
cryptanalysis. We are considering the case of general Abelian group trans-
formations instead of elementary Abelian 2-groups transformations. On the
group-theory setting we consider the embedding of a subset into a certain
coset of Abelian group. We apply those results for investigation of Boolean
functions cryptographic properties.

2 Polyhedrons over Finite Abelian Groups

Let G be a finite Abelian group with respect to the multiplicative oper-
ation; by N we denote the order of G. Let G be the character group of G.
For any set D C G let Zp be the complex-valued map of G such that

Zp(x) =Y x(x) ,

zeD
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for all y € G. The set D is uniquely defined by Zp since orthogonal relations
for group characters (see [2]):

1 1, ifyeD
s Z -1 _ 9 9
NZ p(X)x(y™) {0, ity D.

For values Zp(x) we have the equation similar to Parseval equation for
Fourier coefficients of finite Abelian group (see [2]):

S1Zo)P =Y > x@xw) = > | D> x(@y") | =N-#D . (1)

XGG XE@ z,yeD z,yeD XGé
Using equation (1) we get
Lemma 1. The set D coincides with the group G iff

Zp(x) =Y _x(x)=0 forally € G, x # Xo-

zeD

Proof. If we distinguish in the sum > |Zp(x)|* the summand for y = xo

xe@
then from (1) we obtain
> 1Zp(X)P =#D (N - #D) . (2)
xe@
X7X0

Therefor, #D = N iff

Zp(x) =0 forall xy € @, X # Xo-
|

Any coset in finite Abelian group we will call polyhedron in order to
distinguish them among all subsets. This term will help us to use in some
cases geometric intuition. A useful tool for structure investigation of a finite
Abelian group subset is it’s ”localization” by imbedding into the least possible
polyhedron. More formally the task of "localization” is formulated in the
following way: for any set D C G find the least subgroup H < G such that
D C xgH for some xy € D. We will use the following notions.

~

D:{Xealx(x):constforanyxeD} ,
A(ﬁ) :{x€G|X(x):1foranyXeﬁ}
It is obvious that D is subgroup in G and that A(ﬁ) is subgroup in G.

2



Theorem 2. A(ﬁ) is the least subgroup among all subgroups H of group G
for which
v5'D C H  for some x € D.

Proof. To each subgroup H of group G assign the subset H* of group G
H*:{Xealx(a:)zlforanyazefl}

It is well known [1] that the map H — H* is antiisomorphism for subgroups
structures of group G and group G. For the set D C G consider two set of
subgroups

&(D)={H<G|z'DCH forsomezo €D} ,

@(D) = the set of all subgroups of the group D .
Let’s proof that the map H — H* is the antiisomorphism from & (D) to
(D). If H € &(D) then for any x € H* and y € D we have x(z;'y) = 1.

The last equation holds iff any character xy € H* is constant on the set D
and this means that H* € &(D). It easy to check that the inverse inclusion

is held. Note that Nk
(4()) =5

As the map H — H* is antiisomorphism and D is the greatest element in
@(D) then A (ﬁ) is the least element in &(D). |

Note that the function Zp(y) is helpful for searching the set D due to
the following evident equations

D={xeC| |Zo()=#D}

The absolute value of function Zp(y) is constant on the cosets G for D
because for any y' € D and any x € G and some xy € D we get

Zp(xx') = Zp(x)x'(xo) -

It is evident that in the last equation it is sufficient to consider x from the
character group of the group A(D). Using the last remarks, lemma 1 and
theorem 2 it is easy to proof the following theorem.

Theorem 3. The set D C G is polyhedron in group G iff the absolute value
of function Zp(x) over G takes only two values — 0 or #D.



3 Applications for Boolean Functions

Now we consider applications of those results for investigation of Boolean
functions’ cryptographic properties. We will use the notions and results
from [8]. Let G = V,, be n-dimensional vector space over the field of two
clements, G = {(-D)® | a,x eV, }, (@) = qay + ...+ apz,, D =
{x eV, | f(x) =1}, where f(x) is a Boolean function. Then

Zp(x) = Zs(a) = Z (—1)le®) =

x:f(x)=1
3 (Seven - 3 aen) -
xeV, xeV,
on—l —Wf(O), o = 0;
- 1
_wa(a)v o 7£ 0,

where Wy (a) is the Walsh-Hadamard coefficients and then
D={aeV,la#0, [Wia)|=2"-W;0)}u{0} . (3)

Polyhedrons in V,, are cosets with respect to subspaces of V,, or in the terms
of finite geometries they are plains.
Theorem 3 for Boolean case is formulated in the following way.

Corollary 4. Function f(x) is indication-function for a coset of k-dimensional
subspace iff |W(e)| for all e € V,,, o # 0 takes only two values 0 and 28+

Let aq, ...,y €V, be a basis of subspace D defined by (3), g € V,, is
an arbitrary vector such that f(axy) = 1. Then

A(ﬁ)z{wEVnHai,w):O, i=1,....k} |

and theorem 2 states, that if f(x) =1 then (o, x) = (o, xo), i = 1,... k.
In other words, the truth set of Boolean function f(x) is embedded into the
plain defined by the following linear equations

<a17 m> = <a1’ iBO),
(4)
(g, @) = (g, To).

So, for Boolean functions theorem 2 can be reformulated in the following
way.



Theorem 5. For any Boolean function f(x) there is a decomposition

f(z1,...,zn) =
=({an,xz+xo)+1) ... (o, x+x0) + 1)V ((Qpy1, @), ..., (an, @) (5)

Decomposition (5) for function f(x) defined uniquely in the following sense

— Qy,...,o 1s an arbitrary basis of a subspace uniquely defined for func-
tion f(x);

— Otgt1,- .-, 0y 1S an arbitrary complementation of o, ..., oy for basis
of Va;

— xy € V,, is an arbitrary vector such that f(x) = 1;

— Boolean function w(yl, e ,yn,k) over n — k wvariables can’t be decom-
posed in the form of (5) and defined uniquely for the function f(x).

Clear that it is more easy to investigate the properties of function f(x)
when it is decomposed in the form (5). Particulary, decomposition (5) is
connected with the annihilator group introduced in [5, 6, 7] for algebraic
method of cryptanalysis. Function () is called annihilator for function
f(x) if for all € V,, the following equation hold:

p(x)f(x) =0 .

From the previous the following statement is evident.

Corollary 6. Let function f(x) be decomposed in the form (5). Then the
affine annihilator group for function f(x) coincides with the linear span of the
affine functions set (o, x) + (o, xg), . .., (g, ) + (g, o), and function
w(yl,...,yn,k) has a trivial affine annihilator group (i.e. only the zero-
function).

So, all the previous constructions lead to the algorithm for searching of all
affine annihilator for a given Boolean function f(x) from it’s Walsh-Hadard
coefficients Wy(ax). It is interesting to find other annihilator for function
f(x) from it’s Walsh-Hadard coefficients.

Theorem 7. Boolean function ¢(x) is annihilator for function f(x) iff one
of two equivalent conditions hold:

1. Wf(O) + W¢(0) — Wer(p(O) = 2"
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2. Wi(a) + Wyla) = Wepp(a) =0 for all e € V,,, ac # 0.
Proof. From following evident equation

(—1)° + (1)@ 4 (—1)#@) — (—1)f@)+e(=)

1)/ @ele) —
( ) 2 Y
for all a € V,, we get
1
Wio(a) = 2 (Wola) + Wi(a) + Wy(a) = Wiip(a)) (6)

Equation f(x)p(x) = 0 hold iff one of two equivalent conditions hold:
L. Wy,(0) = 2%
2. Wi(0)=0forall €V, a #0.
Then from (6) we get the theorem. |

Sometimes it is more convenient to put down the terms of theorem 7 in
the following symmetric form:

L. Wiip1(0) =27 — (Wf(()) + Ww(()));
2. Wiipri(a) = =(Wy(a) + Wy(ar)) for all @ € V,,, a # 0.

It easy to see that if f(x)p(x) =0, then W;(0) + W,(0) > 0. Moreover
W (0)+W,(0) = 0iff f(x)+p(x) = 1. Annihilator f(x)+1 is called trivial.
From theorem 7 it is easy to get

Corollary 8. Function

1, ifxel+xy;
p(z) = .
0, ifed L+ x,

is annihilator for Boolean function f(x) iff
D (CHIEIW(y) =2
~yeL+

Corollary 9. There are no affine annihilator for nonaffine plateatued and
nonaffine balanced Boolean functions.



Proof. All affine annihilator (o, €)+¢, o # 0 for function f(x) are described
by (3):
[Wi(a)| = 2" — W (0) .

If function f balanced, i.e. W;(0) = 0 and has affine annihilator then
[Wy(a)| =2"ie. fis affine.
Plateaued of order 2r functions defined by the condition [3, 4]:

|Wy(ax)| takes only two values 0, 2"

Then it is evident that if » # 0, i.e. function is not affine, then condition (3)
do not held for every a. |

In particular quadratic Boolean functions do not have affine annihilator.

Corollary 10. Two nonaffine plateaued functions with nonintersecting sup-
ports do not annihilate each other.

Proof. Since the supports of f and ¢ don’t intersect, i.e. We(a)W,(a) =0
for all o € V,,, then

Hence f and ¢ annihilate each other iff
We(0) + W,(0) =2" .
It contradict to the conditions of 10. [ |

Lemma 11. Let f(x)p(x) = 0 f(x), ¢(x) be a bent-function f(x) +
o(x) +1 # 0. Then f(x)+ ¢(x) + 1 is indicator-function for coset of
n/2-dimensional subspace.

Proof. From conditions of theorem 7 the lemma we obviously get

Wf+<p+1(0) =2" - Qn/ﬂl,
Wiipri(e) € {0, Fon/2+1 } for any o # 0.
The last equations and the conditions of 4 get lemma. |

Corollary 12. If f(x), ¢(x) is bent-function, deg ff < n/2 and f(x) +
o(x) £ 1 then functions f(x) and ¢(x) do not annihilate each other.



Lemma 13. Let f(x) be a plateaued of order 2r function and p(x) be a
plateaued of order 2s. Ifr > 2, s > r+1 orr =1, s > 3 then functions
f(x) and o(x) do not annihilate each other.

Proof. Suppose contrary. Then from the conditions of theorem 7 we get

2" = (Wy(0) + Wy (0)| = [Wip11(0)] < max [We(a))|

acVy

: nee ! n—r r n—s+r
R SN N e e €

acV,

Obviously there are 4 possible values of W;(0) + W§(0). Put them in in-
creasing order:

27’L—5 < 2TL—7” _ 2TL—S < 2n—r < 2TL—S + 2n—7“ .

Hence the least possible value for [2" — (W;(0) + W,(0))| is 2" —2""* —2""",
If we proof inequality

omn _ (27173 4 2n77‘) > 2nfs+r ’ (8)

then we will get a contradiction with inequality (7) and hence we will proof
lemma. Inequality (8) is equivalent to inequality

on _ 2nfs+r > on—s + on—r ’

which is equivalent to inequality

28+ 2" 2
i 1

2" 14—
T T

The right part of the last inequality monotone decreasing when s —r increas-
ing and hence inequality (7) is held. |

Remark 14. We have to consider two more cases to answer the question
when do two plateaued functions annihilate each other:

1.r=1,s=2;
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