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ABSTRACT

The scattering of an incident shelf wave by a long thin offshore barrier located paralle! to the coast is
solved for a general monotonically increasing depth profile, using the unforced, inviscid barotropic shalloyi
water equations under rigid lid and alongshore geostrophy approximations. In particular, simple analytic
formulas for the scattering coefficients are derived for the exponential shelf profile. In the channel between
the barrier and the coast, much of the incident shelf wave energy is transferred to the zero (or Kelvin) mode.
Seaward of the barrier, substantial energy transfer from an incident second-mode shelf wave to the first mode
is possible. Downstream from the barrier, the incident mode may vanish, leaving a different mode to

dominate.

1. Introduction

Low-frequency coastally-trapped waves are now
known to propagate along the continental shelf in
many parts of the world. The continental shelf is in
reality punctuated by topographic irregularities—in
particular, a long thin island or a chain of islands is
often found lying offshore, parallel to the coastline.
Along the North American coast, examples include
Long Island, Vancouver Island, Queen Charlotte Is-
lands, and the Baja California peninsula. Elsewhere,
we find Taiwan off China, Madagascar off Africa, the
Hebrides off Scotland, and the Great Barrier Reef off
northeast Australia. Hence, we investigate the conse-
quences of a continental shelf wave encountering a
long thin offshore barrier lying parallel to the coast.
Even for islands which are not of a long thin shape,
e.g. Tasmania, our theory qualitatively predicts some
interesting phenomena. »

Theoretical papers on the scattering of shelf waves
by topography include Allen (1976) and Grimshaw
(1977), where topography varies slowly alongshore;
Buchwald (1977) and Chao et al. (1979), where a
small bump is located at the coastline and on the
shelf, respectively; Brink (1980), where the shelf has
small random bottom irregularities; Wang (1980),
where the effects of submarine canyons and ridges
are studied numerically; Davis (1981), where a head-
land protrudes into the shelf; and Hsieh and Buchwald
(1984, henceforth referred to as HB).

In HB, a first-mode shelf wave propagating along
a step-shaped shelf is scattered by a semi-infinitely
long barrier (of negligible width) placed along the

! Current affiliation: Dept. of Oceanography, University of British
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outer edge of the flat shelf. Using a Wiener-Hopf
technique, HB found that within the flat channel
enclosed by the barrier, the incoming energy flux
from the first-mode shelf wave is essentially all trans-
ferred to the zero channel mode, which corresponds
to the Kelvin wave modified by the rigid-lid approx-
imation.

The major disadvantage of the HB theory, that of
using a step shelf (where only the first-mode shelf
wave can propagate freely) has been overcome in this
study, where the bottom topography 4 as a function
of the offshore distance y is only required to be
monotonically increasing (dh/dy > 0) with dh/dy
piecewise continuous. This yields a Sturm-Liouville
problem with complete orthonormal eigenfunctions.
The scattering problem is solved by simple eigen-
function matching rather than by the more compli-
cated Wiener-Hopf technique in HB. Furthermore,
in contrast to HB, the barrier can now be of finite
length, and may be placed any distance offshore
(Fig. 1).

The basic theory and the general solution for any
monotonically increasing topography A(y) are devel-
oped in Sections 2 and 3. In Section 4, specializing
to the exponential shelf profile where A increases
exponentially with y, we derive simple analytic for-
mulas for the scattering coefficients. The limitations
of our theory are discussed in Section 5.

2. Basic theory

Assume a straight coastline at y = 0, and a
monotonically increasing depth 2 = h(y) for y > 0,
[with A(0) > 0] (Fig. 1). We nondimensionalize the
horizontal spatial variables x and y with respect to
the shelf/slope width, and time ¢, with respect to f !
{f being the constant Coriolis parameter), so that the
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FiG. 1. The geometry of the problem, (a) side view and (b) plan
view. The continental shelf is described by a monotonically increasing
depth A(y), with nonzero depth at the coast. A long, infinitely thin
but impermeable barrier is located at y = L, 0 < x < X,. An
approximate outer boundary condition # = 0 is imposed at y = 1.
Four regions I, II, III and IV are marked in (b), with the incident
shelf wave approaching from region I.

unforced barotropic shallow water equations in a
rotating, frictionless fluid can be written as

U — V= —px, (2.1a)
u=-p, (2.1b)
(hu)y + (hv), = 0, (2.1¢)

where the alongshore geostrophy approximation and
the rigid-lid approximation have been used in (2.1b)
and (2.1c) respectively. Cross-differentiate (2.1a and
b) to eliminate p, then substitute in the transport
stream function v,

Y=2(e®, hu=y,, h=—y, (22)
to get an ordinary differential equation for &,
1 1A
- ¥f+-=d= .
( p ) oy =0, 2.3)

where prime denotes d/dy and ¢ = w/k.

For boundary conditions, we require no normal
flow through the small coastal wall and through the
barrier, ie. v = Qaty=0,andaty =L, 0 < x
< Xp. By the third equation in (2.2), ¥ must remain
(spatially) constant along y = 0 and y = L, 0 < x
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< Xxo. Without loss of generality, we choose the con-
stants so that

v=0 at y=0, 2.4
Y =Bee ™ at y=L 0<x<X. (2.5

It is clear from (2.2) that (2.5) can only be satisfied
by a mode with k = 0. Modes with k # 0 can only
satisfy the homogeneous boundary condition,

v=0 at y=L, 0<x<Xx. (2.6)

The mode with k = O (the zero or Kelvin mode) has
infinite Rossby radius, phase speed and wavelength,
this being an artifact of the rigid-lid approximation.

Beyond the shelf/slope region, we impose an ap-
proximate outer boundary condition, ¥ = 0 at y
= 1. This boundary condition has been justified in
Buchwald and Adams (1968, p. 248) and used in the
wind-forced shelf wave studies of Adams and Buch-
wald (1969) and Gill and Schumann (1974).

We summarize the boundary conditions on @ in
the four regions I, I, III, IV as defined in Fig. 1b.

LIV: &,=0 at y=0, ® =0 at y=1

2.7)
@ = n =
II " at 0, } at =L
P, = 0} Y ®y = By Y
2.8)
m T } t L " 0} at 1
a =1L, =
w%=8 ° 7T @=of T 7
(2.9)
where n = 1, 2, 3, ..., and ¥, denotes the zero

mode.

With 4 > 0, dh/dy > 0 and piecewise continuous,
Eq. (2.3) plus the homogeneous boundary conditions
in (2.7)-(2.9) belong to the class of Sturm-Liouville
problems (e.g., see Boyce and Di Prima, 1969). Thus
for each of the four regions, the set of functions ®,(y)
(n=1,2, ---)forms a complete orthonormal basis,
with

hl
f 7 P V)2 V)AY = Sum (2.10)
where §,,, is the Kronecker delta function.

For the zero mode with k = 0, (2.3) reduces to

1
—& ) =0, 2.11
(3 ) @1
which can be integrated twice to yield
Y
‘I’o = C] f hdy’ + C2 (212)
(V]

where C; and C, are constants. From the boundary
conditions (2.8) in region II, we obtain?

2 Superscripts I-1V identify the appropriate region.
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'y L
%" = By fo hdy' / fo hdy'. (2.13)
In region III, (2.9) compels
™ = B,, (2.14)

which does not support a zero mode as both velocity
components are identically zero by (2.2). Similarly,
(2.7) eliminates the zero mode in regions I and IV
by making ®;, = 0. Thus, the zero mode can only be
excited in region II.

3. The general solution

In region I, we have an incident shelf wave of
mode m,

¥ = A%, (y) exp(ik,.'x — iwt). 3.1

For matching at x = 0 and x = xg (see Fig. 1), we
require p and the normal velocity # to be continuous.
From (2.1b) and the second equation in (2.2), this
amounts to ¥ and ¢, continuous at x = 0 and xo.
Because ®(y) is continuously differentiable, ¥ contin-
uous across x = 0 or X, automatically implies ¢,
continuous. The alongshore geostrophy approximation
assumes v to be small compared to u, so v and ¢,
are allowed to be discontinuous at x = 0 and x,.
In region II,

Y =[®"(y) + % B.®,"(y) exp(ik,"x)le™™.  (3.2)

n=1

Matching (3.1) and (3.2) across x = O requires

A%,'(y) = ®"(y) + % B.2,"(»). (33)

n=1
At the barrier y = L, (3.3) reduces to
A%, (L) = ®"(L) = Bo, (3.4)

which fixes By in terms of the incident wave. The

function
F(y) = A%,'(y) — ®"(») (3.5)

satisfies the homogeneous boundary condition F = 0
at y = 0 and L, and can be expressed in terms of the
complete orthonormal basis {®,"}, i.e.

Hy) = Z B.2,"(»),

n=1
L

hl
B,=| 1 F(»)®,"(y)dy.
0

With By and B, given by (3.4) and (3.6), the wave
field in region II is known,
Similarly, in region III, by (2.14),

(3.6)

¥ =[Bo + % C.®,"(y) exp(ik,"x)je™ . (3.7)

n=1
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Matching (3.1) and (3.7) across x = 0 yields
Co= [ 2 140,00) ~ BTNy, (38)
In region 1V,

¥ = 0203 D,®,"(y) explilk,"x — wt + 8,)), (3.9)

n=1

matching of (3.2) and (3.7) with (3.9) across x = Xy
yields

Dn exD[i(knlvxo + 6n)]

L h/ ©
- [ Z o+ T B exptitgMle,Vay
=1

1 hr -}
+ f 2 [Bo+ T G exp(ik; ™o)1, " dy.
J

L -1

(3.10)

For a general monotonically increasing depth profile
h(y) and a given frequency w, the corresponding
wavenumbers {k,} and the eigenfunctions {®,} in
each region can be obtained numerically, (Caldwell
and Longuet-Higgins, (1971)). The &Y is computed
from (2.13), and the problem is solved as we know
By, By, C, and D,, from (3.4), (3.6), (3.8) and (3.10).

Energy flux and orthogonality relations are dis-
cussed in Huthnance (1975, Section 5) under three
distinct cases—(i) w specified, (ii) k specified and (iii)
¢ specified. For our wave scattering problem, w is
fixed, hence Huthnance’s case (i) results apply. He
proved that the energy flux separates into contribu-
tions from individual modes, but that the energy
density E does not necessarily separate into individual
modal contributions, i.e. there may be interaction
energies between modes. We have however used more
restrictive equations than Huthnance. The alongshore
geostrophy approximation (2.1b) which amounts to
taking the nondispersive long wave limit, and the
rigid lid approximation reduce the (alongshore aver-
aged) energy density E to

E=fhu2dy, 3.11)
1.e. onshore current and surface elevation contribute
negligible energy. Then Huthnance [1975, p. 699,
case (i1)] shows that E also separates into individual
modal contributions since

f hu,u,dy = 0 (3.12)

for m # n. ’
Substitute (2.2) for u in (3.11), average alongshore,

then integrate (3.11) by parts, and upon invoking

(2.3), (2.11) and (2.10), obtain the energy density
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+ E Bn2/cnu] ’

n=1

1 e}
E" =3 3 Ga
EY =3 3 Do, (3.13)

n
where ¢, is the nth mode phase speed in the appro-
priate region.

4. On exponential topography

We now examine a specific case, where the bottom
topography increases exponentially offshore,

h = he?®, 0< 4.1)

as studied by Buchwald and Adams (1968). Equation
(2.3) becomes

y<1,

" — 2bP + % ¢ =0. 4.2)
Assuming & oc eV, \ satisfies
AN=bzxiy, v=Qblc— ) 4.3)
whence
c=2b/(v*+ b, k=w®+b)/Q2b). 4.4

"In regions I and IV, the boundary conditions (2.7)
give
®,' = 4,'e” siny,y,

n=1,2 -+, (4.5

with v, satisfying
tan v, = —v,/b. 4.6)

Figure 2 gives the values for vy, over a reasonable
range of b values. The orthonormal relation (2.10)
over the range 0 < y < 1 yields the normalization
factor

Al = I: 2h07n }]/2
" Lb@y, - sin2y)]

Similarly, in region III, boundary conditions (2.9)
yield

4.7)

&1 = 4,Me sin ,M(y — L) (4.8)
with v, satisfying
‘Yn(l - L
tany, (1 — L) = — b(l——L)) . (4.9)

Since (4.9) is identical to (4.6) upon defining ¥,
= vl — L)and b = b(1 — L), values of v, can
thus be obtained from Fig. 2. Orthonormality over
the range L < y < 1 gives

m _ { 2h07n
" b[2vx(1 — L) = sin2v,(1 — L)]

172
} . (4.10)
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FIG. 2. Values of v, as a function of the exponential topography
parameter b, for n = 1, ..., 10. The actual values plotted on the
y-axis are vy, — [r — (1/2)}=. With this diagram, the solution in
Section 4 can be readily applied to continental shelves of different
b values.

In region II, (2.8) yields
o, = 4, sinnwy/L,

ho 1/2
A,,"=(—) , n=1,2--- 4.11
Bl n (4.11)
For mode 0, (2.13) gives
e® sinhby
by = By 57— . 4.12
0 % ¢bL sinhbL (4.12)

Upon integrating (3.6) and (3.8), we obtain the
scattering coefficients B, and C,,,

2bL
B, = hi AA, A, sin(yL)(—1)'nw
0
X [ : + ! 1 4.13)
(YmL)* = (nm)* ~ (BL)* + (nm)*]”
Cn — z—bAA IA m{ [Sln['Ym 'Yn(l - L)]
ho 2 Ym — Yn
_ sin[y,, + v.(1 — L)] . 24 Sil’l’ymL:l
Yo + Vn Ym® = Vn
Yn SINY L

- W} . (4.14)
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where for abbreviation, v,, = v,., and v, = ¥

n=1,2,.... From (3.4),

D, explitks""xo + 8,)] = P, + 2 B; exp(ik"x0)0n + 2 C; exp(ik;™xo)R,,
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By = AA,,'e’" sin(y,,'L).

Similarly, upon integrating (3.10), we have

(4.15)

(4.16)
j=1 j=1
where (since ®' = &'V, ! = 41V),
Ly U p 28 siny,,L .
P, = f ®,'®"dy + = & I<1>OI“aVy = T AA,'4,,! Bt sinvy,L(cothbL + 1),
2bL jr
B g18ay = 2°L 4,147 siny,L(=1)/ ,
f 72 he sy LD T Gy
! — v (1 —D)] sin[y, + (1 — L)]

h' b sin
-an — @ I@ llldy — p An[Aj[I]{ 1 [‘Yn
0

LW Yn

With v, = Y, Yo = 14> and v; = v/, n = 1,
2, ...,

From (3.13), the energy density of mode » nor-
malized with respect to the incident energy is given

by

E" = bBH(e®*t — 1)Y'V/E,0 <y < L), (4.17a)
" 1 B
E, 2l E,(0<y< ), (4.17b)
EM = LG E(L 1 4.17
2C1" l( <y< ), ( C)
1 D
EWY = 2c E0<y<1), (4.17d)

where ¢, is given by (4.4) in each region, and the
incident energy density into the cross section a; < y
< a, is given by
a2
E(a,<y<a)= f hu’dy. (4.18)
ai

In particular,

E0<y<lL) ————AA [ B* + ¥md)
+ 3’%"—7—'& (=B + yn2) + b sinz'ymL:I . (4.19)
Ym
where A4,, = A4, and v,, = v,.. E(0 <y < 1) is

obtained from (4.19) by setting L = 1, and E/(L < y

<1)=E0<y<1l) — E0 <y < L) This
normalization ensures
E()" + Z En" = 1’ z EnHI = l;

n=1 n=1

and > E,V =1.

n=1

(4.20)

-

2y sin'y,,L}
Yn + v Yol = vt

Next, we illustrate some features of our solution.
Choose a typical value b = 2, (e.g. for the relatively
steep shelf off Sydney, Buchwald and Adams, 1968,
obtained b = 2.7, whereas off Oregon, Hsiech and
Mysak, 1980, obtained b = 1.65). For an incident
shelf wave of mode m = 1, Fig. 3 illustrates how
changing the offshore location L of the barrier affects
the energy distribution in region II. Except for rela-
tively large L, (barrier far from the coast), the incident
first mode energy is essentially all transferred to the
zeroth mode, in agreement with the step-shelf model
of HB. In region III, the incident energy remains

08

02

0-6 © 08

FIG. 3. E¥, the normalized mode 7 energy density in region II
for n = 0, 1 and 2, plotted as a function of L, the offshore location
of the barrier. The incident first mode (7 = 1) shelf wave transfers
its energy readily to the n = 0 mode in region II.
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essentially in mode 1 while changing L, with E;™

>097for0< L < 1.

The scattering behaviour is easily understood when
we examine the offshore modal structures, shown in
Fig. 4 for the barrier located at L = 0.3. Since we
require Y continuous across x = 0, it is clear from
Fig. 4 that the n = 0 mode in region II and the n
= | mode in region III match most readily with the
m = 1 incident mode because of their physical
resemblance to the incident mode. Hence, the incident
energy is scattered mainly into the #n = 0 mode in II
and the n = 1 mode in IIL

Figure 5 shows the energy distribution in region II
when the incident wave is of mode m = 2. For L
small (barrier close to coast), the dominant mode
excited is still the » = 0 mode. Only when L is
relatively large before the » = 1 mode becomes
dominant. In region III, Fig. 6 shows that for L small,
the incident energy stays in the second mode as
expected, but for larger L, much of the second mode
incident energy is transferred to then » = 1 mode.
Hence an alongshore barrier can be very effective in
transferring incident energy to other modes.

What happens downstream from the barrier, i.e.
in region IV? The behaviour now depends not only
on L, but also on the length x; of the barrier relative
to the incident wavelength. By (4.4), all waves in our
system are nondispersive, so the entirc alongshore
picture scales linearly with «™'. Hence, the parameter
wXp indicates the relative length of the barrier. With

S U NS

FiG. 4. Offshore structures of ®,. The m = 1 incident mode in
region I is shown on top. Below are shown the first few modes in
regions II and III, with the barrier located at L = 0.3. It is clear
that the n = 0 mode in region II and the n = 1 mode in III match
most readily with the m = | incident mode from I.
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FIG. 5. EY as a function of L, with an incident wave of mode m
= 2. The n = 0 mode remains dominant in region II for L small,
but yields to the n = 1 mode for larger L.

an incident m = 1 wave, the first-mode energy in
region IV is plotted as a function of L in Fig. 7 for
wxo = 0.1, 0.3 and 1. For a relatively short barrier,
wxo = 0.1, most of the incident first mode energy

"0 T | T T T T

e
0.8F 2 4
L n=1 1
0.6 -
EC -
w
0.4 _
0.2+ 4
3 2
0 L T~ b1
0-2 0-4 06 08 1.0
L

FIG. 6. EM as a function of L, with an incident m = 2 wave.
For relatively large L, the incident second mode energy is mainly
converted to first mode energy in region III.
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FIG. 7. EYY, the n = 1 mode energy in region IV, as a function
of L for 3 values of wxp, the relative length of the barrier. The
incident wave is of mode m = 1. As wXxy increases from 0.1 to 0.3,
the curve drops, indicating more energy is scattered out of the first
mode as the barrier becomes longer. The curve becomes progressively
more oscillatory as wx, increases.

remains in the first mode after passing the barrier.
As wx, increases, the E,"V curve develops progressively
more and more extrema. For wxp = 1, at L =~ 0.3, a
minimum in E,!Y is manifest, and the energy is now
mainly transferred to the second mode, as illustrated
in Fig. 8. Thus, for a long enough barrier, much of
the incident energy may be permanently transferred
to a different mode after passing the barrier. Further-
more, the incident wave may undergo substantial
phase shift upon passing the barrier, as illustrated in
Fig. 9.

5. Approximations and limitations of the theory

The full scattering problem .at subinertial frequen-
cies is extremely complex because three types of
waves with very different length scales are involved—
evanescent Poincaré waves at small scales, long and
short shelf waves at intermediate scales, and Kelvin
waves at large scales. The rigid lid eliminates the
Poincaré waves and the Kelvin waves (except that in
region II which becomes the zeroth mode), while the
alongshore geostrophy assumption removes the short
shelf waves.

At subinertial frequencies, the Poincaré waves gen-
erated at the tip of the barrier decay with distance.
In a flat-bottom channel of width L, a Poincaré wave
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FIG. 8. EYY for n = 1 and 2 with wx, = 1, (m = 1). A sharp
minimum of the » = 1 mode (dashed curve) develops at L ~ 0.3,
where nearly 70% of the energy is in the #» = 2 mode (solid curve).

of mode n with w < fdecays along channel with a e-
folding distance

. (f2 — 2 N n27r2)—1f2

5.1
gH I? -1)

90— T T

PHASE &,

-180° /

-2700—t—1
o ; 06 0.8 1.0

FIG. 9. The anomalous phase shift §; [defined in (3.10)] for the
first mode upon passing the barrier, plotted as a function of L for
wxo = 0.3, 0.6 and 1. For wxp = 1, the minimum at L ~ 0.3
produces a rapid phase change.
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derived from LeBlond and Mysak [1978, Eq. (28.8)].
For H ~ 10°-10° m, f~ 107 57!, L < 100 km,

!l ~ —é— .

nw

For n = 1, ] = 10 km for L = 30 km, i.e. for the
barrier located at 30 km offshore, the influence of
the Poincaré waves generated at the tip extends only
about 10 km into region II. Having omitted the
evanescent Poincaré waves, our model would be
inaccurate near the tip of the barrier.

For a chain of islands running parallel to the coast,
our eigenfunction matching technique can be repeated
for each island, provided the islands and the distances
separating them are long compared to the Poincaré
wave e-folding distance. As a model for the Great
Barrier Reef, our theory is not entirely satisfactory
since the Great Barrier Reef is not an impenetrable
barrier (see Middleton, 1983), and its myriad of small
coral reefs ensures a continuous generation of eva-
nescent Poincaré waves.

The Kelvin wave in regions I, III and IV has been
eliminated by the rigid lid and the outer boundary
condition (z = 0 at y = 1). In reality, we would not
expect significant energy transfer between the shelf
waves and the Kelvin wave in these regions because
of the drastic difference in the offshore extent of the
Kelvin wave and the shelf waves. In region II, where
the energy transfer can be substantial, the Kelvin
wave is restricted by the rigid lid to have k = 0
(infinite wavelength). However, with respect to the
shelf-wave scales, the Kelvin wave does not have very
long wavelength, ie. kK =~ 0. So a k = 0 model is
crude, but not unreasonable.

The alongshore geostrophy approximation (2.1b),
which renders all shelf wave modes nondispersive, is
poor at short wavelength. In particular, the short
shelf waves with negative group velocities are absent
in our model. These short waves represent backscatter
of the incident wave energy, and their absence leads
to inaccurate energy transmission. For instance, in
the case wxg = 1, L ~ 0.3 shown in Fig. 8, the
energy in region IV is mainly in the second mode
with energy density E,"Y ~ E,, the incident first
mode energy density. But the energy flux c,E," is
much less than the incident flux ¢, E; because ¢,
the group velocity of the second mode, is much less
than ¢;;. The missing energy flux is presumably
reflected back by the short waves, which are not
represented in our model.

(5.2)

6. Summary

From the unforced, inviscid barotropic shallow
water equations under rigid-lid and alongshore geos-
trophy approximations, the scattering of an incident
continental shelf wave by a long thin offshore barrier
lying parallel to the coastline has been solved for any
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general topography /(y) satisfying h > 0, i > 0 and
piecewise continuous. In particular, simple analytic
formulas for the scattering coefficients are derived for
the exponential shelf.

The most intriguing prediction of our theory is
that in region II, between the barrier and the coast,
much of the incident shelf wave energy would be
converted to the n = 0 Kelvin mode, (in agreement
with the earlier model of HB). Physically, the condi-
tion of zero onshore flow (v = 0) at the barrier and
at the coast renders the excitation of modes with
substantial v in the channel (region II) difficult,
especially when the channel is narrow. The Kelvin
mode with relatively negligible v compared to the
shelf wave modes is thus favourably excited in region
II. Recent observations off New South Wales during
the Australian Coastal Experiment (ACE) suggest that
much subinertial energy emerges from Bass Strait.
Our theory suggests that incident shelf waves from
South Australia would be scattered into the Kelvin
mode within Bass Strait before reemerging down-
stream as shelf waves off New South Wales.

Even though the Kelvin wave is not properly
modeled here because of the rigid-lid approximation,
the transfer of energy from the incident shelf wave
to the Kelvin wave in region Il is likely to be real
and testable observationally. The Kelvin wave, a
rotationally trapped gravity wave, can be readily
distinguished from the shelf waves by its relatively
large ratio of sea level displacement to current am-
plitude (Hsieh, 1985, Appendix). Hence, if anomal-
ously large ratios of sea level to current fluctuations
of subinertial frequencies are observed in region II
but not in regions I or IV, our prediction would be
confirmed.

In region III, seaward of the barrier, substantial
energy transfer from an incident second-mode wave
to the first mode is also possible. When the barrier
length is short relative to the incident wavelength,
the incident wave suffers only small energy loss and
a slight phase shift upon emerging from the down-
stream end of the barrier. When the barrier length is
increased, the incident mode may vanish downstream,
leaving a different mode to dominate in region IV.
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