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ABSTRACT

Statistics of Richardson number in the seasonal thermocline are determined for a simple mode! and from
experiments over the continental shelf. The model consists of normally distributed and uncorrelated density
gradient and shear (such as may be caused by an internal wave field) plus a mean shear. It is shown that the
most probable Richardson number may be much lower than the Richardson number based on the mean

density gradient and shear.

The distributions of Richardson number for two experiments in the seasonal thermocline in Bass Strait,
between mainland Australia and Tasmania, are determined from a probe that samples velocity and
temperature differences at 1 Hz, over vertical separations of | m. Away from surface wave frequencies the
data are shown to be adequately described by the above model. In both interfaces significant shear energy
occurs above the maximum Brunt-Viisild frequency of about 0.01 Hz. Judged by the temperature inversions
of scales greater than one meter that were observed within the less stable interface, this shear variance leads
to Richardson numbers that are subcritical for significant periods.

1. Introduction

Determining the rate of entrainment across the
seasonal thermocline of the world oceans is important
in many problems involving the heat balance of the
upper ocean and the prediction of depth of the
surface mixed layer. At present there are a number
of expressions which attempt to relate the rate of
deepening of the mixed layer to the external variables
believed to be important. Mixed layer depth, density
gradient in the thermocline and surface wind stress
are obvious candidates. To look more closely at these
relationships, laboratory studies have been made of
entrainment rates due to turbulence in the layer
above the thermocline (so called grid-stirred experi-
ments such as that by Rouse and Dodu, 1955) and
by both turbulence and mean shear, e.g., Kato and
Phillips (1969). In recent papers by Deardorff and
Willis (1982) and Jones and Mulhearn (1983) the
relative influence of external turbulence and mean
shear in determining the rate of entrainment is clar-
ified.

In the ocean tentative progress has been made in
describing the mean velocity and density profiles
through a seasonal thermocline by Jones (1983). Here
the gradient Richardson number from the “mean
profiles” was determined and entrainment direction
predicted from the asymmetry of the thermocline.
What is not known is how to relate the mean
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Richardson number profiles to the external variables
or how to relate the rate of entrainment to the
Richardson number derived from these mean quan-
tities. In the present paper it is this latter problem
that motivated us to study the statistics of the Rich-
ardson number within the seasonal thermocline over
a portion of the continental shelf.

Previous studies of the statistics of Richardson
number have focused on the main oceanic thermo-
cline, in which the shear variance is dominated by
the internal wave field. Desaubies and Smith (1982)
showed that a model in which the two components
of shear and the temperature gradient are normally
distributed and uncorrelated random variables, with
variances related by the Garrett and Munk (1975)
“universal” internal wave spectrum, adequately rep-
resented their observed Richardson number distri-
butions. Toole and Hayes (1984) showed further that
a skewed temperature gradient distribution as pre-
dicted by Desaubies and Gregg (1981), significantly
improved the fit between an internal wave-field model
and data from the main thermocline in the eastern
equatorial Pacific.

In the present study, however, there is no reason
to suspect a priori that these models would be appli-
cable. In Bass Strait the seasonal thermocline is
located between two fairly well mixed layers, one
stretching to the sea surface and the other, as a result
of tidal stirring, to the sea floor. While a broad range



JuLy 1985

of internal wavelike motions have been observed in
the study region (e.g., Jones and Padman, [983),
shear within the thermocline may also be attributed
to other mechanisms such as the upper mixed-layer
response to wind forcing, and the large-scale turbu-
lence of the surrounding mixed layers. Therefore,
rather than constraining the variances and spectral
shapes to conform to the Garrett and Munk model,
we shall consider a number of possible shear and
density gradient variances and compare the derived
Richardson number statistics with our data.

Following a discussion of the experimental proce-
dure we review the elementary statistics to compute
the probability distribution of the Richardson number
from assumed distributions of velocity and density
gradients. Next we compare this calculation with
statistics collected with a Richardson number probe
during two summer deployments from oil platforms
in Bass Strait.
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2. Equipment

The data were collected from the Kingfish B and
Barracouta oil and gas platforms in eastern Bass Strait
(Fig. 1). The locations are as follows;

Kingfish B: 38°36'S, 148°11'E (water depth 78 m)
Barracouta: 38°18'S, 147°40.5'E (water depth 48 m).

Both platforms are instrumented with automatically
recording thermistor chains so that the short-duration
Richardson number probe results can be related to
the longer term variability in the thermal structure.
The Richardson number probe (RNP) is described
by Jones and Bruzzone (1981) and a diagram of the
unit is shown in Fig. 2. The probe is designed to
measure instantaneous vertical gradients of tempera-
ture and horizontal velocity so that the gradient
Richardson number can be estimated. The design is
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constrained by noise limitations on the electromag-
netic current sensors and by the expected vertical
length scales for oceanic density and currents. Vertical
structure exists down to the Kolmogorov microscale
I = (/€)' where v is the kinematic viscosity (1076
m? s7!) and ¢, is the dissipation rate of turbulent
kinetic energy, estimated by Gargett and Osborn
(1981) to be of order 1077 m? s™3 in the upper mixed
layer of the ocean. Hence /i is of order | mm in the
mixed layers. Velocity differences at these vertical
scales are too small to detect at present by a device
collecting a time series at a fixed sensor separation.
The minimum separation must be large enough such
that the velocity differences that make up the shears
being studied exceed the instrument noise which in
our case is about 1 cm s~!. Typical shears in the
upper ocean, such as shear due to surface waves and
direct wind-forcing, have magnitudes of about 0.01
s”!. A sensor separation of greater than 1 m is
therefore required.

A feature of the RNP is that the coils for both
velocity sensors are driven by the same current, so
that any instability in the magnet power supply has
the same effect on both. No-flow bucket calibrations
give instrument noise levels of 0.15 cm s™! for each
current channel, and 0.002 s™! for each shear channel.
The instrument resolution is however limited by fluid
mechanical problems such as flow noise around the
sensors and shears induced by package tilt, rather
than the electronic noise.

The RNP also includes orientation sensors to de-
termine the degree of contamination of shear mea-
surements by package tilt, and a compass with a time
constant of about 0.5 s, sufficient to resolve probe
rotations caused by surface waves. The data from the
RNP are cabled to a surface data-acquisition package
to enable real time analysis. The output voltages are
recorded digitally on to magnetic tape, and selected
channels are displayed on a strip chart recorder.

RNP data were collected during February 1981
and again in February 1982 during times when the
mean flow placed the instrument, deployed from the
southern side of the platform, upstream of the plat-
form legs. Other RNP experiments have been dis-
cussed by Jones and Bruzzone (1981).

3. Review of statistics

Assuming that the temperature and velocity gra-
dients in a stratified fluid are normally distributed
and uncorrelated, we can calculate the probability
distribution of the Richardson number. We will ex-
amine the applicability of these assumptions for the
seasonal thermocline over the continental shelf in the
next section.

We assume that 67/6z = T, is distributed as

1 fT'z ( V- Tz)z)
exp|l — ———=—)dV
O'Tzv; —00 p ZUTZZ

PT,<T)=
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where T, is the mean temperature gradient and o7,
is the standard deviation of the temperature gradient.
Similarly there will be a mean velocity gradient in
the east direction U, and the north direction V, (right
hand convention with z upward).

If we assume that all three quantities, 7., V, and
U,, are statistically independent, then by Monte
Carlo simulation we can calculate the probability
distribution of the Richardson number

. 8o T,
1 ==——"7 12
p Us+ T,
where « is the relationship between density gradient
and temperature gradient. We will assume that salinity
gradients are not important or that the 7--S relation-

ship can be linearized. The Richardson number based
on mean quantities is defined as

— _goa T,
Ri=~Y—x—F—"—7.
T U+ v,

Since it is possible to find a direction in which one
component of mean shear is zero we will neglect V,
and assume for the moment that the shear fluctuations
are horizontally isotropic, i.e., oy, = oyp,. Now we
can consider the problem as a function of Ri, T, -
UZ, oT, and ay,.

We now nondimensionalize these variables by de-
fining T;‘ = T/T,, U;: = U,/U,, o}, = ov./ U, V¥
= V,/U,, o}, = gv,/U, and o¥, = or,/T;, such that
T* = U* = 1, V¥ = 0 and define Ri* = T¥/(U¥?
+ V*2). Then it follows that

Ri* = TH/(U¥ + V#) = 1.

Figure 3 shows the statistical distribution of Ri* as
the nondimensional rms temperature gradients and
velocity gradients are varied while Ri* calculated
from the means remains constant at unity. Figure 3
may be regarded as a Richardson number distribution
by noting that Ri = Ri*- Ri. When ¢}, and o¥, are
zero, Fig. 3a-d, the Richardson number is distributed
as the temperature, i.e., normally in the present
model. The vertical columns in Fig. 3 show the
influence of increasing velocity gradient variance
while the horizontal rows show the influence of
increasing the temperature gradient variance. Notice
that as the velocity gradient variance increases, the
modal (most common) value of the Ri* probability
distribution becomes smaller, for example, Fig. 3a,
3e, 3j. This is an important point worth stressing,
that although the Richardson number calculated from
the mean values of density gradient and shear (i.e.,
Ri) remains constant, increasing the shear variance
lowers the most probable Richardson number. Also
note that as ¢§, — oo, i.e. U, — 0, the problem
approaches that determined by Desaubies and Smith
(1982). However, for the case of zero mean shear,
Ri = 0.
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4. Experimental results

The thermocline in Bass Strait may be affected by
both the large-scale shears of the coastal ocean,
thought of as mean shears, and by the turbulence of
both mixed layers surrounding it. Two Richardson
number probe (RNP) experiments, involving sampling
of thermocline and mixed-layer temporal and spatial
variability, are considered below. The sampling rate
was 1 Hz, while temperature and current gradients
were measured over vertical separations of about 1
m. A description of each experiment is given below
and a summary is presented in Table 1.

a. RNPO6 (Barracouta)

This record consists of three hours of data com-
mencing at 1004 Eastern Standard Time (EST) on
26 February 1981 (Julian Day 057). The density
profile is characterised by a thermocline of about
5.6°C in 3.4 m, at a mean depth of 20 m in 48 m of
water. The bottom and surface currents are low
(<0.08 m s~!) with a mean current difference of 0.06
m s~! between the mixed layers. A transient ther-
mocline exists above the seasonal thermocline at a
depth of about 10 m.

A series of “yo-yo” dips was made over one hour
to define the average vertical structure shown in Fig.
4. The maximum temperature gradient of 2.2°C m™'
corresponds to a Brunt-Viisild frequency of 0.01 Hz.
The RNP was then left in the thermocline for two

TEMPERATURE (°C)
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hours near the mean depth of the 17°C isotherm.
Isotherm displacements were small so that no adjust-
ments to the depth of the probe were necessary to
maintain it within the thermocline.

Histograms of temperature gradient and velocity
shear were calculated for this period and are shown
in Fig. 5. The total shear variance, defined as the
sum of the N/S and E/W variances, is 8.4 X 107* s,

The bulk Richardson number based on the 2048 s
averages of temperature gradient and shear, was
about 12.

b. RNPO2 (Kingfish B)

This record consists of two hours of data com-
mencing at 1040 EST on 10 February 1982 (Julian
Day 041). The density profile is characterised by a
broad thermocline, about 4.2°C in 18 m at a mean
depth of 40 m in 78 m of water, and thermistor
chain records show that a large-amplitude internal
tide was present at this time. The bottom and surface
currents are similar in magnitude at 0.30 m s but
have a significant angular shear between them, prin-
cipally in the north component.

A measure of the mixed layer turbulence was made
at a depth of 12 m followed by a measure of bottom
layer turbulence, then 2400 seconds of data near the
16.5°C isotherm with the depth being adjusted to
approximately follow the isotherm. The maximum
Brunt-Viisild frequency (AT/AzZmax = 0.8°C m™!)
was 6 X 1073 Hz.

TEMPERATURE {°C)
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FG. 4. Comparison of temperature-depth profiles from the Richardson number probe for
two RNP experiments—RNP06 (26 February 1981) and RNP 02 (10 February 1982). The
arrows indicate the approximate location of continuous sampling within the thermocline.
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FIG. 5. The experimentally determined probability density for
velocity gradient in the east direction, velocity gradient in north
direction and temperature gradient, for RNP06 (26 February 1981)
and RNPO2 (10 February 1982).

Histograms of the temperature gradient and the
two components of velocity gradient are shown in
Fig. 5. It is notable that about 6% of this record has
negative temperature gradients of up to —0.3°C m™,
This indicates active turbulence on length scales
greater than or equal to the sensor separation of
0.84 m.

The bulk Richardson number based on the 2048 s
averages of temperature gradient and shear, was
about 4. -

5. Discussion

Figure 6 Shows the Richardson number distribu-
tions, scaled by the mean Richardson numbers, for
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the two experiments RNP0O6 and RNP02. Note that
although RNPO06 is dominated by scaled Richardson
numbers of 0 to 0.2, because the mean Richardson
number is high (16) there are actually no occurrences
of Ri < 0.25. Therefore, we do not expect turbulence
to develop on scales equal to or greater than 1 m. As
expected from the non-dimensionalised rms shears
and temperature gradient in Table 1, the distribution
most closely approximates Fig. 3o.

The distribution of Richardson number for RNP02
most nearly approximates Fig. 3p, again as expected
from the nondimensionalized shear and temperature
gradient variances (Table 1). Note that Ri (=1.3) is
the mean Richardson number based on the shears
and temperature gradients measured by the probe,
and is smaller than the bulk Richardson number for
the entire interface, based on velocity and density
differences between the mixed layers. The occurrence
of negative Richardson numbers strongly suggests
active turbulence on scales of 1 m or greater. The
reduced probability of negative Richardson number
observed, compared with Fig. 3p, presumably reflects
the lack of physics in the simulation, i.e., the collapse
of a gravitational instability is not modeled.

RNPO2, as well as inversions, also has a high
probability of subcritical (<0.25) Richardson number
in the 1 s averaged data. However it is not appropriate
to infer from this that turbulence is likely to be
generated. For a given vertical length scale of an
instability, a finite time is required for the instability
to become gravitationally unstable. If the shear is
removed before this time elapses, the interface grad-
ually relaxes through viscous-damped buoyancy os-
cillations without turbulence, to its initial state. It is
therefore necessary to consider some average of the
Richardson number to define the interface that be-
comes turbulent. We define a time-averaged Richard-
son number by

N _ & (AT/AZ),
(Ri) p (AU/AZ)? + (AV/AZ)?

RNPQ6
Ri=16 3

b

PROBABILITY
DENSITY

PROBABLITY £
DENSITY |

RICHARDSON NUMBER
FIG. 6. Scaled Richardson number (Ri* = Ri/Ri) distributions

' for the two experiments RNP06 (26 ‘February 1981) and RNP02

(10 February 1982).
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TABLE 1. Summary of Richardson number probe experiments.

26 February 10 February
1981 1982
Name RNP06 RNP02
Water depth (m) 48 78
Sensor depth (m) 18 51
Wind speed (m s™') 124 8.9
Significant wave height (m) 22 1.1
Mean current (m s™') 0.02 031
Shear variance, oy, (s7%) 84 X 10" 314X 107
o Ux/ Uz 3 3
Temperature variance, o7,” [(°CY’) 0.14 0.039
or/T; 03 1
Mean Richardson number
ga T,
(Rl = 7 U_zz) 16 1.3
Bulk Properties of the Thermocline
Current difference (m s7!) 0.055 0.235
Temperature difference (°C) 5.6 42
Thermocline thickness (m) 35 l7 5
Bulk Richardson number 12

where (), implies a temporal average over time ¢.
It follows that (Ri), .., = Ri.

The effect of temporal averaging is shown in Fig.
7, for a period of record commencing at 1200 EST
from RNPOQ2. This figure is a time series plot of
temperature gradient, shear magnitude and Richard-
son number for both the “unfiltered” (1 s) and 150 s
low-passed data. The choice of cut-off period is based
on the Thorpe (1973) time scale for Kelvin-Helmholtz
instabilities growing across the entire interface. While
turbulence may develop on shorter time scales over
smaller vertical scales, a local catastrophic failure of
the interface, that is, one in which upper and lower
mixed layer waters mix directly, should only occur if

the Richardson number remains below the critical -

value for longer than this time. The probability
distributions of temperature gradient and absolute
values of north and east shear for the above record
are shown in Fig. 8.

By examining the power density spectra of both 7,
and U, it can be seen at which cutoff frequency f,
filtering may have a significant effect, noting that the
variance of filtered T, is given by

fe
o= [ @ninar

where ®1( f) is the power spectral density at frequency
fof T, (and similarly for ¢y,2).

The power density spectra of temperature gradient
and shear within the thermocline are shown in Figs.
9 (RNP06) and 10 (RNP02). While in RNP02 no
significant peak is visible, during RNPO6 there is
significant energy near 0.1 Hz, apparently surface
wave shear. In either case, however, it is obvious that
the choice of filtering frequency will affect the resultant
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Richardson number distribution by reducing the total
variance without altering the Richardson number
based on the mean gradients Ri. Decreasing the cut-
off frequency decreases the shear variance, which, as
we have already seen in Fig. 3, leads to a less skewed
Richardson number distribution with the mode ap-
proaching the mean Richardson number. These results
are independent of the spectral shape but assume
normally distributed, uncorrelated variables. While
not satisfying the x>-test at the 90% level, the normal
distribution appears an adeguate representation for
the majority of the histograms of Fig. 5. The corre-
lations between variables are low, ranging from 0.04
to 0.22, the latter value being between the north and
east components of shear for RNP06, and is due to
the high surface wave energy in this record. As can
be seen from the coherence plots in Figs. 9 and 10,
between temperature gradient and shear, the coher-
ences are not in general statistically significant at the
95% level. This result is in agreement with both
internal wave models, applicable to the frequency
band from the Coriolis frequency w, t0 Npa, and
turbulence (f > Npax)-

The effect of filtering is illustrated by the RNP02
experiment. By filtering at 0.01 Hz, similar to the
Kelvin-Helmholtz instability time scale, the ratio of
rms to mean shear decreases from of, = 3.4 to 1.1,
while o%, decreases from 1 to 0.5. Therefore the
distribution of Richardson number for the filtered
variables approximates Fig. 3k rather than Fig. 3p,
i.e. a much broader distribution. This is accompanied
by a decrease in the probability of unstable Richardson
number. Note that this probability is a function of
af,, oF, and Ri, the Richardson number based on
the means U, and T,. Then from the definition of
Ri*, the relauonshlp

Pr(Ri < Rig) = Pr(Ri* < Rig/Ri)

can be used to interpret Fig. 3.

A comparison may be made with the observatlons
by Evans (1982) (using free-fall probes through the
oceanic thermocline), who showed that there existed
a nonzero probability of unstable Richardson number
(Ri < 0.25) in a field with a stable bulk Richardson
number of order 1. Evans also showed that the effect
of doubling the vertical averaging interval from 1.1
to 2.2 m was roughly to halve Pr(Ri < 0.25), com-
parable with the present result that to increase the
averaging time is to lower the probability of small
Richardson number.

6. Causes of velocity gradient variance

While the temperature gradient variance is of some
significance, the most important quantity in deter-
mining the difference between the mode of the Rich-
ardson number probability distribution and the mean
Richardson number is the velocity gradient variance.
The causes of velocity gradient variance are unclear
at this time but because they extend to frequencies
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temperature gradients.

above the maximum Brunt-Vdisild frequency they
cannot all be attributed to free internal waves of the
type modeled by Desaubies and Smith (1982). While
surface waves contribute to the shear energy near 0.1
Hz there remains a considerable amount of shear

between the surface and free internal-wave frequency
bands. This shear may be due to either the turbulence
of the external mixed layers, or a turbulent energy
cascade from a low-frequency instability. The role of
mixed layer turbulence in generating shear within the
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thermocline is unclear. However for typical boundary
shear stresses the friction velocities defined as uy
= (7/p)"/? of both layers are about 0.02 m s~!. Then
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FIG. 9. Power spectral densities of shear (solid line) and temper-
ature gradient (cross-line), coherence-squared and relative phase
for measurements made within the thermocline during RNPO6.
95% confidence limits are shown as broken lines.

for a thermocline of 4 m thickneSs, the shears imposed
by the mixed layer turbulence are of order 0.01 s™'.

Further, the time scales of the turbulent velocity
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FIG. 10. Power spectral densities of shear (solid line) and
temperature gradient (cross-line), coherence-squared and relative
phase for measurements made within the thermocline during
RNPO02. 95% confidence limits are shown as broken lines.
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fluctuations in the mixed layers may be approximated
by
tm| = H/ L_,

where H is the mixed-layer thickness and U is the
mean velocity of the mixed layer (ml) past the
observer. This assumes that the large eddies fill the
mixed layer and are advected by the mean current at
U past the stationary probe. For a 30-m-thick layer
and a mean flow of 0.30 m s7., ¢, is about 100 s. A
fluctuating velocity gradient is therefore established
between the two turbulent mixed layers, with time
scales set by the scales of the mixed layers. For a
sufficiently thin thermocline and large u4 in one or
both of the mixed layers, these shears may result in
periods of Richardson number low enough to induce
intermittent turbulence in the interface.

If the shear fluctuations we observed were depen-
dent only on the vertical displacement of the probe
from some reference isotherm and not on time, then
vertical advection of the thermocline past the probe
such as caused by a mode | internal wave, would be
seen as a time-dependent shear. The shear variance
for small ranges of temperature (i.e., small ranges of
depth relative to the reference level) was calculated,
and showed that the fluctuations in measured shear
were dominated by time-dependence rather than rel-
ative depth-dependence. That is, we are not merely
recording the variation in shear due to the varying
position of the RNP within the thermocline.

7. Conclusions

For Gaussian statistics we have shown that the

probability density function of Richardson number
depends upon the ratio of rms to mean shear of;,
= oy,/U, and similarly ¢¥%, = ¢1,/T,. In particular as
the shear variance ¢f;, increases, the modal Richardson
number decreases from a maximum of the mean
Richardson number when oy, = 0. The probability
of occurrence of subcritical Richardson number is a
function of 6%, 0%, and the mean Richardson number.
The two time series of Richardson number measured
in the seasonal thermocline in Bass Strait support the
use of uncorrelated Gaussian statistics for U, and T,.

-If we accept that periods of low Richardson number
can occur on space and time scales shorter than those
that are chosen to define the external extent of the
sheared flow being studied, then the prospect of
defining the probability of turbulence occurring and
a rate of entrainment, in terms of mean Richardson
number, recedes. We expect to need to know, as well
as the mean Richardson number, at least the shear
variance in order to parametrize the order of entrain-
ment.

From observations it has been shown that significant
shear fluctuations occur at all frequencies up to the
surface wave frequencies. Thus it is not appropriate
to model the Richardson number fluctuations as the
result of free internal waves for the coastal ocean.
The shear energy at frequencies above the maximum
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Brunt-Viisild frequency may be caused either directly
by the turbulent velocity fluctuations of surrounding
mixed layers, or by the turbulent energy cascade from
lower-frequency motions. For a probe with a fixed
sensor separation Az, the integral scale of the insta-
bility must be inferred from the Richardson number
statistics: if no subcritical Richardson numbers are
observed, this scale should be smaller than Az, while
if the probability of low Richardson number is non-
zero, the vertical scale of dynamically unstable struc-
tures should be greater than Az, as was observed in
RNPO2, where the temperature gradient was negative
for 6% of the record. In the former case the shear
results from uncorrelated smaller-scale vortices at
each sensor.

The effect of filtering of temperature and velocity
gradients prior to calculating the Richardson number
probability density function for situations where these
gradients have red spectra is critically dependent on
the cutoff frequency chosen. Since filtering does not
affect the Richardson number calculated from the
mean quantities, the change in cutoff frequency can
be modeled by a change in o}, and o%. Thus the
probability of a critical Richardson number occurring
for a chosen time scale, can be assessed from Fig. 3.
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