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ABSTRACT

Induced streaming due to deep water surface gravity waves propagating at oblique angles to each other is
studied theoretically on the basis of a Lagrangian description. The ocean is slightly viscous, and the primary
waves are maintained at constant amplitude by a suitably adjusted small wind stress distribution at the
surface. The induced secondary motion in the nonrotating case consists of paraliel rolls with axes aligned
along the wave propagation direction, and a horizontally undulating Stokes drift. Surface convergence in the
roll motion occurs at lines through nodal points of the primary wave system, and downwelling occurs below
them. The surface value of the undulating Stokes drift has a minimum at these nodal points if the angle
between the crossing waves is less than 76.4°. If this angle is larger than 76.4°, the Stokes drift at the surface
has a maximum here. The roll motion described in the present paper is discussed in connection with the
basis for the recent theoretical development of Langmuir circulations. Finally, a solution for the steady,
horizontally averaged drift current in a rotating ocean is presented.

1. Introduction

Streak structures at the sea surface directed along
the wind direction are commonly observed phenom-
ena. Many attempts have been made to explain these
observations; see the reviews by Faller (1971) and
Leibovich (1983). It appears that the streaks, formed
by collection of sea-weed, foam, etc., are due to
organized motion in the water in the form of cells
aligned along, or nearly along, the wind direction.
The collection of surface material occurs along lines
of surface convergence, and downwelling takes place
below them. The cells themselves have become known
as Langmuir circulations after Langmuir (1938), who
was the first to investigate this phenomenon more
systematically.

Among the many theories offered to explain the
generation of Langmuir circulations, the theory of
Craik and Leibovich (1976) seems to be one of the
most successful so far, Essentially the roll motion in
this theory (the CL1 mechanism; Faller and Caponi,
1978) arises from a nonlinear interaction between a
horizontally undulating Stokes drift and a unidirec-
tional shear current. In the Craik-Leibovich theory
viscosity is needed to establish the shear current,
while its influence is completely neglected in the
determination of the wave-induced current. The latter
is obtained from inviscid theory by considering the
interaction between two monochromatic surface waves
of equal amplitude and frequency which propagate
at oblique angles to each other. Linearly this gives
rise to a system of progressive short-crested surface
waves. Nonlinearly a horizontally undulating Stokes
drift is obtained.

At this point it is worth recalling that the effect of
viscosity introduces significant changes in the wave-
drift current near the surface and bottom boundaries,
see for example Longuet-Higgins (1953, 1960); Un-
liata and Mei (1970); Liu and Davis (1977); Craik
(1982); Weber (1983a). The cited papers consider
only infinitely long-crested progressive waves or purely
standing waves. A generalization of this theory to the
short-crested progressive wave system considered by
the Craik-Leibovich theory is therefore natural. Also
from an oceanographic point of view this type of
wave system is appealing, since the directional spec-
trum of a wind-generated sea is symmetric with
respect to the wind direction (Longuet-Higgins, 1962).

According to this, we shall investigate the effect of
viscosity on the wave system which is a necessary
element in the CL1 generation mechanism for Lang-
muir circulations. We shall find that the nonlinear
wave-wave interaction, due to the presence of viscos-
ity, produces roll motions near the sea surface. The
computed drift velocities in the rolls are small. How-
ever, for reasonable choices of the physical parameters,
they are large enough to transport floating material
towards the convergence lines at speeds not incom-
patible with those typically found in Langmuir cir-
culations (Dyke and Barstow, 1983). The phenomenon
we describe here is analogous to the acoustic streaming
problem visualized in Kundt’s dust tube (Batchelor,
1967, p. 363). More directly, similar cellular motions
occur in the purely standing wave system of Liu and
Davis (1977). However, in that problem, with a fluid
of finite depth, the relatively strong effect of bottom
friction (no-slip bottom) dominates the much weaker
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stress-free condition at the surface. Therefore, the
induced circulations are dominated by the bottom
when the layer is relatively shallow. However, when
the depth increases sufficiently, as assumed in the
present paper, only the surface circulations prevail.

The problem will be analysed using a Lagrangian
formulation, extending the computations of the author
(Weber, 1983b; hereafter refered to as I), from one
single wave to a pair of crossing waves. The circulation
induced by this short-crested wave system is studied
in the absence of rotation. Finally a solution is given
for the steady, horizontally averaged drift current in
a rotating ocean.

2. Mathematical formulation

We consider an unlimited ocean of infinite depth
rotating about the vertical axis with a constant angular
velocity f/2, where f'is the Coriolis parameter. When
undisturbed, the surface is horizontal. The ocean
water is taken to be homogeneous, incompressible
and viscous. A Cartesian right-handed coordinate
system is defined such that the x, y-axes are situated
at the undisturbed surface, while the z-axis is directed
vertically upwards.

We describe the motion by using a Lagrangian
formulation. Let a fluid particle (a, b, ¢) have coor-
dinates (x, y, z). The governing equations for mo-
mentum and mass may be written

_14(p, y, 2
p d(a, b, ¢)

_1dx,p, 2)
p a, b, ¢

1 d(x, y, p) 2
—— 2P Y
pa(aa ba C) g Z’_,/

ax, y,z) _

da, b, ¢)
where p is the pressure, p the density, » the kinematic
viscosity and g the acceleration due to gravity. Sub-
scripts denote partial differentiation, and 8/d(a, b, ¢)
is the Jacobian. For the explicit form of the Laplacian
V? in Lagrangian formulation, the reader is referred
to Pierson (1962).

The present paper considers drift currents due to
surface gravity waves, In the equations above we have
replaced the initial position (xp, ¥y, Zo) of a fluid
particle by its identification parameters (a, b, ¢);
although the individual particles in the wave motion
actually move around (a, b, ¢) in nearly closed orbits;
see Pollard (1970) for the inviscid case. This discrep-
ancy, however, does not influence the second-order
mass transport solution, as shown in 1.

The displacements X, y, z and dynamic pressure p
will be written as series expansions (Pierson, 1962)

x=a+exW+exP+ ...
y=b+eP+e&y®+ ...

~
Xy — fy = + szxt

+ V2, b, @.0)

Vu + S

Zytg=

2.2)
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z=c+eP+&z@+ ...

p=—pgc+ e+ EpP 4 -, (2.3)

Here € is an ordering parameter proportional to the
amplitude of the surface wave.

As stated in the introduction, we consider short-
crested surface gravity waves. The simplest way of
producing such waves is by superposing two mono-
chromatic waves of the same amplitude and frequency
propagating at oblique angles to each other. Taking
the x-axis as the main propagation direction, we
consider two waves with equal amplitudes and wave
vectors

Ky = (k, l)
ky = (ks —l)

2.4

where k and [ are the wave numbers in the x and y-
direction, respectively. The waves propagate on deep
water, so the frequency g, to the lowest order, is

o = (gx)'? (2.5)
where « = (k* + [%)'? is the overall wave number.
The corresponding wavelength A is defined by A
= 27 /x. We assume that the wave frequency is much
larger than the inertial frequency, i.e.,

a> f (2.6)
This means that the effect of rotation, as in I, can be
neglected to O(e).

Since the ocean is viscous, the waves will, if let
alone, attenuate in time. This may be relevant for
swell in the absence of wind. However, when wind is
present, there is a transfer of momentum and energy
into the wave motion. We shall not go into the very
complicated problem of wave growth in this paper,
but merely confine ourselves to the simple case where
a small variable normal wind stress transfers exactly
enough energy to the wave motion to compensate
for the loss due to viscous dissipation. We refer to
Lamb (1932) or I for a discussion in the case of a
single monochromatic wave. It is straight forward to
generalize these results to the bimodal wave spectrum
considered here. To O(e) the displacements and pres-
sure may be written

2 .
x = 2k coslb{[e"” - % e"(cosyc + smyc)] cos(ka
g
— al) + -:7 e"(cosyc — siny) sin(ka — az)} 2.7
M — 2l e 1 X v : :
Yy = —sinlby| —e* + ; e(cosyc + sinyc) | sin(ka
g

— o) + % e"(cosyc — sinyc) cos(ka — crl)} 2.8)
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z = 2 coslbi| ex — L e sinyc | sin(ka — of)
G ¥? i

2
- % e cosyc cos(ka — at)} (2.9)

2
p" = 2p0 coslb K—Z e"“[cosyc cos(ka — ot)
v,

+ sinyc sin(ka — ot)]. (2.10)

Here « is an inverse viscous boundary layer thickness
given by v = (¢/2v)"%. The analysis assumes that

Z«1 Q.11)
Y

and higher order terms in x/y have been neglected in
the solution above. The permanent wave solution
(2.7)~(2.10) implies that the vertical component 7
of the wind stress (the deviation from constant pres-
sure) has a small variation of the form

7D = —8eprk? coslb cos(ka — ot), ¢=0. (2.12)

This is obtained by inserting (2.9) into (A6) of the
Appendix.

Assuming that each of the crossing waves has an
amplitude {,, we obtain analogous to I that the
ordering parameter ¢ can be written

€= Soo . (2.13)
K .

The primary wave system defined by (2.7)-(2.10)
propagates along the x-axis, while the motion in the
¥, z-plane is that of standing waves. For this reason
we shall refer to x and y as the wave and crosswave
directions, respectively.

3. Wave-drift equations
The solution to' O(é?) gives the mass transport
directly. We introduce

U® = 5D D= O @D = 7O

1 _ _
7@ = ;p(z) + gz?@ 3.1)

where the overbar denotes average over one wave-
length in the x-direction. By substituting (2.3) and
(2.7)~(2.10) into the governing equations, collecting
-terms of O(¢?), and averaging as defined above, we
obtain

8vk
u® — @ — y9,2u® = — [ + k* cos2ib)e
g

— ky(k* + k? cos2lb)e*(cosyc — sinyc)] (3.2)

2
o+ fu® + 1 — T2

3
= —2l[k2e2"c - K; e"(sinyc + cos'yc)] sin2/b (3.3)
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w® + 7 — pV,2w? = 2[(x* + k? cos2lb)e*c
— (k% + (k* — I?) cos2lb)e™ cosyc] (3.4)
v + w@ = 0. (3.5)

Here V> = 8*/0b* + #*/3c*. Furthermore, we have
assumed that there is no mean pressure gradient
in the x-direction, i.e., p = 0. Only the leading
terms in (x/y) are kept on the right-hand sides
of (3.2)-(3.4).
By utilizing (3.5), we may introduce a streamfunc-
tion Y@ such that
@ = —y@-

w® =y

Eliminating the presshre between (3.3) and (3.4), we
obtain an equation for the vorticity in the plane
perpendicular to the wave propagation direction

W P — v P
= —fu® + 8«l3e™ cosyc sin2/b.  (3.7)

We note from the right-hand side of (3.7) that the
effects of rotation and friction .generate horizontal
secondary vorticity. In particular, the viscous source
is confined to a thin boundary layer near the surface.

We assume zero mean external horizontal stress to
O(é%) at the free surface. By insertion from (2.7)-
(2.9), the boundary conditions (A.8) and (A.9) reduce
to

(3.6)

4k
U = — —’;— (1 +cos2b), ¢c=0 (3.8)

454 .
v® + w? = 2 sin2/b, c=0.

oYy

(3.9)

4. Steady solutions in a nonrotating fluid
a. Roll motion
In drift problems like the present one, where we

‘start out with an established permanent wave field, it

is no unique way of determining the initial conditions
for the mean drift solution. Therefore, we shall not
consider its transient development, but merely write
down the asymptotic steady limit.

The vertical drift velocity w® must be zero at the
free surface, or from (3.6)

¥P=0, c=0. 4.1
By utilizing this, the condition (3.9) reduces to
4%
¥ = — Z—sin2lb, ¢ =0. 4.2)
oy

Furthermore, we assume that the mean drift velocities
vanish at large depths, i.e.,

u® Y2 Y@ —0; ¢— —oo. (4.3)

By utilizing the boundary conditions above, the so-
lution of (3.7) in the nonrotating steady case can be
written



JuLy 1985

2
V=Y = $o’ok (413 2y~ (e — Ice?e
: Y

— e cosyc) — kce? ] sin2lb.  (4.4)

In deriving this solution we have assumed that / is
the only wave number in the y-direction having
energy different from zero. This is consistent with the
assumption of a bimodal spectrum (2.4).

We notice that the solution above describes roll
motion in the surface layer. The rolls have axes
aligned along the propagation direction of the wave
system, and the direction of circulation is opposite in
adjacent rolls. See the conceptual sketch in Fig. 1.
[In this sketch the x-axis, for aesthetic reasons, is
placed along a nodal line instead of through crests
and troughs as it should have been according to the
primary wave solution (2.7)-(2.9).]

The speed of the circulation depends on the vis-
cosity, since the amplitude of the mean drift currents
is proportional to y~' = (2v/¢)"/% In the present
analysis v is assumed to be small, or more precisely,
k/y <€ 1, as stated in (2.11). This does not mean,
however, that the induced circulations are negligible.
In the ocean surface layer it is reasonable to apply a
turbulent eddy viscosity which is much larger than
the molecular value of ». For typical wavelengths of
wind-generated surface waves, manifest circulations
may occur without violating the condition (2.11).

The drift velocity components in the cross-wave
plane derived from (4.4) become

2
v= So'e [4l3e"”(cosyc — sinyc) + (1 + 2lc)e?
KY
- 7 (1 — 2lc)e* | sin2lb (4.5)
2 2 3
W= $o”ol |:-—K3ce2’c + ar (e — Ice?e
Ky Y

— e cos'vc)] cos2lb. (4.6)

F1G. 1. Sketch of the induced roll motion together with the
primary wave field (advancing in the direction of the arrow).
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FiG. 2. Streamlines in the plane perpendicular to the wave
propagation direction from the dimensionless streamfunction
= Yv/$ ok, where ¢ is given by (4.4) and yy = 2/b, z, = 2ic; see
the text for details.

As an example of a typical sea state, we take {o
=2m,v =100 cm?s !, A\ =30 m and 6 = 30°.
This means that ¢ = 1.43 s™' and « = 0.21 m™.
Accordingly, /v = 0.025 which should be well inside
(2.11). Using these values we have plotted in Fig. 2
a pair of rolls computed from the dimensionless
stream function Yy = v/ ok, where ¢ is given by
(4.4). The cell width is 7/2/ and maximum horizontal
velocity towards the convergence zones occur at the
surface in the middle of each cell. In the present
example the value here is approximately 4 cm s™!;
see Fig. 3 where we have plotted the vertical variation
of the horizontal crosswave drift velocity in the
middle of a cell. Maximum downwelling/upwelling
velocities occur at the vertical boundaries between
the cells. In the present example they are around 1
cm s~! at a depth of about Y5 of the cell width, see
Fig. 3 for details. In a recent review paper Dyke and
Barstow (1983) summarize that typical upwelling
velocities are 1-2 cm s~! in Langmuir circulations,
while downwelling velocities range from 2-6 cm s™.
Although this asymmetry does not show up in the
present simple second-order theory, it is worth noting
that our calculated circulation velocities are of the
same order of magnitude as those quoted by Dyke
and Barstow, although on the lower side.

It is particularly interesting to note that the con-
vergence zones occur at the nodes of the primary
wave system; see the sketch in Fig. 1. This is analogous
to the acoustic streaming problem visualized in
Kundt’s dust tube. Here the frictional influence of
the walls induces secondary streaming motions which
carry the dust particles towards the nodes of
the standing sound wave system (Batchelor, 1967,
p. 363).

In the CL-theory for the generation of Langmuir
circulations, as reviewed by Leibovich (1983), one
also finds that downwelling occurs below nodes of
the primary wave system. Although this is the same
result as obtained here, the reason for it is entirely
different; since the CL-instability mechanism basically
is inviscid (Leibovich and Ulrich, 1972).
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Depth
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FiG. 3. Drift velocities v at yy, = =/2 (solid line) and w at y,
= 0 (broken line) from (4.5) and (4.6) vs depth. Values of the
parameters correspond to those used in Fig. 2.

b. Horizontally undulating Stokes drift

The equation for the steady nonrotating horizontal
drift, u = €u®, is obtained from (3.2). For nonzero
viscosity we find

© 8Glak
Uee + Upp = fo—;’ [(«* + k* cos2lb)e*
K

— ky(k* + k? cos2lb)e™(cosyc — sinyc)].  (4.7)

The boundary condition at the surface is given by
(3.8), or in terms of u

u, = —4fo2akx(l + cos2lb), ¢ =0. 4.8)

For [/ = 0, the problem above reduces to that solved
in I for a single wave train of amplitude 2{,. The
important point in that case was the fact that a first
integral of (4.7) satisfied the boundary condition (4.8)
exactly. This is also the case now if we consider the
horizontal drift solution averaged over one wavelength
in the y-direction. If this was not so, further integration
would yield infinite drift velocities in an infinitely
deep ocean; see the discussion in I.

For the horizontally undulating case with / # 0,
the situation is somewhat different. Now a particular
solution u'® of (4.7) does not fulfill the boundary
condition (4.8). But since the steady problem is two-
dimensional, we can always add a solution u® of the
homogeneous version of (4.7) which makes the total
solution finite. The homogeneous equation is

ud + uf) =0, 4.9)

and the corresponding solution can be written u®
= A exp(2lc) cos2lb. Here A is chosen such that u
= y® + y® satisfies (4.8). We then obtain
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k2
u= 2§'02crk[e2“” + (—2 e — ! ez'c) cos2lb — 2 &
K K Yy

k? K2

X e"(cosyc + sin'yc)(l +— cos2lb)] + O(—z) .
K Y

(4.10)

This solution also appears to be novel, since, to the
author’s knowledge, the drift due to obliquely prop-
agating wave trains in the presence of viscosity has
not been reported in the literature. The undulating
horizontal drift solution (4.10) has some interesting
features. Consider the surface drift 4y = u(c = 0).
Neglecting the small O(x/+v) term, we obtain

Up = 2{o%ok[1 + (cos?@ — sinf) cos2lb] (4.11)

where cos# = k/x and sinf = [/x. In the special case
of cos?0 — sinf = 0, i.e. # = 38.2°, the surface drift
(4.11) is uniform in the crosswave direction. For 6
< 38.2° the Stokes drift at the surface has a mini-
mum at nodes of the primary wave system, while for
# > 38.2° maximum surface velocity occurs here; see
Fig. 4. This is different from the undulating drift
solution obtained from inviscid theory, where the
maximum drift velocity always occurs at crests or
troughs of the primary wave system (Wiegel, 1964,
p. 58).

5. ‘Effect of rotation on mean drift solutions

At times comparable with, or larger than the
inertial period, rotation will influence the mass trans-
port solutions. Here we shall focus on the mean
horizontal drift, and we average our solutions over
one wavelength in the y-direction, in addition to the
former x-averaging process. Denoting this operation
by a tilde, we may define a complex mean horizontal
drift velocity by

W= i@ + ifv® 5.1
The steady versions of (3.2) and (3.3) reduce to
vWe — if W

= 8v{oiokk’[e® — vk~ le"(cosyc — sinyc)] (5.2)

subject to
W, = —4¢*ckk, ¢=0. (5.3)

Averaging in the y-direction means that we have
2_

0=10°
U
t- o
©:=38.2
O_AT)\ 0=60°
T

ras
Y»

FIG. 4. Horizontal nondimensional Stokes drift 1y = uy/2{0%0x
at the surface from (4.11) vs y. = 2/b for three different wave
angles 6.
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assumed / # 0. If we had taken / = 0 from the outset,
the factor multiplying the parenthesis on the right-
hand side of (5.2) would have been 16v{,%ck>, which
again is exactly the same as that obtained from 1 for
a single wave train of amplitude 2{,. By analogy with
the results of that paper, the solution of (5.2) may be

written
= 2§’k D (1 _ ;)e(m)cw
1+ L 1 - 21'LZ/D2
2{02616 /L K .
_ — 4{2ck — e"(cosyc + sinyc
1 — 22D ¢ ook €™(cosy 79

(5.4)

where L = 1/2« and D = (2v/f)"? are the Stokes and
Ekman depths, respectively. We note from this solu-
tion that, for given overall wavenumber «, the hori-
zontally averaged mass transport is directly propor-
tional to the wavenumber in the x direction. For
relevant values of the parameters L and D for wind-
generated waves, the surface mass transport will be
slightly deflected to the right (on the Northern Hemi-
sphere) of the wave propagation direction. For further
discussion we refer to 1.

6. Summary and discussion

The present paper demonstrates that two mono-
chromatic surface waves with equal amplitude and
frequency propagating at oblique angles to each other
may produce roll motion near the sea surface. The
rolls consist of counter-rotating pairs of cells with
axes aligned along the wave propagation direction.
The circulation is second order in wave amplitude
and depends on the size of the kinematic (eddy)
viscosity. The phenomenon is analogous to the acous-
tic streaming problem encountered in Kundt’s dust
tube experiment.

The generation mechanism does not require any
mean wind stress. However, since the circulation
depends on the eddy viscosity, the presence of a
mean wind field may help indirectly by increasing
the turbulence in the surface layer. A small value of
v (~0.01 cm? s7!) could be the reason why these
circulations were not detected in the experiments of
Faller and Caponi (1978).

The streaming motion discussed here depends on
the primary wave field, which we have assumed to
be nondecaying in amplitude due to energy input
from a weak periodic wind-stress, given by Eq. (2.12).
As a result we obtain a boundary condition (3.9) for
the vortex motion involving a small mean nonzero
Lagrangian vorticity at the surface. By considering
different bimodal wave systems (with amplitude in-
creasing or decreasing in time), different boundary
conditions for the streaming motion will result. How-
ever, this will not alter the fundamental roll producing
mechanism described here, since this mechanism
operates whenever one has a nonzero viscous source
term on the right-hand side of the vorticity Eq. (3.7),
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but different circulation rates and cell depths may of
course occur.

In the case of a mean wind stress in the wave
direction the present generation mechanism will still
operate, but now the Craik-Leibovich mechanisms
(CL1 and/or CL2 in the terminology of Faller and
Caponi, 1978) may be effective as well. The cell
width obtained here, L = w/2l, is the same as that
obtained by the CL-mechanism.

When we want to apply this sort of theory to the
ocean, we are faced with the problem that the theory
requires the primary wave field to be phase-locked
for a considerable amount of time, a condition which
is hardly met in a real sea state; see the discussion by
Leibovich (1983). Now the theory may be adjusted
to give room for some modification. If we allow the
two wave trains to have a small phase difference «,
where a could be a slowly varying function of time,
computations show that the quasi-steady nonrotating
roll problem in that case is governed by

vV P = 8%e™ cosyc sin(2ib — ) (6.1)
subject to
V' =0, ¢=0
(6.2)

4
Yo = — 4l sin2lb — @), ¢=0
ay

We notice that this merely means a slow, small shift
in the horizontal position of the parallel roll system
which we already have described, i.e., solution (4.4).

Stripe structures are often observed in connection
with oil slicks in the open sea. Released crude oil will
relatively quickly form a very viscous ‘“mousse”
phase which will cover the sea surface. The water
content of the “mousse” is 60-75%, and the viscosity
may be as high as 30 000 cP (Serstrem et al., 1984).
The presence of surface contamination invalidates
the use of a stress-free condition at the surface in the
absence of wind, since the very viscous thin surface
layer may sustain shear stress in the fluid, see the
discussion by Huang (1970) or Craik (1982). The
drift solutions are very sensitive to changes in the
surface boundary conditions, and a nonzero mean
Lagrangian stress at the fluid boundary will enhance
the induced circulations. This means that the gener-
ation of rolls discussed here may be favoured by the
presence of an oil film.

It is of considerable interest to predict the horizontal
spread of neutrally buoyant material near the ocean
surface. For the system of waves considered here, the
solution for the horizontally averaged wave drift is
analogous to the mean drift for single waves, as
studied in I If there is an additional mean wind
stress, an Ekman current must be added to yield the
total drift picture. With a suitably varying eddy
viscosity, the total drift current obtained in this way
may explain commonly observed drift paths at the
sea surface.

In a recent note Amstutz and Samuels (1984)



942

propose that the Langmuir circulation as developed
by Craik and Leibovich should be taken into account
when discussing the total wind-drift current. The idea
is interesting, but the present investigation shows that
the wave-drift problem first should be more carefully
examined. This should, in turn, form the basis of a
more comprehensive analysis of the wave-drift/wind-
current interaction problem.

70 = E}L(X(l) (1)) + eZ[M(X(Z)
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APPENDIX
Surface Boundary Conditions

We introduce horizontal and vertical external
stresses 7, 70), 7@ at the sloping free surface ¢ = 0.
By utilizing the series expansions (2.3), the dynamic
boundary conditions in Lagrangian form may be
written

1,01
2Pz

+ z(ny(l) — ZPyP — x Pz — Y0z — 25Oz Dy 4 pMzM] + O, ¢=0 (Al)
P = u(y® + 2) + LR + 2 + POV YR + yOx — yDxD + 2Pzl — 2Dz
2P — 20 — xP2P — Y02 — P20 + pO2P + OE), =0 (A2)
70 = (=p + 2pu20) + E—p® + (222 + 220xP + 220y = 22O — 22tV
= xfz) - 2020 — yO20 - 2Pz + OE), =0 (A3
where p = pv. We assume that the horizontal com- Dyke, P. P. G, and S. F. Barstow, 1983: The importance of

ponents of the external stresses are zero to Of(e).
Hence, from (A1) and (A2):

xP+2zP=0, ¢c=0
¥ +zP =0, ¢=0 (A4)
To sustain'the wave system against friction, i.e.

require that the frequency o should be real, p" and
zM at the surface must satisfy the relation

PV ==2uz, ¢=0 (A5)
see also Lamb (1932, p. 629). This means that the
vertical external stress (A3) at the free surface to O(e)
is given by

"9 = (—p + 2uzld) = depz.

The continuity equation (2.2) to O(e) reduce to
xP+yP+z0 =0. (A7)

By utilizing (A4), (A5), (A7), and averaging over one
wavelength in the x-direction, we obtain to O(¢?)
from (A1)-(A3)

(A6)

FO = pd(Z2 ~ 4z0zD), c=0 (AS8)
7O = (PP + 2P — 42020, ¢=0 (A9)

7@ = —p@ + 2u(ZD + 2Dz D
+ zﬁ,‘,’zg) —z0z0)], ¢=0. (A10)
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