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ABSTRACT

General integral relationships are derived for joint eddies in a three-layer ocean model as considered by Nof.
The model is composed of two eddies in two superposed layers, the third layer being motionless. Two cases are
examined, first when the two active layers are near the bottom (bottom eddies) and, second, when they are
located near the surface of the ocean (surface eddies). For bottom eddies the 8 effect is due to the presence of
a slope as a bottom topography. For surface eddies the 8 effect comes in through the variation with latitude of
the Coriolis frequency.

The novelty of the present work consists in the derivation of mathematically exact integral properties, from
which the translation speed of the system is deduced. Contrary to Nof no scaling assumptions are made and
therefore the result applies to a wide range of physical situations. In particular, barotropic isolated vortices and
bottom eddies in a two layer ocean are within the range of application of the present results since the Boussinesq
approximation has not been used in the study. Consequently, the integral theorems given in this paper extend
previous theorems by Flierl and Stern. The paper’s emphasis is on the mathematical aspects but important
physical implications are readily fleduced from the general result. In particular, as was first pointed. by Nof, it
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is shown that isolated eddies propagate eastward under certain conditions.

1. Introduction

In recent years, much attention has been paid to the
dynamics of so called isolated eddies. Such eddies are
observed in the ocean (Ring-Group, 1981) and it is
now recognized that they play a key role. The displace-
ment of isolated eddies is constrained by the presence
of the 8 effect which tends to impose an east-west
propagation of the system.

Those isolated systems usually show very coherent
features. Thus, the various analytical models which
have been proposed have been kept simple. Among
them are the modons (Stern, 1975), the warm and cold
rings (Flierl, 1979) and the cold eddies on a sloping
bottom (Nof, 1983; Killworth, 1983; Mory, 1983). The
isolation property gives rise to simple analytical con-
straints on the eddy which are derived by integrating
the momentum equation over the whole space. Integral
constraint properties were demonstrated for a barotro-
pic flow (Flierl et al., 1983) and for core cold eddies
on a sloping bottom by Stern (see Mory, 1983).

The present paper was motivated by the recent work
of Nof (1985) which considers joint eddies. It extends
the integral theorems of Flierl ef al. (1983) and Stern
(Mory, 1983) to a more general case for a three-layer
ocean. The system consists in an isolated pair of vor-
tices located on top of each other. One of the active
layers is finite so that it may be looked at as a lens.
The third layer is motionless and of infinite depth. De-
pending on whether the active layers are above or below
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the infinitely deep layer, we call the system surface joint
vortices or bottom joint vortices. Both systems were
studied by Nof who determined the translation speed
for a particular case of large amplitude mesoscale ed-
dies.

The present work shows that translation speeds can
be obtained from exact integral relationships without
making any scale assumption. Furthermore, it will be
shown that the cold eddies on a sloping bottom studied
by Nof (1983) and Mory (1983) are limiting cases of
the theorem derived here. Contrarily to previous stud-
1es, we do not use the Boussinesq approximation, and
the consequences will become apparent through the
analysis.

The present paper emphasizes the mathematical
model of isolated joint vortices, pointing out however
some physical consequences of the theory. In particular,
it substantiates the conjecture that joint eddies may
translate eastward under certain circumstances as has
been pointed out by Nof (1985). The reader is referred
to the latter paper where the properties of various kinds
of eddies are summarized.

The model is rather simple since it is restricted to
joint eddies translating at constant speed C along the
east-west axis. This is a usual simplification but it
should be kept in mind that some more complicated
displacements are possible, as inertial oscillations (see
Nof, 1984).

The paper has two main sections. Bottom joint ed-
dies are considered in Section 2, and Section 3 deals
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with surface joint eddies. Due to the close relation with
Nof’s paper we use¢ the same conventions as he did
(see Figs. 1, 2, 3).

2. Integral constraint on bottom ocean eddies

A schematic diagram of a bottom eddy in a three
layer ocean model is shown in Fig. 1. The ocean is
supposed to be deep, i.e. the upper layer is motionless
and of infinite depth. The motions in the two lower
layers are taken as two-dimensional. The lower layer
(reference subscript 1) consists in a finite volume lens
on a sloping bottom.

The momentum and continuity equations are writ-
ten for the lens in the form

(o + APz)(% vi+ (v V)Vl)

+1(o + Ap)k X vy = =Vp, (2.1)

%hl + V‘(Vlhl) = 0. (22)
.For the intermedigte layer (subscript 2) the equations
are

d
p(;t v, + (vy V)Vz) +fpk Xvy=-Vp, (2.3)

a

a—l h2 +V '(Vzhz) = 0. (24)
The pressure is hydrostatic. The gravity terms are
therefore incorporated in the pressures p, and p,, which
are expressed as follows:

P2 =po+ pg(H — z) + Ap gt (2.5)
D =po+ pg(H — z) + Apgés
+ Apg(hy — z + 5y). (2.6)

The presence of the sloping bottom tends to restrict
the motion of the system (lens + vortex in layer 2) to
east-west motions. In addition, we assume that the

M £/2

g-Ag_' Upper layer

.;‘
M

H
s l Intermediate layer (2)

FIG. 1. A sketch of bottom joint eddies on a sloping bottom. The
upper layer is motionless and of infinite depth. The lower layer (sub-
script 1) consists in a lens on the bottom. The depths of the lens and
of the intermediate layer (subscript 2) are designated respectively by
hy and h,. &, is the displacement of the interface between the upper
and the intermediate layers.
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system propagates steadily at speed C along the x axis.
The time derivative 3/9t is then replaced by —C(d/dx)
and the continuity equations (2.2) and (2.4) reduce to

v. {(Vl - Ci)hl} =0 (2.7)
Ve{(v2— Ci)h} = 0. (2.8)

Equations (2.7) and (2.8) lead to the existence of a
streamfunction ¢ in term of which the momentum
(integrated over the depths of the two layers) is ex-
pressed

(p + Ap2)vihy + pvahy
= pCi(hy + hy) + Ap,Chii + pk X VY. (2.9)

The Boussinesq approximation is not used in (2.9) for
reasons which will become apparent later.

With the conventions given in Fig. | we introduce
the streamfunction ¥, related to ¢ by

¥ = ¢ + CHy — Csy¥/2. (2.10)
The momentum is then written
(p + Ap2)vihy + pvahy
= pk X V@ + Ap,Cih, + pCit,.  (2.11)

As was previously done for other cases by Flierl er
al. (1983) and Stern (see Mory, 1983), the derivation
of integral constraints relationships is performed- by
integrating the momentum equation over the whole
domain (including layers 1 and 2). This supposes some
convergence properties of the integrals. In practice we
admit that integrals involving &,, #, and V® are definite.
This in general requires that 4, = 0, & = o(1/r?) and
¢ = o(1/r) far away from the eddy (r being the distance
from the center of the eddy). Such conditions are quite
restrictive but we voluntarily limit the analysis to iso-
lated systems. Under certain circumstances systems
which are considered here may however not be isolated
and Rossby wavelike wakes may occur.

After multiplying equations (2.1) and (2.3) by &, and
h, respectively and integrating over the plane (x, y) the
total momentum equation is obtained. For an isolated
vortex the time derivative and the nonlinear terms
vanish on integration (the demonstration is given in
the Appendix). The two remaining terms are then the
Coriolis force in equilibrium with the pressure force.
The Coriolis force is expressed by (see Fig. 1 for the
notations)

+c0
Sk X ff {(P + Ap)viky + Pvzhz}dxdy
+w +

=765 [ [ @+ apahorasdy + 11 x | } Vedxdy.

—00 —ao

(2.12)
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Because of the rapid decay of ¥ far away from the eddy
[¢ = o(1/r)], the integral involving the gradient of ¢
simply disappears in Eq. (2.12), and therefore the total
Coriolis force reduces to

1Coi [ [ &+ oshisorinay. @13

The integrated pressure force is derived by using the
hydrostatic forms (2.5) and (2.6)

+o0 +oo
‘ff (Vpihy + Vpahy)dxdy = —ff {Ap1gVE,

X (/l] + hz) + Angh1Vh1 + Angsh.j}dxa’y (214)

For an isolated system £; and 4, vanish far away from
the eddy. With the aid of Ay + hy = H — sy + &, all
terms on the right hand side of (2.14) involving either
V(£,2), V&, or V(h,%) vanish on integration. Equation
(2.14) then takes the simple form

+o0

—ff (—Ap1gsyVEs + Apagshij)dxdy  (2.15)

—

or, after integration by part of the first term

+c0

—~g5j f f (Ap1&2 + Aprhy)dxdy.

—oo

(2.16)

By equating the total Coriolis force (2.13) to the total
pressure force (2.16) the translation speed C of the sys-
tem is deduced from

o j:]‘ (&2 + Apyhy /p)dxdy

+o0

=—gs ff (Api&2/p + Apahy/pYdxdy.  (2.17)

Q0
Several consequences emerge from (2.17):

(i) The expression is close to the estimate of the
translation speed for a high-amplitude eddy (&, 4,
~ H) in a deep three-layer ocean (Ap,/p, Apa/p <€ 1),
obtained by Nof (1985), except that integration was
restricted in Nof’s calculations to the core of the eddy.
The possible existence of eastward translating eddies,
first pointed out by Nof, is recovered: C is found to be
positive when £; is itself negative (but still smail).

(ii) Equation (2.17), when applied to a two-layer
model with a free surface (Ap; = p) as in Mory’s ex-
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periment (1983) permits us to recover Stern’s integral
theorem (see Mory, 1983) which is written

+o

[[ &+ doshstoyaxay = o.

~—&0

(2.18)

The translation speed C is not deduced from (2.17).
Integrals in the left- and right-hand sides of Eq. (2.17)
are identical and they have to be equated to zero. Oth-
erwise, the solution of (2.17) would be

- —&s
f 5
which is a nonphysical translation speed. In particular
this translation speed is not vanishing in the limit of
(2.19) as Apy/p — 0.

The non-Boussinesq theory presented in this paper
permits straightforward extensions to cases where the
upper layer is the atmosphere (Ap; = p) and £, the
displacement of the free surface. The Boussinesq ap-
proximation is however not critical for the theory.
When using the Boussinesq approximation for the two
layer model with a free surface, the momentum (left-
hand side of Eq. 2.17) is of order Ap,/p. Thus (2.17)
still reduces to (2.18) at first order of Ap,/p.

(ii1) The translation speed of deep ocean blobs also
is given by (2.17). In this case the intermediate layer
is removed' (H — 0, £, — h; + sy) and the density
difference between the lens and the outer ocean is Ap
= Ap, + Ap,. Equation (2.17) gives the translation
speed previously found by Nof (1983)

(2.19)

C= ot dm " 5

3. Integral constraint on surface joint eddies

For bottom eddies, differential Coriolis effects were
introduced by the presence of a linear slope at the bot-
tom of the ocean. For surface eddies, this effect is taken
into account through the spatial variation of the Co-
riolis frequency (f= f, + B). In this section we consider
the case of surface joint eddies consisting either in a
lens on top of a vortex (see Fig. 2) or in a lens under-
neath a vortex (see Fig. 3). The two cases were consid-
ered by Nof (1985) and we therefore use the same con-
ventions as he did. The derivation of integral constraint
relationships is identical for the two cases. The dem-
onstration is given here for a lens on top of an eddy
(referred to in Nof’s paper as system II; see Fig. 2).

! The limiting case (H — 0, £, — h, + 5V), although contradicting
the hypothesis £ — 0 far away from the eddy, leads to a correct
estimate of the momentum {which can be directly computed from
equation (2.9)]. On the other hand (2.20) is not recovered from (2.17)
by considering the intermediate layer to be of infinite depth because
Eq. (2.10) no longer holds.
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FIG. 2. A sketch of surface joint eddies cited as system II by Nof
(1985). The lower layer is motionless and of infinite depth. The in-
termediate layer (subscript 2) is a lens underneath a vortex in the
upper layer (subscript 1). The depths of layers 1 and 2 are respectively
designated by h; and h,. 7, & and £, are the displacements of the
interfaces from their undisturbed positions.

The momentum and continuity equations are writ-
ten for the lens (subscript 1) and the intermediate layer
(subscript 2):

i)
(p — Apl)(é_ vy + (v 'V)Vl)
t
+ (f+ By)p — Ap)k X v; = —Vp,

d
’a't'hl + V‘(Vlhl) =0

3.1
3.2)

9
P (a—t Vo + (v2- V)Vz) + (f+ Bk X vy = “sz
3.3)

gzhz‘ + V- (v2h) = 0. (3.4)

For convenience we use the depths 4, and 4, defined
by (see Fig. 2)
hl =1 — El (35)

h=H+E~b&. (3.6)

The pressure is taken hydrostatic for the upper (p1),
intermediate (p,) and lower layer (ps):

pr=po+ (p — Bp))glm — 2) 3.7)

P2=po+ (p — Bp))g(m — &) + pg(E1 — 2) (3.8)

p3=po+ (p— Bp)gn + Apigk: — pgz + Ap2g8s.
3.9)

The lower layer is supposed to be motionless and of
infinite depth. The condition of zero horizontal pres-
sure gradient in that layer leads to the following rela-
tionship between 7, &, and &;:

(p — Api)ym = —Api1& — Apsés. (3.10)

The technique and the basic assumptions are similar
to the development in section 2:
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(i) Translation of the system is at constant speed C
in the east-west direction.

(i) Equations (2.7) and (2.8) still remain valid. The
momentum (integrated over layers 1 and 2) is expressed
as a function of a stream function -

(p — Ap)vihy + pvaha
=(p — Ap)Chii + pChisi + pk X V¥. (3.11)

(iii) A more significant stream function, related to
the motion in the reference frame, is ¢ which is defined
by:

¢ = ¢ + CHy. (3.12)

~(iv) The system is taken to be isolated. Thus, 7,
= ¢, —0and § — O far away from the eddy, in addition
to conditions on the decay of ¥ which will be defined
later,

(v) Integration of the momentum equations over
the two layers is performed by multiplying Eq. (3.1)
and (3.3) by A, and A, respectively and integrating over
the plane (x, y). The time derivative and the nonlinear
terms vanish on integration because the system is iso-
lated. We only have to consider the total pressure force
and the total Coriolis force.

(vi) Contrary to the analysis of the previous section,
the total pressure force is found to be zero. Applying
Eq. (3.5)-(3.8), one gets: .

+o

—ff (Vpihy + Vprhy)dxdy

—co

+o0

= ff {(p — Ap1)gVmé; + Ap18EVE Jdxdy. (3.13)
In the latter expression, terms involving Vn,2, V1, , V£,
or V¢,2 have been omitted since these vanish on inte-

T £+hy
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$- S 4 _&\
h })/5 T -
h b H Intermediate layer (2)
2
| I
L A Lower layer (3)
8+ D08,
y

<
CTIITITITITITIT IITIIIIII77

FIG. 3. A sketch of surface joint eddies cited as system III by Nof
(1985). The lower layer is motionless and of infinite depth. The upper
layer is a lens (subscript 1) above a vortex in the intermediate layer
(subscript 2). The depths of layers 1 and 2 are respectively &, and h,.
m, & and &, are the displacements of the interfaces from their un-
disturbed positions.
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gration. By using equation (3.10) it is easily shown that
the right hand side integral in equation (3.13) is zero.
This is not a surprising result. For bottom eddies (Sec-
tion 2) the total pressure force was nonzero, due to the
presence of the slope (see Eq. 2.16). For the surface
eddies considered in the present section the § effect
enters in the total Coriolis force.

(vii) The remaining term in the integrated momen-
tum equation, namely the total Coriolis term, is then
necessarily zero. This term is simply written with the
aid of (3.11)-(3.12) and (3.5)~(3.6) in the form

i [ [ 160 = doovi + oot 1+ By)aay

= —(p + Ap))Cj ff (f + By)e2dxdy

+o0

+p ” (f+ BY)k X Vedxdy. (3.14)

The second integral on the right-hand side of Eq. (3.14)
is modified by an integration by part. Its convergence
is obtained under the condition that ¢ is o(1/r?) for
large distance r from the center of the eddy. The total
Coriolis force is then written

~Clo + 802 [ [ (7 + Bypaduay

+eo

+p ff BPdxdy = 0. (3.15)

The translation speed of the system is ﬁnally deduced

from (3.15):
8 f f Pdxdy

(1 + Ap2/p) ff (f + By)édxdy

C:

(3.16)

The expression for the translation speed (3.16) is
valid for a wide range of physical systems among which
are the joint eddies (system II and III) studied by Nof
(1985). In this case Ap, < p and By < f, so that C is

simply
B f f Pdxdy

s f f adxdy

3.17)
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It must be stressed that Eq. (3.15) is an extension of
the integral theorem found by Flierl et a/. (1983) for a
one layer model. This theorem states that the integral
momentum is zero for an isolated vortex. The integral
relationship given by (3.15) comes to the same conclu-
sion and, in particular, one recovers Flierl’s result when
assuming that & = 0 so that

8 ff Pdxdy = 0.

(3.18)

4. Conclusion

The main results of the mathematical models are
the analytical expressions for the translation speed C
for the bottom and surface joint eddies given respec-
tively by Egs. (2.17) and (3.16). These generalize the
approximate solutions obtained by Nof for high am-
plitude mesoscale eddies. Although the analytical
expressions for the translation speed depend on the
structure of the eddy which is not known, we call them
exact relationships since they were derived without re-
course to any scaling assumption. Hence, the results
are valid for a wide range of physical systems. As the
Boussinesq approximation was not used, the density
variations Ap,; /p and Ap,/p may be of order O(1). Thus,
the result for bottom joint eddies (Eq. 2.17) applies to
bottom eddies in a two layer ocean model as studied
by Nof (1983), assuming an infinite depth of the upper
layer, and by Mory (1983), who included free surface
effects.

For both cases of joint eddies which were considered,
the integrated Coriolis force was found to be nonzero.
This explains why the translation speed C is deduced
from the integral relationships. Those integral rela-
tionships are extensions of the integral theorems of
Flierl et al. (1983) and Stern (Mory, 1983). Flierl’s
theorem is a special case of Eq. (3.17) and Stern’s in-
tegral theorem on the other hand is recovered from
Eq. (2.17).

Limitations of integral relationships follow from the
requirement of sufficiently fast decay of the perturba-
tion far away from the eddy. It is not obvious whether
this really happens in physical situations. However,
Nof’s results are particular cases of the present solu-
tions, except that integrals were computed by Nof over
the finite area of the vortex core. It is likely, although
not proved, that the potential vorticity and Bernouilli
integrals, deduced by Nof for the domain outside the
eddy, do not implicitly contain similar assumptions on
the decay of the perturbation.

The present article focuses on the mathematical der-
ivations of integral relationships. A detailed physical
description of the applicability of these integral rela-
tionships is available in Nof’s work (1985). The most
striking result is the demonstration that joint eddies
may propagate eastward.
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APPENDIX

Integral Forms of the Time Derivative and Nonlinear
Terms in the Momentum Equation

One demonstrates in this Appendix that the time-
derivative and the nonlinear terms in the momentum
equation are zero on integration over the whole space
for isolated eddies. Demonstration is similar for any
case considered in the paper. Thus, we omit the sub-
scripts in the equations. Integrals are computed over
each layer contained in the system. For simplicity, the
momentum equation is written for each component
(u, v) of the velocity:

au u?  duw

—_— + _— =

ot 5 =L o) (A1)
8v d i}

—aﬁ‘xf + —”— = M(u, v) (A2)

as well as for the continuity equation:
3
h + oh +v o _ = 0. (A3)

a Yax Yoy
In Egs. (A1) and (A2), L and M designate the remaining
terms in the momentum equation i.e., the Coriolis and
the pressure terms. By multiplying (A1) and (5.3) by
h and u respectively, and by adding the two resulting
equations, one gets

S(uhy a(huz) 8(huv) ,
ol + % ay = hL(u, v) (A4)
and, in a similar way for (6.2):
a(vh)  d(huv)  d(h?)
o + pw + a = hM(u, v) (AS)

Integrated forms of the momentum equation are de-
duced by integrating (A4) and (A5) over the plane (x,
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¥). Since the motion of the system is restricted to east-
west translation at constant speed Ci, the time-deriv-
ative 8/dt is simply replaced by —C(d/dx). Thus, the
integration of the momentum equation leads to

_c f f duh) &y + f f (a(huz) a(hzv)) dxdy

‘oo

- f f hL(u, vydxdy (A6)

e [ gy [ ] (B2 2

= f 7 hM(u, v)dxdy. (A7)

Integral forms of the time derivative and the non-
linear terms in the momentum (left hand side terms
in A6 and A7) vanish on integration, due to the
boundary conditions far away from the eddy which are
recalled as follows:

(i) for a lens, & = 0 outside the lens.

(i) for a layer of infinite extent in the plane (x, ),
#?, v? and uv can be supposed to decay sufficiently -
rapidly far away from the eddy. This corresponds to
an assumption of finite energy input into the system.
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