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ABSTRACT

A fully three-dimensional, wind-forced equatorial model is used to study the effects of the strong near-
surface equatorial pycnocline on energy transmission into the deep ocean. The equatorial Kelvin waves
forced by a patch of zonal wind oscillating at the annual period are isolated from the complete response, and
their energy transmission into the deep ocean is investigated as a function of forcing geometry, pycnocline
structure, and the amplitude of deep-ocean mixing. Solutions form well-defined beams of energy that
propagate through realistic pycnoclines with surprisingly little reflection. Vertical mixing damps the beams
in the direction of their propagation and stretches their longitudinal extent. For sufficiently strong mixing
the sotutions lose their beamlike character and appear as surface-trapped signals. This result may help to
resolve the differences between the solutions found in previous investigations. )

1. Introduction

Energetic currents and thermal fluctuations in the
deep equatorial oceans have been observed in the
Indian Ocean (Luyten and Swallow, 1976; Eriksen,
1980; Luyten, 1982; Luyten and Roemmich, 1982),
in the Atlantic Ocean (Weisberg and Horigan, 1981),
and in the Pacific Ocean (Eriksen, 1981; Hayes and
Milburn, 1980; Hayes, 1981; Leetmaa and Spain,
1981; Lukas and Firing, 1985). The ultimate source

“of this energy must be the surface wind stress. The
direct transmission of wind-forced energy into the
deep equatorial ocean will be affected by the presence
of the strong equatorial pycnocline. Recently there
have been conflicting ideas concerning the amount
of energy that is able to penetrate the pycnocline.

Philander (1978) and Philander and Pacanowski
(1980) discussed the response of a linear, equatorial
ocean model to a forcing that was periodic in both
time and longitude, and calculated energy transmis-
sion coefficients through a variety of background
density structures [see, for example, the discussion of
Eq. (16)]. They found that, for a realistic choice of
density structure, there was considerable reflection of
energy from the pycnocline at all wavelengths. Phi-
lander and Pacanowski (1981) studied the response
of an oceanic general circulation model to zonal
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winds periodic in time. The surface currents were
much larger than the deep currents, and the authors
concluded that most of the energy generated by the
wind was trapped near the surface by reflections from
the pycnocline, as suggested by their earlier work.

McCreary (1984) forced a linear, continuously
stratified ocean model with a zonal wind patch oscil-
lating at the annual period. One of the solutions was
for a background density stratification with a sharp,
near-surface pycnocline. A dominant feature of this
solution (and others) was the excitation of Kelvin
waves by the wind; these waves superposed to form
a well-defined beam of energy that propagated both
eastward and downward into the deep ocean. In
apparent contradiction to the studies mentioned in
the previous paragraph, the beam appeared to pass
through the model pycnocline very efficiently with
only weak internal reflections. The solution was com-
plicated by the reflection of Rossby waves from the
eastern boundary. These waves also superposed to
generate beams, thereby forming the indirect route
that was the ultimate source of deep energy in the
model. McCreary compared his solutions to those of
Philander and Pacanowski (1981), and noted that
aspects of the deep response of both models were
similar; in particular, he suggested that there was a
Kelvin beam and a reflected Rossby beam in their
deep solutions.

The purpose of this paper is to examine in detail
how the equatorial pycnocline affects the propagation
of energy into the deep ocean. The paper focuses on
the radiation of Kelvin waves from a wind patch
oscillating at a period of one year, but our results are
also applicable to other periods and to the radiation
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of nondispersive Rossby waves (see the remarks at
the end of Section 2b). The eastern ocean boundary
is neglected in order to avoid complications that are
caused by reflected Rossby waves. The ocean model
is linearized about a background density field and
includes vertical mixing of both momentum and
heat. A variety of background density fields are
adopted with pycnoclines that range in complexity
from very simple analytical forms to an observed
structure. In addition, forcing geometry and the
strength of mixing are varied.

Important results are the following. For realistic
choices of pycnocline structures most of the wind-
forced energy propagates directly through the pyc-
nocline and enters the deep ocean. Sufficiently strong
mixing, however, destroys the beamlike character of
the solution, and creates the appearance of surface
trapping. Thus, vertical mixing may be the reason
for the apparent surface trapping in the Philander
and Pacanowski (1981) model, not internal reflections
from the pycnocline as they suggest.

2. The model
a. Equations and boundary conditions
The model gquations are the linear set
~ By + pafpo = F(x, 9, 2, 1) + (tz):,
v+ Byu + pylpo = G(x, y, 2, 1) + (0;):,
u+v,+w, =0,

D: = —p8,

pr— = WNy? (¢Y)

(Kp)zz,
where all variables have their usual definitions. The
equations are linearized about a background density
state pb(Z) with an associated Viisild frequency N,
and p, is the average value of p,(z) over the water
column. Choosing the Coriolis parameter to be 6y is
the equatorial beta-plane approximation. There is no
lateral diffusion; however Section 3a has a brief
qualitative discussion of how we expect lateral diffu-
sion to affect the solutions.

The mixing of heat and momentum have uncon-
ventional forms. The mixing of heat is (Kp).., rather
than (Kp;),, and the mixing coefficients are

w(z) = K(2) = A/Ny(2) 2

where A4 is a constant. These forms are chosen so
that analytical solutions can be represented as expan-
sions of vertical modes. Solutions from other models
using this particular form for vertical mixing give
quite realistic flow fields (McCreary, 1981) and SST
fields (Rothstein, 1984), and suggest that results are
not very sensitive to this particular form of vertical
mixing. McPhaden (1981) discusses implications of
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various forms of vertical diffusion on equatorial dy-

namics. -
Surface and bottom boundary conditions are

vi,=vvo,=w=Kp=0 at z=0,-D. (3

There is a no-stress condition at the ocean surface,
because we assume that all the stress introduced by
the wind is taken up in the terms F and G.

The model is forced by a body force with the
separable form

F = 1oX(X)Y())Z(2)e™™, G=0 4)

where ¢ = 27 year' and 7o = 0.5 dyn cm™
Meridional wind stress is neglected, since that com-
ponent does not generate Kelvin waves. The zonal
structure of the forcing is

. W(x N xw)
sin T , XpSX<X,
X(x) = (5)
0, " x elsewhere,
where x, = x, + Ax, x, = —47 500 km and Ax

= 5000 km. (The choice of these basin parameters
will be discussed shortly.) The meridional structure

"]

and Ay = 1000 km. With this choice of Y(y), the
wind field is symmetrical about the equator, is essen-
tially y-independent near the equator, and decreases
markedly for y = Ay. Thus, the ocean is forced by a
patch of zonal wind with a zonal and meridional
extent of Ax and Ay, respectively. The vertical struc-

ture is
Z(z) = 6(z + H)/H, (N

where 6(z + H) is a step function, so that the wind
stress is distributed uniformly throughout a surface
mixed layer of thickness H. For most solutions, H
= 50 m; the sole exception is for the solutions
discussed in Section 3¢ where H = 30 m.

b. The solution

With the above choice for F, the system is separable
in both the y and z coordinates, and the resulting
differential equation in x alone can be solved easily
by Fourier-transform techniques (McCreary, 1981;
Rothstein, 1984). The solution is expressed as a sum
of all possible waves that can be generated by the
wind patch. The pressure and zonal velocity fields
due to Kelvin waves alone are

N X
p= 2 {% [Y]on f g ienlenx X (") dx’}
n=1 —w
N X ¢0(77n)¢n(z)ei“’"(x/cn—t)
2 Pn(X)do(nn Wn(2) glentx/on—t)
n=1

I

- 52 pn(x)

n=1 n

So(mWn(De™ D, (8)
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where w, = ¢ + id/c,2. The y,’s are the eigenfunctions
that satisfy

d{1 d Yn
dz {sz dz}% + P 0, (Oa)
subject to the boundary conditions
1 dy, _
N7 dz =0 at z=0,-D, (9b)

and they are normalized so that y,(0) = 1. The
function, ¢o(7,), is the gravest Hermite function given
by

doln,) = 747" (10)

where 7, = (8/c,)'/?y, the Hermite expansion coeffi-
cient of Y is

Wlow = | Youtnarin, (1)
and the coupling of each mode to the wind is
0
f Yndz
-H
» (12)

Ton = 75 =0 -
# f V.dz
-D

Finally, N = 50 for all cases, a number sufficiently
large for solutions to be well converged.

Long-wavelength Rossby waves, that approximately
satisfy the dispersion relation

ki = ~(%)(21 +1)
Cn

where / is a positive integer, are also generated by the
wind patch. The expressions for the flow field due to
these waves are similar in form to (8), the essential
difference being that w,/c, is replaced by kj, in the
exponentials and the lower limit of integration is
+00. Thus, the structure of the Rossby wave contri-
bution is identical to that of the solutions found here
with the replacements w, — w,/(2/ + 1) and x —
—X.

¢. Kelvin beams

According to WKB theory, approximate solutions
to (9) are Y,(z) = N,'/? cos(f* mdz) where m = N,/
¢y is a local vertical wavenumber. Let b = N,/N,,
measure the vertical scale of Ny(z). Then the WKB
solution is valid to order (mb) 2 Since the cosine
above can be written as the sum of two complex
exponentials, it is apparent that each vertical mode
consists of a wave with phase propagating upward
and one with phase propagating downward.

Energy associated with packets of these waves
travels along ray paths. The dispersion relation for
Kelvin waves is ¢ = kc,, = k(N,/m). The slope of ray
paths is therefore
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where the upper (lower) sign holds for waves with
upward (downward) phase propagation. Thus, when
phase propagates upward, energy propagates down-
ward and to the east for Kelvin waves. The slopes
are typically quite small; for example, with a typical
value of N, = 0.005 s7}, 6/N, = 400 m/10 000 km.
When the forcing has a simple structure, like it does
here, the radiation field forms well-defined beams
that carry energy into the deep ocean (McCreary,
1984).

When there is a sharp pycnocline, so that b is a
small number at some level in the water column, the
WXKB approximation is not valid for low-order vertical
modes. The effect is that energy can reflect from the
pycnocline (Philander, 1978), rather than follow ray
paths through it. The purpose of this study is to
examine this reflection process in detail.

3. Results

This section shows solutions for various choices of
background stratification, forcing geometry and mix-
ing strength. As we shall see, solutions vary consid-
erably with the choice of the model parameters. For
all solutions, we plot contours of the zonal energy-
flux density, Mx, z) = Re(up*), in the equatorial
plane. (In this expression p* is the complex conjugate
of p and Re(up*) is the real part of up*). This quantity
shows clearly the location of the Kelvin beams and,
as discussed next, also provides a measure of the
amount of energy that is transmitted both zonally
and vertically along the equator.

It is useful to define a measure of the contributions
of individual modes to the solutions. The total zonal
energy flux on the equator is

0 N
A= [ Mz= 3 AW,

n=1

where according to (8),

0

An(%) = (Ipn(x)1*/cym'?) f R Yn'dz. (13)
The quantity A,(x) measures which vertical modes
contribute to the solution. Note that for inviscid
solutions A,(x) is constant east of the wind patch. In
all cases, plots of A,(x) are evaluated at x = —37 500
km., far to the east of the directly forced region.

For inviscid solutions, A is also a measure of the
vertical energy flux associated with a beam. The
inviscid and time-independent energy equation implies

that §. din-Re(up*) = 0, where n is a unit vector

normal to the path of integration c. It follows that
J, Mz = — [, Re(wp*)dx, where /, and I, are vertical
and horizontal contour lines that extend across the
beam. Thus the total downward energy flux of the
beam is equal to it’s total eastward energy flux.

For inviscid solutions and when N, is constant, the
structure of a beam does not vary (as in Fig. 1). In
that case, the maximum value of A in the beam is
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FiG. 1. Contours of A for an inviscid ocean with a constant
Viisilid frequency, N, = 0.005 s™!. The shaded area indicates the
region of forcing by the wind. Kelvin waves superpose to form a
well-defined beam that descends into the ocean at the angle 6,
= tan"'(¢/N,). The maximum value of X is 1650 cm? s=. (Inset:
Spectral representation of the solution normalized by the maximum
value of A,(x). A,(x) is evaluated at x = —37 500 km. The most
strongly excited Kelvin waves correspond to the » = 11 mode).

-I000

-50 -25

directly proportional to [, Adz. The Viisild frequency
has the same constant value above and below the
pycnocline for most of the inviscid solutions found
here, the sole exception being the solution in Fig. 11.
For these solutions, let A, and A\, be the maximum
values of A above (but away from the directly forced
region) and below the pycnocline, respectively; then
the ratio A\,/A\, is the transmission coefficient of
energy through the pycnocline.

a. Solutions for constant Ny(z)

This subsection considers the propagation of Kelvin
beams through a linearly stratified ocean. Since these
cases lack a pycnocline, the WKB approximation is
exact, and there are no interior reflections of the
beam. Nevertheless, these solutions are useful for
illustrating other basic properties of the Kelvin beams.
In particular, the effects of forcing geometry and the
strength of mixing on Kelvin beams are discussed.

Figure 1 shows A along the equator and A, when
the ocean is inviscid and N, has a constant value of
0.005 s~!. The shaded region represents the region of
wind forcing. Because the beam slope 6, is small, the
zonal extent of the plot in Fig. 1 is 25000 km so
that we might track the beam into the deep ocean.
(To obtain the beam penetration depth in realistic
basins, all one needs to do is read the depth in Fig.
1 corresponding to the desired zonal extent of the
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"basin.) Because there is no mixing, the beam radiates

into the deep ocean with no loss of energy. A
considerable number of modes contribute to the
solution; A, reaches a peak for n = 11, and is
effectively zero only for n = 35.

It is visually apparent that the zonal extent of the
beam L is larger than the length of the forcing region
Ax. Figure 2 illustrates schematically why this property
must be so. The hatched area indicates the region of
forcing by the wind. Both upward- and downward-
sloping rays are generated at every point in the region.
Downward-sloping rays are shown from each corner
of the region. An upward-sloping ray is shown leaving
the lower east corner of the region; it reflects from
the ocean surface as another downward-propagating
ray. It is evident in Fig. 2 that the zonal extent of the
beam is

-1 N, b
L=Ax+2Htan" 0, ~ Ax + 2H7v. (14)
Thus, beam length depends on the forcing geometry.
Note that when 4, is a small angle, as it is for all the
solutions found here, L is affected by H as well as
Ax. The vertical extent of the beam is
T = Ltanf, ~ Ax — + 2H, (15)
N,
and so is also sensitive to forcing geometry. (In fact,
the beam in Fig. 1 is really somewhat wider and
thicker even than these estimates. This broadening
occurs because the radiation problem is fully three
dimensional, involving y as well as x and z.)

Figure 3 shows A, for two other inviscid solutions
with H = 25 meters and 100 meters. As H increases,
A, peaks at ever smaller values of n. This dependence
on H makes sense, since as H increases the beam
becomes thicker and so fewer vertical modes are
needed to resolve it. There is a similar dependence
of A, on Ax.

—H 5

FiG. 2. Schematic diagram showing several ray paths leaving the
forcing region (shaded area). The zonal extent and thickness of the
beam are related to 8, and H according to (14) and (15).
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FI1G. 3. Spectral representations of solutions for H = 25 meters
(upper panel) and for H = 100 meters (lower panel). As H increases
A, peaks at increasingly lower wavenumbers.

Figure 4 shows how vertical mixing affects the
Kelvin beam. Both solutions are comparable to the
one in Fig. 1, except that v = K = 1 cm? s™! and 10
cm? s7! in the upper and lower panels, respectively.
Two important modifications of the inviscid solutions
are evident. As expected, the beam decays as it
propagates into the deep ocean. In addition, the
longitudinal extent of the beam increases with in-
creasing friction, that is, the signal can be found
further downstream in the upper layers for larger
mixing amplitudes.

The solution with large mixing is strongly surface
trapped. If the background stratification had a near-
surface pycnocline, it would have been easy to mis-
interpret the surface-trapping as being due to an
interior reflection of the beam. Values of vertical
mixing coefficients in the Philander and Pacanowski
(1981) study were v = 10 cm? s™! and K = 1 cm?
s~!. Thus, the surface trapping in their solution may
have been due to the presence of vertical mixing
rather than to pycnocline reflections (also see the
discussion of Figs. 11-14 in Section 3c).

To understand why the longitudinal extent of the
signal increases with stronger vertical mixing, we turn
to the spectral plots for the two cases of Fig. 4, shown
in the inset of Fig. 4. As mixing increases, the higher-
order modes are increasingly damped out of the
solution, thereby shifting the spectrum toward the
lower vertical modes. Since these modes radiate away
from the forcing region with wavelengths that are
longer than (14), the beam spreads zonally.

Although horizontal mixing is not included in this
model, its effects on the solution must be quite similar
to the effects of vertical mixing. According to (10),
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the meridional scale of a particular Kelvin wave
decreases with increasing mode number. Thus, hori-
zontal mixing will preferentially damp higher-order
vertical modes, just as vertical mixing does. It follows
that the inclusion of horizontal mixing will act to
broaden both the vertical and zonal extent of the
beam as it propagates into the deep ocean.

b. Solutions for idealized Ny(z)

We now consider the propagation of Kelvin beams
through oceans in which N, varies. The important
effect is that beams are partially reflected by pycno-
clines. To examine the reflection process in detail, a
series of pycnocline structures are selected that increase
in complexity from simple jumps in N, to more
realistic shapes. In order to isolate the surface trapping
that is due to pycnocline reflections alone, there is
no diffusion for any of the solutions in this subsection.

Figure 5 shows the five profiles of N, discussed

| Yos
206
g 04
-8001 &
_ Z 0.2
%) Ot~
o 1 1 10 20 30 40 50
= VERTICAL MODE NUMBER
g -1000 T T T T
T 07
=
G
& ]
-2004

-400+
-6004 1.0
wo.8
4 2os
z 04
-800{ Zo2
[ R
. I 10 20 30 40 50
VERTICAL MODE NUMBER
-1000 T T T T )
-50 -45 -40 ~35 -30 -25

LONGITUDE %103 (KILOMETERS)

FIiG. 4. As in Fig. 1, except with » = 1 cm? s™' (upper panel)
and v = 10 cm® s (lower panel). As v increases energy is
increasingly confined near the ocean surface and A, peaks at
increasingly lower wavenumbers.
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FIG. 5. Profiles of N,(z) for cases 1-5 in panels (A)-(E), respectively.
See Section 3b for precise definitions of these profiles.

here. The first two cases are simple jumps in N, of

the form
{Nz, |z + 71] < af2
Nb = -
Nl, Iz+h|>a/2,

where N2 = 2.5 X 107 2, N,2 = 7.5 X 107572,
= 500 m. and « = 200 m. for case 1, whereas A
= 410 m. and « = 20 m. for case 2. The last three
cases are pycnoclines with smooth edges described by

N1+M[1_Co

2x(z + h)
2 S ] ’

o
|z + Al < a2

N], |Z+;l|>a/2.

For case 3 the parameter values are the same as case
1. For case 4, they are N2 = 2.5 X 107° 572, N,?
=5X10"*s% h =250 m and a« = 100 m. Case 5
has the same values as case 4, except that A = 90 m.

1) SOLUTIONS FOR JUMPS IN N,

Plots of A for the Kelvin beams corresponding to
cases 1 and 2 are shown in the upper and lower
panels of Fig. 6, respectively. (Note in this figure, and
all subsequent similar figures, that the zonal extent
of the plot is twice that of Fig. 1.) Part of the original
beam (the primary beam) is reflected as it encounters
the first N, discontinuity at z = —400 m, and another
part is reflected at the second discontinuity at z
= —600 m. In case 2 the jumps in N, are sufficiently
close that both reflected beams overlap. Reflected
beams (secondary beams) go through additional re-
flections further eastward, with a continuing loss of

. amplitude as parts of them are reflected into other

secondary beams.

When N, has a jump from N, to N,, the energy-
transmission ratio across the interface can be calcu-
lated analytically, and is given by

4N, N;/(N; + N, )’ (16)
(Philander, 1978). The choice of N, in cases 1 and 2
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FIG. 6. Contours of A for the profile of Ny(z) of case 1 (upper panel) and of case 2 (lower panel). A primary beam
propagates directly into the deep ocean. A number of secondary beams are generated by reflections at levels where N,
changes. In case 1, values of A, and A, are 1975 cm® s and 1700 cm® s~ and in case 2 they are 1700 cm? s~ and 1525
cm? s giving transmission coefficients of 86 and 89%, respectively. These coefficients are in agreement with the predictions

of Eq. (16).

consists of two jumps, and the direct transmission
past this pycnocline can be found by applying (16)
twice, once at each interface. For the values of N,
and N, used in cases 1 and 2, (16) implies that 86.5%
of the energy of the primary beam will be transmitted
directly to the deep ocean. The solutions in Fig. 6

are consistent with this result; A, = 1975 cm® s~ and
Xs = 1700 cm?® s73 giving an 86% transmission
coefficient for case 1 and A, = 1700 cm? s73 and A,
= 1525 cm® s resulting in an 89% transmission
coefficient for case 2. (In fact, the transmission coef-
ficient in case 2 is slightly greater than expected. The
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reason for this increase is that the N, jumps are so
close together. As a result, one secondary beam, one
that reflects first from the lower interface and then
from the upper interface, overlaps the primary beam
-in the deep ocean. There is also destructive interfer-
ence above the first N, jump.)

It is evident, however, that secondary beams also
carry energy into the deep ocean. Eventually, these
secondary beams ensure that all the energy generated
by the wind is carried into the deep ocean. No energy
ever remains trapped in the upper ocean. This con-
clusion is a general one, holding for all subsequent
solutions as well.

2) SOLUTIONS FOR CONTINUOUSLY VARYING N,

The structure of N, in case 3 is essentially that of
case 1 except that N, is smoothly varying. Figure 7
shows the profiles of A for case 3. A comparison with
the solution of case 1 (upper panel of Fig. 6) indicates
that when N, is smoothly varying there is a continuous
reflection of energy throughout the region of the
pycnocline. The amplitude of the primary beam in
the deep ocean, however, is comparable to that of
case 1, indicating that the smoothly varying profile

does not reflect significantly less energy. (A, = 1625

cm® s and N\, = 1535 cm? s73 giving a 94% trans-
mission coefficient in this case).

Cases 4 and 5, shown in Figs. 8 and 9 respectively,
investigate how an increase in strength of the pyc-
nocline and a change in it’s depth affect the response.
The structure of the pycnocline in case 4 is fairly
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realistic, except that it is located at a depth of 250
meters, far from the directly forced surface layer. Due
to the increase in the amplitude of N,, considerably
less primary-beam energy propagates through the
idealized pycnocline than in Fig. 7; A, = 1400 cm?
s and A\, = 887 cm® s so that the transmission
coefficient decreases to 63%. The stronger reflected
beams form a complex interference pattern above
the pycnocline; for example, there are regions where
beams interfere to generate negative values of A. The
pycnocline in case 5 is like that in case 4 except that
it is located near the surface. Primary-beam energy is
only slightly affected in the deep ocean; as for the
solution in Fig. 8, A\, = 855 cm?® s3 and \,/\,
= 61%. The structure of the solution above the
pycnocline, however, differs considerably between
Figs. 8 and 9. ,

The shallow pycnocline case is the most realistic
of our idealized cases, and the solution in Fig. 9 is
quite similar to the solution for the observed density
profile discussed in the next subsection. We conclude
from these last two cases that the model is capable
of reflecting large amounts of energy from a realistic
pycnocline, but that even for very sharp pycnoclines
considerable energy still propagates directly through
into the deep ocean.

¢. Realistic stratification

For all the solutions in this subsection, the back-
ground density profile is taken from the Hawaii-to-
Tahiti Shuttle Experiment (Wyrtki, ef al., 1981; Lukas
and Firing, 1985). This profile is based upon all CTD
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FIG. 7. As in Fig. 6 except for the stratification of case 3. Values of A, and A, are 1625 cm® s~ and 1535 cm® 573,
respectively, so that the transmission coefficient of the primary beam is 94%.
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FIG. 8. As in Fig. 6 except for the stratification of case 4. Values of A, and A, are 1400 cm® s~ and 887 cm® s™3
respectively, so that the transmission coefficient of the primary beam is 63%.

stations between 5°S-5°N, at 150°W and 158°W.
The depth of the ocean in the Shuttle profile region
is 4400 meters. The Vdisdld frequency in the upper
700 meters is shown in Fig. 10.

The inviscid Kelvin beam is pictured in Fig. 11.
The primary resuit here is that WKB theory works
surprisingly well, with the beam of energy following

it’s ray path through the region where N, varies
rapidly. (The WKB ray path is the heavy dashed line
in Fig. 11). Most of the primary beam just refracts
through the changing background state and penetrates
into the deep ocean. As expected, reflection does take
place in the region of the pycnocline. The response
spectrum for this case (inset of Fig. 11) shows that,
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FIG. 9. As in Fig. 6 except for the stratification of case 5. Values of A\, and )\, are 1400 cm® s~ and 855 cm? s73,
respectively, so that the transmission coefficient of the primary beam is 61%.
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0.0150

although the lowest mode is dominant, there are
significant contributions from the higher modes.
Note, in Fig. 11, that A decreases markedly with
depth, giving the appearance that the transmission
coefficient drops in the deep ocean. However, X is no
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longer directly proportional to downward energy flux
because N, is not constant in the deep ocean, thereby
broadening the beam vertically. In fact, the downward
energy flux in Fig. 11 is constant in the deep ocean.

How is this solution affected by the inclusion of
depth-dependent vertical mixing of the form (2)?
Figure 12. shows how v (and K) varies with depth
when A is set such that the deep-ocean mixing is of
order 10 c¢cm? s™!. This large value was chosen to
demonstrate clearly the effects of friction on the
Kelvin beam. Figure 13 shows the solution for this
choice of v. The primary beam no longer penetrates
very far into the deep ocean, but is rapidly damped
by the large values of the deep eddy viscosity. The
response spectrum is now dominated by contributions
from the low order modes. The solution gives the
impression that energy is trapped above the pycnocline
by interior reflections, but that is not the case, as is
evident in Fig. 11. As mentioned before, damping is
also a likely reason that so much energy appears to
remain trapped above the pycnocline in the model
of Philander and Pacanowski (1981).

Figure 14 shows the solution when A4 is decreased
by an order of magnitude so that in the deep ocean
v has the value of 1 cm? s}, a typical estimated value
that is commonly used to model deep ocean diffusion.
The Kelvin beam is much more apparent in the deep
ocean, although it is somewhat weaker than the
inviscid case. We therefore conclude that for typical
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FiG. 11. As in Fig. 1, except for the Hawaii-to-Tahiti Shuttle background stratification. Because N, decreases in the deep ocean, the
maximum value of A is no longer a measure of downward energy flux. Even though A decreases with depth, the downward energy flux
is constant below the pycnocline in this inviscid solution. (The heavy dashed line is the WKB ray path).
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values of vertical mixing the integrity of the Kelvin
beam in the deep ocean is not destroyed, and that
most of the forced signal will penetrate the pycnocline.

4. Summary and discussion

A fully three-dimensional, wind-forced equatorial
model is used to study the effects of the strong near-
surface equatorial pycnocline on energy transmission
of periodic Kelvin waves into the deep ocean. The
annual equatorial Kelvin waves forced by a patch of
zonal wind are isolated from the complete response,
and their energy transmission into the deep ocean is
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investigated as a function of forcing geometry, pyc-
nocline strength and structure, and the amplitude of
deep-ocean mixing. In order to eliminate complica-
tions due to reflected Rossby waves, solutions are
found in an unbounded basin.

Solutions form well-defined beams of energy that
propagate through realistic thermoclines with surpris-
ingly little reflection. The structure and strength of
the pycnocline determines the characteristics of upper-
ocean reflections. Secondary beams (formed from
reflected radiation) eventually ensure that all energy
propagates out of the upper ocean, so that none
remains trapped there. Vertical mixing damps the
beams in the direction of their propagation and
stretches their longitudinal extent. If mixing is suffi-
ciently strong, the solutions lose their beamlike char-
acter and appear as surface-trapped signals. Horizontal
mixing, not explicitly included in this model, is
expected to affect beams in a manner similar to
vertical mixing. The results of this study may help to
resolve the differences between the solutions of Phi-
lander and Pacanowski (1981) and of McCreary
(1984). The presence of strong frictional damping
may be responsible for the apparent surface trapping
in the Philander and Pacanowski study.

There are obvious limitations to this model. The
model does not allow for the interaction of the waves
with the strong sheared currents of the equatorial
region. The background stratification varies only in
the vertical, so that the model pycnocline has no
zonal or meridional slope. There are no meridional
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Fig. 13. As in Fig. 11, except with the mixing coefficients of Fig. 12.
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FIG. 14. As in Fig. 13, except that the mixing coefficients of Fig. 12 are reduced by an order of magnitude.

boundaries, and therefore we have eliminated the
Rossby wave reflections which were the route by
which the solutions of McCreary (1984) generated
deep equatorial energy. Work is currently underway
to overcome these limitations. In.spite of these, we
believe that this model does successfully ‘isolate im-
portant dynamics involved in the propagation of
energy into the deep equatorial ocean. We expect
that these solutions will be useful for interpreting the
response of more sophisticated equatorial models as
well as an aid in understanding observations.
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