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ABSTRACT

Vertically propagating linear wave calculations using realistic equatorial buoyancy profiles are presented
which show the percentage of the downward surface energy flux that reaches the deep equatorial oceans. The
percentages vary widely depending upon the buoyancy profile and the equivalent depth but can be as low as
10% on average for equivalent depths between 1 cm and | m if the thermocline is sharp. This means that
models with constant or weak thermocline buoyancy profiles, which allow all or most downward surface
energy flux to reach the deep ocean, are very unrealistic in this respect. Another conclusion is that the
observed, very low-frequency, small vertical-scale deep jets cannot be explained by linear wave theory as
caused by surface forcing. It is also shown that a WKB analysis of observations can be misleading even if
applied to a single vertically propagating wave in a region that excludes the main thermocline. Implications
are that comparing estimates of the equivalent depth from the mixed Rossby-gravity wave dispersion relation
and a WKB analysis is of little value because the error bars on both estimates are large, and that WKB
estimates of downward vertical energy flux into the deep ocean can also be misleading.

1. Introduction

It has become commonplace, particularly at low
latitudes, to observe low frequency energy propagating
vertically in the water column, and we discuss briefly
most of the observations in the next section. The
propagation is manifested as a significant change in
phase between velocities or temperature perturbations
from instruments separated in the vertical. These
phase changes imply that the observations cannot be
described by a single, standing baroclinic mode (but
possibly can by a sum over several modes), and
consequently the low-latitude observations have
mostly been analyzed as vertically propagating equa-
torial waves using the WKB approximation to describe
the vertical structure. -

In this paper we present vertically propagating
linear wave calculations using a technique previously
employed by Mied and Dugan (1974) and Philander
(1978), namely solving the homogeneous vertical
structure equation for many values of the separation
constant or equivalent depth, and analyzing the results
in terms of the ratio of the downward energy flux in
the deep ocean to that at the ocean surface. This is
done analytically for two simple buoyancy frequency
profiles and numerically for three profiles represen-
tative of the different equatorial oceans in Section 3.
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We also study the sensitivity of our results by repeating
the analysis for various other idealized profiles. This
ratio or transmission coefficient is mostly small com-
pared to one, whereas the WKB approximation as-
sumes perfect transmission or a coefficient equal to
one. Section 4 is a discussion of these calculations
and their relevance for the interpretation of ocean
observations. The first part of the discussion centers
on estimates of the equivalent depth from the coher-
ence phase between velocities or temperature pertur-
bations at different depths and from the mixed
Rossby—gravity wave dispersion relation with observed
estimates of the frequency and zonal wavenumber.
The second part is a discussion of WKB estimates of
downward vertical energy flux from observations and
the third part is an analysis in terms of downward
and upward propagating waves that illustrates why
the WKB approximation can give misleading esti-
mates. Caveats, a summary of the calculation results
and our conclusions are given in section 5.

2. Observations of vertical energy propagation in the
ocean

There have been a number of reports of vertical
propagation of energy in wave modes. The first of
these dealt with midlatitude near-inertial oscillations.
Leaman and Sanford (1975) and Leaman (1976)
demonstrated that the rotation of the velocity vector
with depth is associated with the vertical propagation
of energy. More recently, particularly in equatorial
and coastal regions, observations have been reported
which show a consistent variation of the phase of a
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velocity component or temperature perturbation with
depth. These variations have been interpreted as
evidence for the vertical propagation of energy in
propagating modes rather than the conventional,
standing baroclinic modes. It is this interpretation
that we wish to discuss.

Weisberg et al. (1979) and Weisberg and Horigan
(1981) have analyzed moored current meter obser-

vations from the eastern equatorial Atlantic below

the thermocline which show a persistent oscillation
in the meridional component of velocity with a
period of 31 days and zonal wavelength of 1220 km.
This scale, together with the absence of a zonal
component at this frequency, is consistent with a
mixed Rossby-gravity wave. Observations at several
depths show significant coherence with a phase which
decreases with increasing depth. Using the WKB
approximation, this variation in phase is interpreted
as evidence for a vertically propagating wave, carrying
energy downwards into the ocean, and the equivalent
depth was estimated to be 2.8 cm. The equivalent
depth is defined in Eq. (1).

In the equatorial Indian Ocean, Luyten and Roem-
mich (1982, 1985) have found, from observations in
a moored array in and below the thermocline, that
the zonal velocity is dominated by a very large zonal-
scale oscillation with a 180-day period, while the
meridional component is dominated by a 26-day
oscillation. In both cases, there is a consistent vertical
variation of phase which has been interpreted as
vertically propagating waves. In each case, the WKB
approximation is used to interpret the vertical varia-
tion in phase as a vertically propagating mode. The
zonal oscillation is interpreted as a pair of equatorially
trapped waves, a Kelvin wave and a first meridional-
mode Rossby wave. The meridional oscillation is
found to be consistent with a mixed Rossby-gravity
wave, and in both cases the equivalent depth is
estimated to be about 25 cm.

Lukas and Firing (1985) analyzed Hawaii-Tahiti
Shuttle data from the central, upper equatorial Pacific
Ocean. Analysis of temperature perturbations and
dynamic heights at the annual frequency again clearly
show upward phase propagation from 800 m to the
thermocline. The observations are interpreted by
WKB methods as a vertically propagating annual first
Rossby wave, with an equivalent depth of 12.3 cm,
carrying energy downwards.

There are other equatorial observations in which
vertical propagation has been' reported, but with
somewhat less statistical significance than those dis-
cussed above. The dropped-lagged coherence tech-
nique (Hayes, 1978) has been applied to a month-
long time series of repeated vertical profiles in the
Indian Ocean by O’Neill (1984) and O’Neill and
Luyten (1984). Evidence was found for vertical energy
propagation in the meridional velocity component at
two vertical wavenumber bands: upwards at 0.15 cm
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equivalent depth and downwards at 1.37 cm equiva-

lent depth. Both of these components are found well

beneath the thermocline in the deep water, and no

source has been identified for this variability. We

have introduced a convention here that we will refer .
to the direction in which energy propagates, which is

opposite to the phase propagation direction for ver-

tically propagating equatorial waves and coastal Kelvin

waves.

Eriksen (1981, 1982) analyzed a set of vertical
profiles from the western equatorial Pacific and found
that the observed equatorially trapped variability is
consistent with Kelvin and Rossby waves of long
period and zonal wavelength, but he was unable to
distinguish unambiguous vertical propagation.

In the coastal situation, Picaut (1983) analyzed
monthly temperature data from the continental slope
south of Abidjan and interprets the upwelling from
300 m to the surface as a vertically propagating
coastal Kelvin wave. Romea and Allen (1983) have
reported current meter data from the Peruvian shelf
region in which the velocities showed consistent
upward phase propagation. They also interpret these
observations as a vertically propagating coastal Kelvin
wave carrying energy downwards from the surface.

3. Calculations of vertically propagating energy flux

Philander (1978) considers the linear wave response
of a hydrostatic, Boussinesq, baroclinic ocean to
surface forcing. The response can be determined by
separation of variables, if the forcing can be written
in this manner, and Philander describes the two
possible methods of proceeding. The first method is
to solve for ‘the baroclinic vertical modes first and
then solve the forced horizontal structure equation
using the known eigenvalues of the vertical modes.
The second method is to solve, for a given frequency
w and zonal wavenumber k, the homogeneous lati-
tudinal structure equation. This yields Hough or
Hermite functions, respectively, on the- sphere or
equatorial S-plane. The forced vertical structure equa-
tion then has to be solved for known values of the
separation constant, which are eigenvalues of the
horizontal equation. The vertical structure function
for vertical velocity W satisfies the forced equation
(see Philander, 1978; Section D)

a*w + N%(2)

dz? gh
where N is the time and horizontal average of the
buoyancy frequency, A = h(w, k) is the known
“equivalent depth” of the latitudinal mode, and G(z2)
is the projection of the forcing onto the latitudinal
mode. The physics, most of it poorly understood of
how surface forcing is distributed in the vertical in
the ocean surface layer by mixing, internal gravity
waves, etc., is parameterized by G(z). Lighthill (1969)

W= G(2), o))
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assumed that the forcing is confined to a mixed layer,
vanishing below, whereas Wunsch (1977) assumed
the forcing has an exponential decay away from the
surface with a very short vertical scale. With either
assumption for G(z), the solution of the inhomoge-
neous equation (1) is confined to the forcing region,
and the response below the forcing consists entirely
of solutions to the homogeneous form of (1) that
have to be added to the inhomogeneous part in order
to satisfy the boundary condition on W at the ocean
surface (often W = 0). The appropriate lower bound-
ary condition is a matter of conjecture, but we follow
Philander (1978) and Wunsch (1977) and impose a
radiation condition of only downward propagating
energy flux at the ocean floor. This is to mimic the
frictional response to relatively low frequency forcing
when the ray paths are so shallow that very little
energy will reflect from the ocean floor (see also the
discussion in Gent et al., 1983, Section 6).

We have not solved a three-dimensional forced
problem and have considered the simpler, but illu-
minating, problem of solving the homogeneous form
of Eq. (1), with a given buoyancy profile N(z), over
a wide range of equivalent depths imposing the single
boundary condition of only downward energy flux at
the ocean floor. Thus

W = explim(H)z] 2)
where H is the ocean depth and m(z) is defined by
m(z) = N(2)/(gh)""*. (3)

Then W is calculated by numerically integrating the
homogeneous form of Eq. (1) upwards. At any z, by
assuming that N is constant over the next numerical
interval upwards, the solution at z can be decomposed
into downward and upward propagating waves with
wavenumber m(z), i.e.

W(z) = A exp(imz) + B exp(—imz).

at z=H,

C))

The transmission coefficient 7, which is the ratio of
the downward energy flux at z = H to the flux of the
downward energy propagating wave part of the solu-
tion at depth z, is

m(H)

" m@IAR )

We have chosen to show the transmission coeflicients
between the ocean floor and surface even though, as
discussed above, our solutions are valid only below
the forcing region. The reason is that if the forcing is
parameterized as acting in a momentum mixed layer
of depth d, then we think this layer should also be
thermally mixed so that N should be very small down
to d. Calculations of T relative to depth d when N(d)
is very small and d is less than 50 m are almost
identical to those we show when N(0) is very small.
The calculations of 7T are sensitive to the value of
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N(0) and this sensitivity is illustrated using observed
profiles. We show T values between the ocean floor
and surface, yet these values are used to draw conclu-
sions about the observed deep jets which occur well
below the thermocline. The values of T obtained if
the radiation condition is imposed well below the
thermocline, or if T is calculated between well below
the thermocline and the surface with the radiation
condition imposed at the ocean floor, are also almost
identical to those we show, so we think it valid to
draw conclusions about these deep jets.

For illustrative purposes, we show T first for two
simple buoyancy profiles when the integration of (1)
and the values of T can be calculated analytically.

a. Piecewise constant N profile

We assume
N, z1<z
Nz)=4 N, z3<z<z (6)
N, z< zy,

and corresponding values m,, m, and m; of m(z)
defined by Eq. (3). The solution in the deep ocean,
W = exp(imsz), is extended upwards by matching W
and dW/dz at z, and z,, where dW/dz is the vertical
structure function for horizontal velocity and pressure
perturbation. The transmission coefficient 7" is the
ratio of the downward energy flux for z < z, to that
of the downward energy propagating part of the
solution for z > z;, and is given by

T = dmyms{(m, + m3)* cos’[ma(z, — z,)]
+ (my + myms/my) sin’[my(z) — )1} (T)

If the distribution of N, Eq. (6), is taken to model
the thermocline with N, > max(N,, N3), then

Tmax = 4mlm3(ml + m3)_2
when cos[my(z; — z3)] = 1,
Tin = 4mymy(my + myms/my) ™2

when sin[my(z, — z,)] = 1.

8

This analysis differs slightly from that in Philander,
because he assumed N; > N, > N;. An important
conclusion from (8) is that perfect transmission can
occur if and only if N; = N3, and the maxima occur
when

gh = (z1 — )Ny /nx T, ®

for integer values of n. Perfect transmission occurs
when the upward and downward propagating waves
in the middle layer add such that no wave is reflected
from the upper interface. Also note from (8) that
Tmin i1s independent of 5 because, no matter how
small 4 is, the vertical wavelength is large compared
to the vertical scale of changes in N. Figure 1 shows
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FIG. 1. (a) N profiles in upper km and (b) T as a percentage vs
logh, 1 cm < h < 1 m, for piecewise constant N profiles that
represent sharp, thin (solid line) and a weak, thick (dashed line)
thermocline.

the buoyancy profiles and plots of T against logh for
parameters that represent sharp, thin and weak, thick
thermoclines. These parameters, and the first three
equivalent depths of perfect transmission are given
in Table 1. We emphasize again that we have chosen
N, = Nj, but that if this is not true, then perfect
transmission cannot occur. From Table 1 we note
that the equivalent depths of maximum transmission
are all less than 10 cm. No maxima occur at all
for the equivalent depths of the first five vertical
modes of either profile in Fig. 1a, all of which have
h> 10 cm.

b. Sech?N profile.
The problem can also be solved analytically if

(10)

This is a simplified form of the buoyancy profile used
by Mied and Dugan (1974) to address the same
transmission problem but for internal gravity waves
(i.e., the hydrostatic assumption was not made). The
simplification here means that the solutions to the
homogeneous vertical structure equation (1) are Le-
gendre functions of argument tanhoz (they are a
special case of the hypergeometric functions needed
in Mied and Dugan). Imposing the boundary condi-
tion of only a downward energy propagating wave
far enough below z; such that m ~ m,, then the
transmission coefficient far enough above zr such
that m ~ m,; can be evaluated exactly as

T = sinh*(wm, /o){cosh’(xm, /o) cos’(xM]/2)
+ sinh®(wm, /o) sin’(xM/2)} ",

- m*(2) = m? + my? sech?a(z — z7).

(1
where
M = (4m/o* + 1)'2,

Since the buoyancy frequency takes the same value
above and below the thermocline, perfect transmission
is possible and it occurs when
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N- 2
sin(w#M/2) =1, —gh= m , integer n
or
Tm; /e — oo. (12)

The first condition in (12) is equivalent to condition
(9) for the piecewise constant profile, and gives perfect
transmission for particular values of m; /. The second
condition in (12) occurs as either ¢ — 0 so that the
thermocline becomes very broad or the equivalent
depth becomes very small, both of which imply that
the vertical wavelength of the propagating wave is
small compared to the scale of variation in the
buoyancy profile. This is the condition for the WKB
analysis to be valid, so that perfect transmission is to
be expected. Note that this is also the reason why the
minimum values of T increase as / decreases for this
profile in contrast to the piecewise constant profile.
Figure 2 shows the buoyancy profiles and plots of T
against logh for parameters that represent sharp, thin
and weak, thick thermoclines. These parameters, and
the first three equivalent depths of perfect transmission
are also given in Table 1. These values confirm the
conclusions from the piecewise constant profile that
all peaks have equivalent depths less than 10 cm, and
that no peaks occur for the equivalent depths of the
first five vertical modes of either profile in Fig. 2a.

¢. Idealized N profiles

We now illustrate the sensitivity of the transmission
coefficient to both the strength and thickness of the
thermocline using idealized representations of the
buoyancy profile. All the profiles are piecewise linear
with a ramp below the thermocline that linearly
reduces the buoyancy frequency so that its value at
3 km equals its value above the thermocline. First,
the thermocline thickness is kept constant at 50 m,

" but its strength varies with maximum N values of 1,

1.5, 2 and 2.5 X 1072 s~!, Figure 3 shows the various
profiles and the corresponding transmission coeffi-
cients. In general, the weaker the thermocline the
more downward energy flux penetrates through it,

TABLE 1. Values of the equivalent depth A that correspond to
perfect energy transmission for the piecewise constant and sech’N
profiles.

Piecewise constant

sz N]z Zy — 2y h

s ™ (m) (cm)
Sharp, thin 5 X 10™* = 107° 100 5.16, 1.29, 0.57
Weak, thick 10°* 1075 250 6.46, 1.61, 0.72

Sech?

N2 NZ?  o(m™) h
Sharp, thin 5% 107¢ 107  0.02 6.33, 2.11, 1.06
Weak, thick 10°* 1075 0.008 7.96, 2.65, 1.33
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FIG. 2. As in Fig. 1 but for sech?N profile.

although this is not true for every value of 4 as peaks
for smaller values of / are located in different places
for the different profiles. Second, we study the sensi-
tivity of T to thermocline thickness by assuming the
thermocline has a constant maximum N value of 1.5
X 1072 57! and thicknesses of 50, 75 and 125 m.
Figure 4 shows the various profiles and corresponding
values of 7. In general, the thicker the thermocline,
the less downward energy flux penetrates through it,
but the transmission is much less sensitive to ther-
mocline thickness than to its strength.

d. Observed N profiles

In this section we show the transmission coefficients
for observed buoyancy profiles from the three equa-
torial oceans. The Indian Ocean profile was calculated
every 25 m by O’Neill from observations taken at
53°E between 5°N and 0.75°S during May and June
1976, and was used in the study of Gent et al. (1983).
The upper km Pacific Ocean profile is taken from
Lukas and Firing (1985) and is an average over 15
months of Hawaii-Tahiti Shuttle data at three lon-
gitudes in the central Pacific between 5°S and 5°N,
and has a resolution of 10 m. The profile is extended
to 4.4 km with 50 m resolution using a CTD cast
near the Shuttle region. The upper 1.5 km of the
Western Atlantic Ocean profile is taken from Garzoli
and Katz (1981) and is a typical profile from the
FGGE year. It is extended to 5 km using the Indian
Ocean profile.

The Indian Ocean profile and the transmission
coefficient, plotted against log of equivalent depth for
h in the range 0.01 cm to 1 m, are shown in Fig. 5.
The striking feature of Fig. 5b is the very small
transmission coefficients for 2 > 1 cm with no values
of T larger than 40% and an average value is about
10%. For h < 1 cm, the average value of T increases
steadily to about 40% when 2 = 0.1 cm and to >75%
when # = 0.01 cm. No peak in Fig. 5b dominates so
much that, for general forcing, motion in the deep
ocean should have a vertical structure corresponding
1o a single equivalent depth.
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FIG. 3. (a) 1dealized N profiles with thermocline peaks of 1, 1.5,
2 and 2.5 (X1072 s7"), thickness 50 m and ramp down to 3 km
and (b) corresponding T as a percentage vs logh, | cm < A < | m.

The transmission values shown in Fig. 5b are
somewhat sensitive to the value assumed for N at the
ocean surface. The value used for Fig. 5b is N(0)
= 5 X 107 s7!, which equals the value of N at the
highest calculated point of the profile which is 12.5
m depth. If the value of M(0) is reduced or increased,
then the peaks in Fig. 5b remain at the same values
of h, but their values decrease or increase respectively.
Thus, the average transmission value of 10% is some-
what sensitive to N(0), and is about 15% for 1 cm
< h < | m when N(0) is multiplied by three. The
appropriate value of N(0) is open to debate, but we
would argue that it should be less than or equal to
the value just below the surface, in which case the
values in Fig. 5b are upper bounds. Another possible
sensitivity of the T values is the smoothness of the
buoyancy profile which, for linear wave calculations,
should be time and horizontally averaged. We cal-
culated T for a smoothed profile obtained from that
shown in Fig. 5a by applying an 11-point running
filter below the thermocline. The values of T were
essentially the same for # > 1 cm, and increased
slightly for # < 1 cm. This is to be expected because
the scale of variation of the buoyancy profile has
increased compared to the vertical wavelength of the
wave.
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FIG. 4. As in Fig. 3 but for thermocline peak (=1.5 X 1072 s7%)
and various thermocline thicknesses of 50, 75 and 125 m.
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INDIAN OCEAN N PROFILE
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FIG. 5. (a) Observed Indian Ocean N profile in upper kilometer and
(b) T as a percentage vs logh, 0.0l cm < h < | m.

The Pacific Ocean profile and transmission coeffi-
cient'in the range 1 cm < 4 < 1 m are shown in Fig,
6. The values of T for this profile are considerably
larger than those in Fig. 5 for the Indian Ocean
profile with peaks well over 50% for A = 1-5 cm.
The reason 1s that this profile has a large value of
MO0) =~ 5 X 1073 57, has a slightly weaker, thicker
thermocline and is much smoother as it is an average
over many profiles. These values of T are somewhat
sensitive to the value of N(0) and we illustrate this in
Fig. 7. It shows the values of T when the values of N
between the surface and 40 m have been set equal to
5 X 107* s7!, in order to represent a mixed layer.
The values of T are smaller than those for the original
profile, but the peaks in the range # = 1-5 cm remain
much larger than for the less smooth Indian Ocean
profile. The average value of T in this case is about
20%. The Atlantic Ocean profile and values of 7 in
the range 1 cm < 4 < 1 m are shown in Fig. 8. The
Atlantic Ocean profile has a small value of N(0), the
weakest thermocline but most structure below the
thermocline. In Fig. 8b there are no values of T
larger than 40% and an average value is about 15%.

The lack of any peaks near one in T for 2 > 10
cm in Figs. 5-8 conflicts with the results shown in
Fig. 7 of Philander (1978) who did the same calcu-
lation using a similar equatorial buoyancy profile to

PACIFIC OCEAN N PROFILE
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FIG. 6. As in Fig. 5 but for observed Pacific Ocean N profile,

and lcm< A< 1 m.

ours. He predicted almost perfect transmission at A
about 45 cm. We are unable to explain this conflict -
because we never find a value of T near one for such
a large value of & when using observed buoyancy
profiles. In addition we have performed three checks
on the accuracy of our calculations. They are: (i) we
have changed the vertical integration step size and
the results are independent of this, (ii) the numerical
computations reproduce the analytic results shown
in Figs. 1b and 2b exactly, (iii) we calculated the
equivalent depths of the vertical modes of the profiles
by setting W = 0 at the ocean floor, integrating to
the surface and plotting W(0) against A. The calcu-
lations reproduced exactly the A values from indepen-
dent eigenvalue solvers.

4. Discussion and interpretation of ocean observations

The values of T calculated in the last section are
so much smaller than one that we now question the
validity of interpreting equatorial ocean observations
using the WKB technique, which assumes perfect
transmission of energy. The calculations in this section
analyze solutions of Eq. (1) for a single value of A.
Thus they represent best observations that are well
resolved in time and longitude, so that substituting
the estimated values of w and k into the dispersion

PACIFIC OCEAN N PROFILE WITH MIXED LAYER
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FIG. 7. As in Fig. 6 but with the N values reduced by a factor
of ten in the upper 40 m.
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FIG. 8. As in Fig. 5 but for observed Atlantic Ocean N profile.

relation gives only one wave with a value of A
between 1 cm and 1 m. A good example is Luyten
and Roemmich’s (1985) observations of meridional
velocity, where the estimated w and k give a mixed
Rossby—-gravity wave with 4 about 25 c¢m, whereas
the second Rossby and gravity waves (the next gravest
waves with the same symmetry) have 2 = 12 m and
0.08 cm, respectively. In contrast, Luyten and Roem-
mich’s (1982) observations of zonal velocity at semi-
annual frequency give the Kelvin and several Rossby
waves with values of 4 between 1 cm and 1 m. Thus
no restriction to a single vertically propagating wave
can be made and Gent et al. (1983) have obtained
vertical variations in phase that are consistent with
the observations by summing Kelvin and long Rossby
waves over several vertical baroclinic modes. In their
model, where the forcing is complicated, a good
approximation in terms of a few vertically propagating
waves is not possible.

Thus, in this section we will concentrate mostly
on observations of mixed Rossby-gravity waves, al-
though the techniques discussed apply to other equa-
torial waves as well. The mixed Rossby—gravity waves
may be generated by barotropic instability of the
horizontally sheared mean currents in the thermocline.
Our conclusions in this section are valid for a source
in the thermocline as well as at the surface because
the calculations proceed upwards from the ocean
floor and so are identical below the thermocline
whether they are terminated at the thermocline depth
or are continued to the surface.

a. Estimates of the equivalent depth

Luyten and Roemmich (1985) calculated the co-
herence of the meridional velocity between 200 and
750 m, which were the shallowest and deepest instru-
ment depths respectively. To simulate this we com-
puted the true phase of dW/dz between 200 and 750
m, using the unsmoothed Indian Ocean buoyancy
profile, in the form

[dW/d=(200)*1[dW/dz(7150)] _ » )
[dW]dz200)|aw)dz750) | PUTRUED:

(13)
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for many values of the equivalent depth, where the
asterisk means complex conjugate. The WKB estimate
of the 200-750 m phase is

—200
o= | N (4
The integral in (14) is independent of 4, so that ¢wks
oc h'2, ¢rrue and éwke are both plotted against
logh in Fig. 9a for 4 in the range 1 cm to 1 m. The
two curves follow each other as a general trend, but
the exact phase has much more structure than the
smoothly yarying WKB estimate. The disturbing fea-
ture, however, is that ¢rryue is multivalued in the

"sense that a given phase can correspond to three

different values of 4. Thus a measured phase need
not correspond to a unique A as it must if WKB
theory is used to estimate s from the observations.
In fact, the WKB estimate of equivalent depth, Ags,
would be determined by treating the true phase,
¢1rRUE, DY the WKB theory, i.e.,

—200

(ghes)'? = . M2)dz/d1rUE-

(15)

loghgs is plotted against logh in Fig. 9b, again for &
in the range 1 cm to 1 m. For small values of A, the
curves are fairly close, but as noted before, a single
value of hgs can correspond to three values of 4. For
values of h greater than 50 cm, however, the two
curves diverge dramatically with hgs becoming much
larger than 4. The reason is that ¢rryg becomes very
small for 2 > 50 cm; see Fig. 9a. The precise form
of Fig. 9 depends upon the choice of 200 and 750
m, and would change if different depths were chosen.
Thus, we conclude that extreme caution should be
used in estimating equivalent depths using WKB
theory from observed coherences, which themselves
usually have large error bars. For example, Luyten
and Roemmich’s (1985) 95% coherence phase estimate
is 62° + 20°, which from WKB theory gives a range
of h of 21-81 cm, see Fig. 9a. This conclusion applies
even in the best case of only one vertically propagating
wave and using WKB theory in a depth range that
excludes the thermocline where the approximation

5 ¢wxa- ¢TRUE vs h hgs vs h
?1’ T T TUTImm T LIRARAL Im E T T T VIIin T LB }
Fb) b
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2 L 4
L L4 1l 1 it
fcm 10 cm im
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FIiG. 9. (a) ¢1ruE, dwks VS logh, 1 cm < 2 < 1 m, and (b) loghgs
vs logh 1 cm < h < 1 m, for the Indian Ocean N profile.
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obviously is not valid. An illustration of why the
WKB solution does not work well for # = 25 cm is
given in Section 4c.

Most of the mid-depth meridional velocity obser-
vations taken on the equator have been interpreted
as vertically propagating mixed Rossby—gravity waves,
with dispersion relation

(&' = /(B + wh). (16)

Figure 10 shows plots of 4 against k for a period of
25 days and # against w for a zonal wavelength of
1000 km. These period and wavelength are typical of
those estimated from observations, and we note from
Fig. 10 that A is very sensitive to estimates of both w
and k in this range, so that the estimates using the
dispersion relation (16) must have large error bars
for this particular wave. Luyten and Roemmich’s
(1985) 95% estimates of period and wavelength are
22-28 days and 1100-2000 km, which by (16) give
the possible range of 4 as 2-76 cm. We conclude,
therefore, that comparisons of / for the mixed Rossby-
gravity waves using values estimated from the disper-
sion relation and WKB estimates from vertical co-
herence phases are of little value because both esti-
mates have such large error bars.

Luyten and Roemmich (1985) show how to obtain
better estimates of w, k, and 4 using not only the
observed phase differences in the vertical, but also
the relative ratios in the vertical of kinetic and
available potential energy. In our calculations kinetic
energy [oc(dW/dz)’] and available potential energy
[oc N2W?] scale differently in the vertical, and neither
scales like N(z), and phase relationships are changed;
e.g., zonal velocity and temperature perturbation are
not in quadrature.

b. Estimates of the downward vertical energy flux

The downward vertical flux of energy is the corre-
lation between vertical velocity and pressure pertur-
bation, neither of which can be measured with suffi-
. cient accuracy in most oceanic situations to estimate
the true flux directly. If this is so, then the flux has
to be estimated using a specific model for the wave
field assumed to be responsible for the observed
variability. For the mixed Rossby-gravity wave the
vertical flux integrated in the meridional direction is
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W
Wave Flux = — W

Im[W*dW/dz|, (17)

where the velocity W is calculated from the homo-
geneous form of Eq. (1). Since the function W is
seldom observed directly, a local WKB approximation
has often been made, as described in the previous
subsection. This enables W to be related to dW/dz,
and an estimate of the meridionally integrated wave
energy density at a particular depth to be made. The
downward vertical flux is then calculated as the
product of the wave energy density and the local
vertical group velocity, which is calculated from the
mixed Rossby-gravity wave dispersion relation (16).
The product for the mixed Rossby—-gravity wave can
be written in the following form, appropriate for
estimation from horizontal velocity observations,

w4 ’V|2

T+ ol N O

WKB Flux = (18)
where ‘

e 4w
BB + wk)'/? dz

We note that Weisberg er al. (1979) made a local
estimate about the equator, whereas the above formula
is only correct when the total energy density is used
and the downward energy flux and density are inte-
grated in the meridional direction.

The WKB flux error for a given value of /4 can be
found by calculating the ratio of the WKB and wave
fluxes from Egs. (18) and (17). This ratio is plotted
as a function of depth in Fig. 11 for the Indian Ocean
N profile and /4 = 25 cm, which is the WKB estimate
of Luyten and Roemmich (1985). The figure shows
that the WKB flux estimate below the thermocline

WKB FLUX/WAVE FLUX

0 T T T I
- .
2r 4

£ \

3

~ 4
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4 - ~
5 1 1 - 1 1 1 1 1

o] | 2 3 4 5
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FiG. 11. Ratio of WKB to wave estimates of downward vertical

energy flux vs depth 0-5 km for the Indian Ocean N profile and /
= 25 cm.
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. 12. |U/D}? vs depth 0-5 km for the Indian
Qcean N profile and A = 25 cm.

can be too small or large by up to a factor of two
depending upon the depth where it is made.

The WKB estimate can be misleading because the
WKB approximation misrepresents the relationship
between W and dW/dz, and it only applies when
there is solely a downward energy propagating wave.
For continuous buoyancy profiles, this is only true
when there is perfect transmission, which is never the
case for realistic profiles, as shown in Section 3d. The
fact that there is not just a downward propagating
wave is illustrated further in the next subsection. We
also note that, for the mixed Rossby-gravity wave,
both flux formulae are very sensitive to the values of
w and k, so that it is important to use the best
possible estimates; see Luyten and Roemmich (1985).

¢. Analysis in terms of downward and upward prop-
agating waves

We now illustrate the fact that a disturbance does
not consist of only a downward energy propagating
wave. Consider the transformation

W= (D + U)/m"?
aw _ (19)
— = D-U

dz im )
In (19) m is positive everywhere so the transformation
is nonsingular, and the new variables D and U satisfy
the following differential equations -

%g —imD = %rf- U2m
U (20)

dm
+imU=——D/2m
dz dz /

The WKB approximation is to ignore the right-hand
sides of (20) everywhere, so that the downward and
upward propagating components do not interact. The
radiation condition means that U, which is the upward
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propagating wave when m is a constant, is zero at
the ocean floor. Thus U is zero and |D| is constant
everywhere, and there is perfect transmission of
downward energy flux. When m™'dm/dz cannot be
neglected, however, the two components interact
directly according to Eq. (20). In order to illustrate
our point, we have inverted the transformation (19)
at all vertical points for the solution using the Indian
Ocean N profile when A = 25 cm, which from Fig.
5b, has a transmission coefficient of 3%. Figure 12 is
a plot of {U/D|? against depth for this solution. It
shows that U has non-negligible amplitude everywhere
from 300 m to greater than 4 km, which is the range
where the WKB approximation is usually applied.
Above the thermocline U nearly equals D which is
why the value of T is so small. We interpret this
rapid change across the thermocline as indicating
that most of the downward energy flux is reflected by
the thermocline. This is the best justification we know
of for using a one-layer model of the equatorial ocean.
This type of model (e.g., Busalacchi and O’Brien
1980, 1981) imposes no downward energy flux trans-
mission through the thermocline into the resting
lower layer, so that the motion due to the surface
forcing is trapped in the layer above the thermocline.
This model has had success describing Kelvin waves,
generated by wind changes in the west, propagating
across the Pacific Ocean. We think the very large
reflection of downward vertical energy flux by the
equatorial thermocline is why these waves still have
large amplitudes above the thermocline many thou-
sands of kilometers away from their generation region.

5. Conclusions

We now discuss some caveats concerning the gen-
erality of our results. The first is that we have solved
only the homogeneous form of the vertical structure
equation and have not solved a specific three-dimen-
sional forced problem. A three-dimensional solution
is needed to describe fully how downward energy flux
penetrates into the deep ocean because the ray paths
are slanted and not vertical. We have considered the
linear wave response to forcing using a buoyancy
profile that is only a function of depth whereas the
equatorial surface layer is nonlinear in the ocean and
the thermocline rises and falls through the year and
is certainly spatially variable. Nonlinearity is a com-
plication we do not know how to fully overcome
without resorting to a numerical model, but we think
that temporal and spatial changes in the location of
the thermocline will not affect the small transmission
result as long as the thermocline remains sharp and
thin. We have also assumed the basic state ocean to
be at rest and have ignored the strong equatorial
current systems. However, we think that this compli-
cation more likely reduces linear wave transmission
of downward energy flux from the surface than
increases it. The reason is that critical surfaces can
occur in the presence of mean currents where their
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velocities equal those of the vertically propagating
waves and energy is absorbed at a critical surface
rather than propagating through it. These currents
are a source of variability themselves and instability
in the equatorial undercurrent may be the source of
the observed Rossby—gravity waves. If generated in
the thermocline, they can propagate into the deep
ocean quite freely.

Our calculations show that, for buoyancy profiles
with a sharp, thin thermocline and a small value of
N(0), only 10-20% of the downward surface energy
flux reaches the bottom of the ocean over equivalent
depths between 1 cm and 1 m. The calculations are
somewhat sensitive to the value assumed for NO0),
but insensitive to smoothing of the profiles below the
thermocline. There are no peaks where the transmis-
sion is almost perfect for any value of /# between 1
cm and 1 m. This last statement conflicts with the
calculation of Philander (1978) who used a similar
buoyancy profile and shows a peak with almost
perfect transmission at 2 = 45 cm in his Fig. 7. Our
first conclusion is that we find so little transmission
of downward surface energy flux at the equator that
any model that has perfect or high transmission is
very unrealistic in this respect. This includes any
model that uses a constant buoyancy profile or has a
weak equatorial thermocline that does not reflect
enough energy flux. Examples are McCreary (1984)
for equatorial waves and Romea and Allen (1983)
for coastal waves. Figure 3 shows how transmission
is increased when the thermocline.strength is reduced.
Incidentally, another consequence of constant or weak
thermocline buoyancy profiles is that the energy ray
paths of vertically propagating equatorial waves de-
scend into the deep ocean too steeply giving shorter
path lengths. This means less side reflections for very
low frequencies, and less time for friction to act at
any frequency, and consequently a further overesti-
mate of the downward energy flux transmission.

How much energy propagates vertically in linear
models of the equatorial oceans is a rather sensitive
function of four factors, only one of which has been
studied in this paper. They are:

i) The spectra of w and k in the atmospheric wind
stress forcing of the ocean. Through the dispersion
relations for various waves they dictate the values of
the equivalent depth where the ocean is forced most
strongly.

ii) How the wind stress forcing gets into the ocean.
In equatorial ocean models it is often applied as a
body force over a mixed layer, but atmospheric
models show that vertical energy propagation into
the stratosphere is sensitive to how the cumulus
convection forcing in the troposphere is parameter-
ized, see Hayashi (1976) and Chang (1976). The same
will be true in the ocean and needs study.

1ii) The buoyancy profile. We have shown that the
transmission coefficient is a sensitive function of ¥
especially when the thermocline is sharp and thin,
and the question remains as to which is the appro-
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priate profile to use when the thermocline has quite
a large annual vertical displacement for example. The
appropriate profile is that averaged over a period
somewhat longer than the period of the forcing, so
that the wave environment is nearly constant over a
wave period. Thus, the Pacific profile is appropriate
for annual forcing because it is an average over fifteen
months. However, for shorter period forcing a profile
with a sharper thermocline is appropriate, such as
our Indian Ocean profile. Assuming that a longer
averaging time gives a weaker thermocline means
that, in general, more energy will propagate down-
wards as the period of the forcing increases.

iv) The strength of friction, especially in the ther-
mocline. The effects of the buoyancy profile and
friction act to complement each other in the following
way. For short period forcing, transmission through
the thermocline is small and the energy ray paths are
steep, so that friction has a relatively short time to
act to decrease vertically propagating energy. For
long period forcing, however when the thermocline
transmission is larger, the energy ray paths are shal-
lower, so that friction has more time to act to reduce
vertically propagating energy. For periods greater
than about three months, energy reflections from the
ocean boundaries must occur before the energy reaches
the deep ocean, and less energy will propagate if these
reflections are not perfect. o

Rothstein et al. (1985) have made three-dimensional
calculations to study the Kelvin wave at annual
period generated by a patch of zonal wind stress. -
They used a body force in the upper 50 m and the
Pacific buoyancy profile of Fig. 6a, and conclude that
the energy transmission through the thermocline is
large. We think their calculations have high energy
transmission for the following reasons. They have
only an annual period but a patch of wind stress that
produces a spectrum of k with much power in short
wavelengths or large values of k. Thus their spectrum
of w/k has much power at small values, and would
be very different for forcing at a single k switched on
in time, which would have much power at large
values of w/k. Studying only the Kelvin wave also
produces small values of h because its dispersion
relation is w/k = @, whereas for long, nondispersive

Rossby waves it is 2n + w/k = Vg_h Thus their
forcing spectrum and choice of wave produce small
values of & which means large energy transmission.
They have used the buoyancy profile with relatively
large values in the mixed layer where the forcing acts.
We think this is inconsistent, and our calculations in -
Section 3 show that this increases energy transmission
considerably. We note in their calculations, however,
that at annual frequency friction is efficient at reducing
vertical energy propagation into the deep ocean below
one km, as discussed above.

The semiannual and annual oscillations that have
been observed in the equatorial oceans decay with
depth and have not been observed at depths below

!
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about 3 km, supporting our hypotheses about the
combined effects of the buoyancy profile and friction.
Below 3 km, however, deep jets in zonal velocity
have been observed in all the equatorial oceans, and
they have small vertical scale often with estimated
equivalent depths of one cm or less. Also, they have
not been observed propagating in the vertical, so that
their frequencies must be very small, implying very
shallow ray paths. We think that thermocline reflection
and friction would eliminate these small vertical

_ wavelength jets before they reached the deep ocean,
so that our second conclusion is that they cannot be
vertically propagating equatorial waves generated at
the ocean surface. There is some possibility of their
being generated in the thermocline because the energy
transmission from there to the deep ocean is much
higher, although barotropic instability produces per-
turbations with periods on the order of one or two
months, not one or two years. It is then a question
of how quickly they propagate vertically as to how
much time friction has to act before they reach the
deep ocean.

Our calculations in Section 4 apply to motions
generated in the thermocline or at the surface. They
show that a WKB estimate of equivalent depth can
be very misleading even if the approximation is
applied when only one vertically propagating wave is
present and over part of the water column that
excludes the main thermocline. Figure 9a shows that,
when only one vertically propagating wave is present,
using the WKB approximation between 200 and 750
m gives the incorrect phase. In fact, the same phase
change can result from more than one A, so that the
relation between them is not unique. An estimate of
the equivalent depth can be misleading using- the
WKB estimate of phase change, as shown in Fig. 9b.
Most equatorial observations of meridional velocity
with periods of 25-30 days and zonal wavelengths of
about 1000 km have been interpreted as mixed
Rossby—-gravity waves. Figure 10 shows that the cal-
culation of # from the dispersion relation in this
range is very sensitive to the precise period and zonal
wavelength which are not known very accurately
from observations. Qur third conclusion, therefore,
is that comparisons of 4 from the dispersion relation
and a WKB phase analysis are of little value because
the error bars on each estimate are so large.

Our calculations in Section 4b are of downward
vertical energy flux using WKB and equatorial wave
theory. Figure 11 shows that the WKB flux can be
misleading because the approximation misrepresents
the vertical structure and assumes that only a down-
ward energy propagating wave is present. Our analysis
in terms of D and U in Section 4¢ shows this is not
the case; see figure 12. Our fourth conclusion, there-
fore, is that estimates of the downward vertical energy
flux from observations using WKB theory can also
be misleading.

Acknowledgment. JL would like to thank the fol-
lowing agencies for their support: Office of Naval

PETER R. GENT AND JAMES R. LUYTEN

1007

Research, Ocean Sciences and Technology Division
under Contract N00014-76-C-0197, and the National
Science Foundation under Grants ATM 82/18595
and OCE 79/21786.

REFERENCES

Busalacchi, A. J., and J. J. O’Brien, 1980: The seasonal variability
in a model of the Tropical Pacific. J. Phys. Oceanogr., 10,
1929-1951.

———, and —, 1981: Interannual variability of the equatorial
Pacific in the 1960°s. J. Geophys. Res., 86, 10901-10907.
Chang, C. P., 1976: Forcing of stratospheric Kelvin waves by
tropospheric heat sources. J. Atmos. Sci., 33, 740-744.
Eriksen, C. C., 1981: Deep currents and their interpretation as
equatorial waves in the western Pacific Ocean. J. Phys. Ocean-

ogr., 11, 48-70.

——, 1982: Geostrophic equatorial deep jets. J. Mar. Res.,
40(Suppl.), 143-157.

Garzoli, S., and E. J. Katz, 1981: Observations of inertia-gravity
waves in the Atlantic from inverted echo sounders during
FGGE. J. Phys. Oceanogr., 11, 1463-1473.

Gent, P. R., K. O’Neill and M. A. Cane, 1983: A model of the
semiannual oscillation in the equatorial Indian Ocean. J. Phys.
Oceanogr., 13, 2148-2160.

Hayashi, Y., 1976: Nonsingular resonance of equatorial waves
under the radiation condition. J. Atmos. Sci., 33, 183-201.

Hayes, S. P., 1978: Temperature fine structure observations in the
Tropical North Pacific Ocean. J. Geophys. Res., 83, 5099-
5104.

Leaman, K. D., 1976: Observations on the vertical polarizations
and energy flux of near-inertial waves. J. Phys. Oceanogr., 6,
894-908.

——, and T. B. Sanford, 1975: Vertical energy propagation of
inertial waves: A vector spectral analysis of vertical profiles. J.
Geophys. Res., 80, 1975-1978.

Lighthill, M. J., 1969: Dynamic response of the Indian Ocean to
onset of the southwest monsoon. Phil. Trans. Roy. Soc.
London, A265, 45-92.

Lukas, R., and E. Firing, 1985: The annual Rossby wave in the
central equatorial Pacific Ocean. J. Phys. Oceanogr., 15, 55-
67. .

Luyten, J. R., and D. H. Roemmich, 1982: Equatorial currents at
semiannual period in the Indian Ocean. J. Phys. Oceanogr.,
12, 406-413.

——, and ——, 1985: The 26-day oscillation in the western Indian
Ocean. Submitted to J. Phys. Oceanogr.

McCreary, J. P., 1984: Equatorial beams. J. Mar. Res., 42, 395~
430. '

Mied, R. P., and J. P. Dugan, 1974: Internal gravity wave reflection

, by a layered density anomaly. J. Phys. Oceanogr., 4, 493-498.

O’Neill, K., 1984: Equatorial velocity profiles. Part 1. Meridional
component. J. Phys. Oceanogr., 14, 1829-1841.

———, and J. R. Luyten, 1984: Equatorial velocity profiles. Part II:
zonal component. J. Phys. Oceanogr., 14, 1842-1852.

Philander, S. G. H., 1978: Forced oceanic waves. Rev. Geophys.
Space Phys., 16, 15-46.

Picaut, J., 1983: Propagation of the seasonal upwelling in the
eastern equatorial Atlantic. J. Phys. Oceanogr., 13, 18-37.
Romea, R. D,, and J. S. Allen, 1983: On vertically propagating
coastal Kelvin waves at low latitudes. J. Phys. Oceanogr., 13,

1241-1254.

Rothstein, L. M., D. W. Moore and J. P. McCreary, 1985: Interior
reflections of a periodically forced equatorial Kelvin wave. J.
Phys. Oceanogr. 15, 985-996.

Weisberg, R. H., and A. M. Horigan, 1981: Low-frequency variability

in the equatorial Atlantic. J. Phys. Oceanogr., 11, 913-920.

y and C. Colin, 1979: Equatorially trapped Rossby-

gravity wave propagation in the Gulf of Guinea. J. Mar. Res.,

37, 67-86.

Wunsch, C., 1977: Response of an equatorial ocean to a periodic
monsoon. J. Phys. Oceanogr., 7, 497-511.




