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ABSTRACT

Surface accelerations can be measured in at least two ways: 1) by a fixed vertic_:al wave gauge, 2) by a free-
floating buoy. This gives rise to two different vertical accelerations, called respectively “apparent” and “rml’.',
or Langrangian. This paper presents the first accurate calculations of the two types of acceleration, for symmetric

waves of finite steepness.

The apparent upwards acceleration is always less than 0.24g, but the apparent downwards aw_eleration is
unlimited. The real vertical acceleration is smoother than the apparent acceleration, and always lies between

0.30g and —0.39g.

The (real) horizontal acceleration is studied, and shown to be greater in amplitude than the real vertical

acceleration.

The results are discussed in relation to proposed limits on the acceleration in random seas.

1. Introduction

Various criteria for the breaking of ocean waves have
been proposed. Thus Phillips (1958) suggested a lim-
iting acceleration of —~g at the free surface. Snyder and
Kennedy (1983) have used the value of —lzg, the ac-
celeration in a Stokes 120° corner flow (see Longuet-
Higgins, 1963). In reinterpreting some experimental
results of Ochi and Tsai (1983), Srokosz (1986) has
proposed a limiting downward acceleration of —0.4g.
In the present note we do not propose any new crite-
rion; we simply inquire what are the actual accelera-
tions in progressive, irrotational gravity waves of finite
amplitude.

The results are paradoxical. First, a distinction has
to be made between the apparent vertical acceleration,
as measured, for example, by a fixed vertical probe,
and the real vertical acceleration, that is the accelera-
tion of the fluid particles, as measured ideally by a
small, free-floating buoy. In linearized theory these two
accelerations are equal, but in waves of finite amplitude
they are not.

For example, in the limiting wave (Fig. 1), which is
discussed in Section 3, the apparent acceleration is
positive and approximately constant at 0.22g over most
of the free surface, but with a sharp negative spike at
the wave crest (see Fig. 2). The real acceleration, on
the other hand, is almost sinusoidal, varying between
0.30g and —0.25g (see Fig. 3). At the crest there is a
nonuniformity, treated by the theory of the almost
highest wave (Section 4) where the vertical acceleration
has the limiting value of —0.388g.

Waves of arbitrary amplitude are studied in Section
4. Here the simple but accurate method of calculation
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introduced recently by Longuet-Higgins (1984, 1985a)
is used to evaluate both the real and apparent accel-
erations (Figs. 4 and 5). In Section 6 the (real) hori-
zontal accelerations are also considered, and it is found,
perhaps surprisingly, that these generally exceed in
amplitude the corresponding vertical components.

A discussion follows in Section 7.

2. Real and apparent accelerations

For definiteness, consider steady, uniform gravity
waves in two dimensions, travelling with phase-speed
¢ in the positive x-direction. If the surface elevation is
¥y = 5(x, t) then the apparent vertical acceleration, as
seen by a fixed vertical wave gauge, is 5,. On the other
hand the real, or Lagrangian, acceleration is Du/Dt,
where u = (u, v) is the velocity vector and D/Dt = 3/
dt + u- V denotes differentiation following the motion.

Transforming now to a frame of reference moving
with speed ¢, the fluid motion becomes steady. In the
new coordinates, 1, is replaced by —on,.. The apparent
vertical velocity is thus proportional to the surface slope
1x. The apparent acceleration ar is given by

ag = . .1

Consider on the other hand the real, or Lagrangian
acceleration. The axes being in steady motion, the par-
ticle acceleration is physically the same as in the original
reference frame but is now

a; = u-Vu. (2.2)

We note that at the free surface this acceleration can
be resolved into a tangential component —g sine, where
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a = arctany, is the angle of inclination, together with
a normal component ¢g/R, where q is the particle speed
(12 + v»)"2 and R is the radius of curvature.

When the motion is irrotational with complex ve-
locity potential x = ¢ + iy we have

ay = (U — ) + iVx) = XX (2.3)
where z = x + iy and a star denotes the complex con-
jugate. Since it is often convenient to express the co-
ordinates (x, y) in terms of ¢ and ¢, rather than vice-
versa, we give here the corresponding expression for a,
namely

2.4)

a = —(zxx/zx3)*/zx
as can easily be shown. This can also be written
a, = —¢%z%z> 2.5)

since z,z* = 1/g°. Now in gravity waves we may choose
the origin of y so that at the free surface Bernoulli’s
equation is simply

g> = —2gy. (2.6)

Then the horizontal and vertical components of the
acceleration are given by the real and imaginary parts
of

ar = (28V)(Xps — 1Vee)Xe + iYs)>. 2.7)

To plot the apparent acceleration (2.1) as a function
of the time ¢ we may use the apparent time

(2.8)

For the Lagrangian accelerations it is more natural to
use the orbital time, that is to say the elapsed time
following a particle. For steady motions this is given
by the simple formula

1, = f q2d¢ 2.9)

the integral being taken along a streamline (see Lon-
guet-Higgins 1979a). So for particles at the free surface
we have

t = Xx/c.

t=— L f 7" dg.

% (2.10)

3. Waves of limiting amplitude

Consider a gravity wave of given length L and of
limiting amplitude @ on deep water, as shown in Fig.
1. The profile being roughly parabolic, 7, is nearly
constant, so by Eq. (2.1) we expect that the apparent
acceleration ag will be nearly constant also. What is its
value? Near the crest, the surface is inclined at an angle
of £30° to the horizontal, hence the apparent vertical
velocity is ic/‘/§ . Thus in one wave period 7, between
the passage of one crest and the next, the velocity
changes from —c/s/i to +c/\/§ . The mean acceleration
is therefore 2c/~/§ T. When divided by g we have for
the mean upwards acceleration
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3.1

since T = L/c. Introducing the linear phase speed ¢
= (gL/27)"? and using the value c¢?/c2 = 1.1931 (Lon-
guet-Higgins 1975), one finds

g - 02193

32
g w3 C02 3:2)

At the crest itself the velocity changes suddenly from
c/~/§ to —c/\/3_, so the acceleration is a sharp, negative
delta-function, exactly counterbalancing the positive
acceleration over the rest of the wave.

Accurate calculations of limiting gravity waves have
been presented by many authors, particularly Williams
(1981), who gives the velocity components (u, v) at
points on the free surface (see his Table 12). From these
values one immediately finds 7, = v/u and hence the
derivative 7,,. The apparent acceleration is plotted in
Fig. 2 (full curve). The broken line indicates the mean
upwards acceleration (3.2). It can be seen that over
most of the wave the acceleration lies between 0.203g
and 0.242g, differing from the mean by less than 10
percent. As the crest is approached, the acceleration
falls to zero, on account of the vanishing curvature
there. At the crest itself the acceleration is negative and
infinite.

Clearly this behavior is far from sinusoidal.

Consider on the other hand the Lagrangian accel-
erations. It has been shown elsewhere (Longuet-Hig-
gins, 1979b) that the motion of a given particle in the
surface of a limiting wave is approximately the same
as the motion of the bob of a freely swinging pendulum
of length L. In one-half swing of the pendulum the bob
falls and rises from its highest level, (at which the angle
of inclination « of the pendulum with the vertical is
30°) through its lowest point, where @ = 0, up to its
next highest point, where a = —30°. We may therefore
expect the vertical motion to be smooth and almost
sinusoidal. Near a wave crest where g vanishes, the
acceleration is —g sina along the particle path, so the
vertical component is ’

(3.3)

At the bottom of the swing the upwards acceleration
would be

—g sin*a = —0.25g.

g*/L = 2gH/L = 2g(1 —V3/2) = 0.268¢ (3.4)

according to our approximate model. The total time
T, is the time taken for a half-swing of the pendulum,
that is to say

T, = 1.074m(L/g)"* = 1.35T, (3.5)

where Tp = (2wL/g)"/? is the period of a linear wave of
length L. The excess of T, over T, can be viewed as a
Doppler shift due to the mean forward displacement
of particles associated with the “Stokes drift.”
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FI1G. 1. Profile of a limiting wave on deep water.
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FIG. 2. Apparent vertical acceleration in a limiting wave as a function of the orbital time.
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FIG. 3. As in Fig. 2 but for real (Lagrangian) vertical acceleration.
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Accurate values of the Lagrangian acceleration,
taken from Table 12 of Williams (1981) are plotted in
Fig. 3. It will be seen that they do indeed follow a
smooth, nearly sinusoidal curve which lies, in fact, be-
tween —0.25g and 0.301g, similar to the bounds in
(3.2) and (3.3). The orbital times are also tabulated by
Williams, the total time T, being 1.2607,, somewhat
less than suggested by Eq. (3.5).!

At the crest ¢, = 0 there is a singularity. There, the
approach to the limit is nonuniform, depending upon
how it is made. The acceleration in the neighborhood
of this point will be discussed in Section 5.

4. Waves of arbitrary steepness

For accurate calculations relating to waves of given
length L and arbitrary height 2a a quick and simple
method has been recently demonstrated (Longuet-
Higgins 1984, 1985a). This begins with the parametric
equation for the free surface

ky=%a0+ > a, cosnfl
1

4.1 -

kx=6+ > a,sinnd
1

where 0 = k¢/c, k = 2n/L is the wavenumber and ¢
is the velocity potential. Equations (4.1) are in fact the
form to which Stokes’s well-known expansion is re-
duced on the streamline y = 0.

In the past, the coefficients g, have usually been ex-
panded in powers of some small parameter, repre-
senting the wave steepness. But in the papers referred
to it is shown to be much simpler and more accurate
to find that g, by direct solution of the quadratic re-
lations

abo + aghy + ayby + aghs + -+ =0
a2b0+01b1+aob2+a,b3+ vee =

ashy + ayby + ab, + aghs + - -+ =0 “.2)
where
bo=1, b,=na,, n=1,2,3+-. (4.3)
for a given value of the wave steepness
ak=a, +as+as+ - 4.49)
The phase speed c is found from
aoho + a\by + agby + ashs + + -+ = —c¥c?.  (4.5)

! For the apparent accelerations in a limiting wave, the pendulum
model is less exact. By (2.1) the apparent acceleration in the trough
would be c?/L = 0.19g but near the crest, (4/3)*%c?/L = 0.29g.
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In this way the a, can be determined immediately
to order as high as 600, with only a few iterations. The
accelerations can then be calculated from the expres-
sions given in Section 2. In Eq. (2.1) we may use the
relation

1 d
T = — o (&) = (oo — Xeo V)% (4.6)
Xg db Xe

and in (2.7) the relation

a/g = (co/c) 28y (xen — iy )Xo + iys)®.  (4.7)
The derivatives g, Vs, Xas, Yog are found by summing

the series
~

kx, = % b, cosnd
- > (4.8)
ky, = —2, by sinnf
0 -
and
N N
kx” = -2 nb,, sinné
o > (4.9)
kyge = — 2, nb, cosnf
1 J
respectively.

The rate of convergence of these series depends upon
the behavior of the coefficients a, and b, = na, at
large values of #. Elsewhere (Longuet-Higgins, 1985b)
it has been shown that for steep waves, that is when

2.0(akmax — ak) = <1 (4.10)
the a, behave like n=*/3 up to values of » of order €3,
and then decreases exponentially like n723 exp(—ne’co/
¢). This ensures the ultimate convergence of all the
series (4.1), (4.8) and (4.9).

For example, when ak = 0.40 we have from (4.10)
¢ = 0.087, and so the exponential behaviour sets in
when n ~ 40. Thus 100 terms is more than adequate
to insure at least four-figure accuracy in the acceler-
ations. These conclusions are borne out by the actual
numerical convergence of the solutions as N is in-
creased.

The “apparent” and real vertical accelerations cal-
culated in this way are shown in Figs. 4 and 5 respec-
tively, for the representative wave steepnesses ak = 0.1,
0.2, 0.3 and 0.4. Consider first the apparent accelera-
tions (Fig. 4). Though roughly sinusoidal when ak
= 0.1, at higher values these quickly develop an up-
down asymmetry. When ak = 0.3, the maximum
downwards acceleration is already —0.78g, and when
ak = 0.4 it is off-scale at —2.78g. When ak = akpay
= (0.4432 it is of course infinite. In contrast, the positive
accelerations never exceed the upper bound of 0.24g
for the steepest wave (Fig. 2).
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FIG. 4. Apparent vertical acceleration steep surface waves: ak = 0.1, 0.2, 0.3 and 0.4.

Consider on the other hand the real vertical accel-
erations, in Fig. 5. These are much more symmetric.
The upwards acceleration in the trough is always less
than 0.3g, and the downwards acceleration at the crest
never exceeds 0.4g. However, the approach to the limit
as ak — akpyax at t, = 0 demands investigation and will
now be discussed.

5. The almost-highest wave

The form of waves approaching their limiting steep-
ness has been studied analytically by Longuet-Higgins
and Fox (1977, 1978); see also Longuet-Higgins
(1979c¢). For waves in deep water it is convenient to
define the small parameter ¢ by

e =2""2q/c, 5.1

where ¢ now denotes the particle speed at the wave
crest, in the relative frame of reference, and ¢, = (g/
k)'7 is the linear phase speed. As g/c — 0 so e — 0 and

the wave crest approaches its limiting form, the Stokes
120° corner flow.

In general, when € > 0, it is shown that there is a
smiall region near the crest, with dimensions of order
€L, where the flow has a characteristic form. This may
be called the “inner zone” or Zone 1. Beyond this is
an “‘intermediate zone” II of dimensions O(e), where
the flow is fitted, or matched, to the rest of the wave
(the “outer zone™ III). _

The form of the flow in the inner zone was calculated
by Longuet-Higgins and Fox (1977) and is shown in
their Fig. 7. The chosen length scale / equals g*/2g so
that with the definition (5.1) for deep-water waves,

[ = écy*lg = €/k = €L[2w. (5.2)

The radius of curvature R at the crest was shown to
be 5.15/, that is
R = 0.82€2L. (5.3)

Moreover when defined as ii (5.1), the parameter ¢
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FIG. 5. As in Fig, 4 but for real (Lagrangian) vertical accelerations.

asymptotically satisfies the relation (4.10) above; [see
Longuet-Higgins and Fox 1978, Eq. (5.4)].

Most interestingly, it was shown that the downwards
acceleration at the crest is not —0.5g, as in the outer
zone III, but equals —0.39g approximately, a figure
confirmed by Williams (1985).

From the numerical coordinates for the surface pro-
file given in Table 3 of Longuet-Higgins and Fox (1977)
we have calculated the apparent and real accelerations
near the wave crest, and these are shown in Figs. 6 and
7 as functions of the scaled times €%/T, and et,/Ty.
From Fig. 6, as ¢ — 0 the apparent acceleration will
of course tend to infinity. From Fig. 7, the real accel-
eration varies from —0.39g at the crest to —0.25¢ in
the outer part of the inner zone, in agreement with
Fig. 3.

2

Interpreting this result physically, we may say that
the downwards acceleration —0.39g is the one that
would be experienced by a particle in the surface with
diameter d < €L. The acceleration —0.25g would be
experienced by the same particle when at a distance
large compared to the radius of curvature but still small
compared to L. On the other hand, a small subsurface
particle may evidently experience a vertical acceleration
of almost —0.5g.

6. Horizontal accelerations

Of equal interest is the horizontal component of the
acceleration. The apparent horizontal acceleration, as
seen by a fixed probe, is of course zero. However we
would expect the real horizontal acceleration to be

eag /g

1.0 0.0

~01

1.0 t/e? 71,

FIG. 6. Apparent vertical acceleration near the crest of an almost-highest wave.
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FIG. 7. Asin Fig. 6 but for real vertical and horizontal accelerations.

substantial. For, a particle in the trough of a limiting
wave is moving backwards, and in only half an orbital
period T, it must be accelerated up to the phase-speed
¢ on reaching the crest.

Quantitatively, we may consider the acceleration in
the moving reference frame. Using the pendulum
model we see that the mean horizontal acceleration of
a particle between trough and crest would be 2¢q/7,,
where now ¢ is the particle speed in the trough given
by Eq. (3.4). Hence :

2(2gH )2 22 — V3)12
T 1.074n(L/9)'? T 1.074w
If the acceleration varied sinusoidally with time, the

peak value would be /2 times the above value, that
is

ay

6.1)

2 —V3)”
1.074

Actually the value of ay at t = 0 must be 4 g cos30°
or 0.433¢. '

In Fig. 8 are shown the horizontal Lagrangian ac-
celerations, as a function of the orbital time, calculated
accurately by the methods of Sections 3 and 4. The
outermost curve represents the limiting wave ak
= (0.4432, and it will be seen that the acceleration,
though approximately sinusoidal over the interval

g = 0.48g. (6.2)

Ay max =~

0 <1, < 3T, lingers in the neighborhood of its maxi-
mum value 0.434g. For all the other waves, with steep-
nesses ak = 0.1, 0.2, 0.3 and 0.4, the maximum hori-
zontal acceleration is close to the corresponding value
of ak.

The maximum values of the accelerations are tab-
ulated in Table 1, for each value of ak. It will be seen
that the maximum horizontal acceleration exceeds the
maximum (real) vertical acceleration (see Fig. 5). Thus
a small float would tend to be tossed to and fro hori-
zontally as much as vertically.

7. Discussion

We have so far considered only the accelerations in
regular, symmetric waves, and further thinking is nec-
essary befoie applying the results to ocean waves which
are generally both unsteady and asymmetric. Nev-
ertheless it is very striking that in both the real and
apparent vertical accelerations, the upwards accelera-
tion in the trough of a steep wave is more restricted in
magnitude than is the downwards acceleration at the
crest. If therefore a criterion for wave breaking is to be
based on some upper bound for the magnitude of the
vertical acceleration it should, paradoxically, be the
upwards acceleration in the trough that is restricted,
not the downward acceleration at the crest.

The appropriate bound for unsteady waves may very
well differ from that for steady waves. As an example,
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FIG. 8. Real horizontal accelerations when ak = 0.1, 0.2, 0.3, 0.4 and 0.4432.

consider a simple, two-scale model, in which a relatively
short gravity waves rides on the back of a longer wave,
whose steepness ak is less than the maximum value
0.4432. As is well known, the interaction of the two
waves will cause the shorter wave to be at its steepest
on the crest of the longer wave and less steep in the
longer wave troughs. Ignoring for the present the action
of the shorter wave on the longer wave, suppose that
the real (Lagrangian) acceleration at the crest of the
longer wave is rg, where r = 0.2, say. Then the effective
value of gravity at the crest of the longer wave is given
by

g=0-ng (7.1)
Now suppose that at the crest of the long wave the
short wave is of the same steepness as the longer wave.
Then at the crest of the short wave the relative down-
wards acceleration will be —rg’, thatis —r(1 — r)g. This

must be added to the previous downwards acceleration
—rg to give a total acceleration

—r[l + (1 — N]g.

The effective value of gravity at the crest of the shorter
wave will thus be

(7.2)

g'=0-rng=(1-rg. (7.3)

Now, allowing our imagination full play, let us sup-
pose that on the crest of the shorter wave there is a
similar but even shorter wave. This will contribute a
further downwards acceleration —rg”, and so on. At
the crest of the nth wave the effective value of gravity
will be given by

g =(1-ngV=(1-ryg—0 (74)

as n — oo. Hence it seems possible, by superposing an

TABLE 1. Maximum and minimum values of the accelerations.

a/g ai/g an/g

ak A/ce? H/gT? Max Min Max Min max, min
0.1 1.0101 0.0051 0.0833 —-0.1251 0.0989 —-0.0991 +0.1000
0.2 1.0408 0.0105 0.1420 —0.3357 0.1908 —0.1931 +0.2000
0.3 1.0941 0.0166 0.1831 -0.7795 0.2662 —0.2784 +0.2999
0.35 1.1300 0.0200 0.1971 -1.2814 0.2930 —0.3175 +0.3502
0.40 1.1712 0.0237 0.2050 —2.6753 0.3073 —0.3548 +0.4014
0.4432 1.1931 0.0268 0.2032 — o0 0.3011 —0.388 +0.4340
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FIG. 9. Apparent vertical acceleration in a wave of steepness ak = 0.35.

infinite sequence of self-similar progressive waves, to
achieve a real downwards acceleration —g.2

Although the above argument should not be taken
very seriously, it does suggest that unsteady waves, re-
garded as steady waves on which shorter waves are su-
perposed, may achieve higher acceleration at lower
overall steepnesses. Hence they may break at lower
values of the apparent steepness than do steady waves.

Accordingly some interest attaches to the observa-
tion by Ochi and Tsai (1983) that in some random
waves measured by a fixed probe “breaking was im-
minent” when

2 This result appears to support the assumption made by Phillips
(1958). Note that the limit (7.4) is independent of the value of 7,
_ except insofar as when r is greater, then the limit is approached more
rapidly. The requirement that the waves be self-similar can also be
relaxed.

H/gT? = 0.020 (7.5)
where H is the local wave height and T the local wave
period, as observed by a fixed wave probe. From Table
1 it will be seen that this value of H/gT? is equivalent
to a wave steepness ak = 0.35. The corresponding
curves for the apparent and real accelerations are shown
in Figs. 9 and 10. The apparent acceleration (Fig. 9) is
remarkable as being almost exactly constant over half -
the wave period 7, and then smoothly negative over
the rest of the wave, with a minimum —1.27g at the
wave crest. The real acceleration (Fig. 10) shows an
upward acceleration bounded at 0.28¢, and a down-
ward acceleration bounded at —0.32g. In neither case
is there any clear correspondence with the bound of
—0.40g suggested by Srokosz (1986).

In random seas, where many different harmonic
components may be present, the sharp limits presented
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FIG. 10. Real vertical and horizontal accelerations in a wave of steepness ak = 0.35.

here may become blurred. For example, a short ripple
superposed on a longer wave will tend to be carried
past a fixed probe by the orbital motion in the long
wave in such a way that the apparent vertical acceler-
ations become very large, in both the upward and
downward directions. However, the blurring of the up-
ward limits would be less, because in the troughs of
the long waves the steepness of the ripples, or shorter
waves, is very much diminished.

For the real accelerations, the blurring due to high-
frequency ripples would be present also, though gen-
erally less than for the apparent accelerations. Again
we would expect less blurring of the positive limits than
for the negative limits.

In steep waves, the superposition of different fre-
quencies in random phase cannot be justified theoret-
ically, on account of the strong nonlinear interactions
and the presence of bound harmonics. Nevertheless a
histogram of the accelerations may be approximately
gaussian. The presence or absence of a cutoff would
most probably depend upon the form of the frequency
spectrum, and be sensitive to the existence of a high-
frequency “tail”.

A comparison of the accelerations in steep seas as
measured by a fixed probe and by a free-floating buoy
respectively could be interesting.
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sington Zoo.

REFERENCES

Longuet-Higgins, M. S., 1963: The generation of capillary waves by
steep gravity waves. J. Fluid Mech., 16, 138-159.

——, 1975: Integral properties of periodic gravity waves of finite
amplitude. Proc. R. Soc. London, A342, 157-174.

——, 1979a: The trajectories of particles in steep, symmetric gravity
waves. J. Fluid Mech., 94, 497-517.

——, 1979b: Why is a water wave like a grandfather clock? Phys.
Fluids, 22, 1828-1829.

——, 1979c: The almost-highest wave: a simple approximation. J.
Fluid Mech., 94, 269-273.

——, 1984: A new way to calculate steep gravity waves. Proc. [IUCRM
Symp. on Breaking Waves, Tohoku University, Sendai, Japan,
20 pp-

——, 1985a: Bifurcation in gravity waves. J. Fluid Mech., 151, 457-
475.

—, 1985b: Asymptotic behaviour of the coefficients in Stokes’s
series for surface gravity waves. ILM.A. J. Appl. Math., 34, 269-
2717.

——, and M. J. H. Fox, 1977: Theory of the almost-highest wave:
the inner solution. J. Fluid Mech., 80, 721-741.

——, and M. J. H. Fox, 1978: Theory of the almost highest wave.
Part 2. Matching and analytic extension. J. Fluid Mech., 85,
769-786.

Ochi, M. K., and C.-H. Tsai, 1983: Prediction of breaking waves in
deep water. J. Phys. Oceanogr., 13, 2008-2019.

Phillips, O. M., 1958: The equilibrium range in the spectrum of wind
generated waves. J. Fluid Mech., 4, 785-790.

Snyder, R. L., and R. M. Kennedy, 1983: On the formation of
whitecaps by a threshold mechanism. Part 1. Basic formalism.
J. Phys. Oceanogr., 13, 1482-1492.

Srokosz, M. A., 1986: A note on the probability of wave breaking in
deep water. J. Phys. Oceanogr. (in press).

Williams, J.M., 1981: Limiting gravity waves in water of finite depth.
Phil. Trans. R. Soc. London, A302, 139-188.

———, 1985: Near-limiting waves in water of finite depth. Phil. Trans.
Roy. Soc. A, 314, 353-377.



