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Abstract It’s well known that Shor[l] proposed a polynomial time algorithm
for prime factorization by using quantum computers. For a given number n, he gave
an algorithm for finding the order r of an element = (mod n) instead of giving an
algorithm for factoring n directly. The indirect algorithm is feasible because factor-
ization can be reduced to finding the order of an element by using randomization[2].
But a point should be stressed that the order of the number must be even. Actually,
the restriction can be removed in a particular case. In this paper, we show that
factoring RSA modulus (a product of two primes) only needs to find the order of 2,
whether it is even or not.
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1 Introduction

Factoring integers is generally thought to be hard on a classical computer. But it is now hold
that prime factorization can be accomplished in polynomial time on a quantum computer. This
remarkable work is due to Peter W. Shor[1]. For a given number n, he gave a quantum computer
algorithm for finding the order r of an element 2 (mod n) instead of giving a quantum computer
algorithm for factoring n directly. The indirect algorithm is feasible because factorization can
be reduced to finding the order of an element by using randomization[2]. We now briefly give

this reduction.

To find a factor of an odd number n, given a method for computing the order r of x, choose
a random z (mod n), find its order 7, and compute ged(2"/2 — 1,n). The Euclidean algorithm][3]

"/2 _1,n) in polynomial time. Since (z"/2 — 1)(z"/? + 1) =

can be used to compute ged(x
2" — 1 = 0(mod n), the numbers ged(z"/? — 1,n) and ged(z"/2 + 1,n) will be two factor of n.
This procedure fails only if 7 is odd, in which case r/2 is not integral, or if z'/2 = —1(mod n),

in which case the procedure yields the trivial factors 1 and n. Using this criterion, it can be



shown that this procedure, when applied to a random z(mod n), yields a nontrivial factor of n
with probability at least 1 — 1/2F~1, where k is the number of distinct odd prime factors of n.
Refer to [1] for a brief sketch of the proof of this result.

One phenomena might be observed that existing prime factorization algorithms[4, 5, 6, 7, 8,
9] as well as Shor’s quantum algorithm all aim to factor arbitrary numbers. No algorithm pays
more attentions to some numbers of particular structure, for instance, product of two primes.
But those numbers are of great importance in public key cryptography. They are usually called
RSA modulus. In this paper, we give a new algorithm to factor a product of two primes based
on Shor’s quantum algorithm, which takes advantage of the special structure. we show that

factoring RSA modulus only needs to find the order of 2, whether it is even or not.

2  Preliminary

Let N = pq be a product of two odd primes, ®(N) be Euler Totient Function. We know

ON)={p—-1)(¢—1)=pg—p—q+1

and
N—-®N)+1=p+gq

Considering the following equation
2>~ Mz +N=0 ()

where M is undetermined. Hence, we obtain two roots

M+ VM?— 4N M — /M2 — 4N
- 2 ’ 2

x1

If
M=N-&N)+1

then equation (x) can be rewritten as
2 —(p+q)z+pg=0

Therefore,
I | N, T2 ‘ N.
If
M#N—-®(N)+1
then neither z; nor o is an integer (since x1z2 = pq).

The above discussion leads to the following theorem:



Theorem 1 If N = pq is a product of two distinct odd primes, then

M+ VM? — AN
2

| N &= M=N—&(N)+1.

Proof <) It is trivial.

=) Since N = pq is a product of two distinct odd primes and MtV ME—AN ”\2/[2_4]\7 | N, without

loss of generality, we assume that MFVMZ=4AN ”\24L4N = p. Hence M + VM2 — 4N = 2p, M? — 4N =
4p? — 4pM + M?. Therefore, M =p+q= N — ®(N) + 1. a

3 A quantum computer algorithm for factoring RSA modulus

Denote by ordy(2) the order of 2 relative to N, where N is a product of two distinct odd
primes. Obviously,
ordy(2) | ®(N)

Set s :=| , where [z] denotes the integer part of number z. Clearly,

L]
ordy(2)

O(N) < s xordy(2)
Therefore,
®(N) € {ordn(2),2 x ordn(2), -+, (s — 1) x ordn(2),s x ordn(2)}.
It is well known that ®(N) must be kept in secret. How to search for ®(N) in the set
{ordn(2),2 x ordn(2),---, (s — 1) x ordy(2),s x ordn(2)}

In the following, We design a quantum computer algorithm by theorem 1, which takes advantage
of the relation between computing ®(N) and factoring N. The algorithm succeeds to compute

®(N) and factor N synchronously.
A Quantum Algorithm for Factoring RSA Modulus:
(1) input N, compute ordy(2) by using Shor’s quantum algorithm
(2) s [gave)
(3) M — N—-sxordy(2)+1
(4) if M? — 4N is not a square, then s« s—1, goto step (3)

(5) t — MEVM_AN VA242_4N, if t is not an integer, then s« s—1, goto step (3)

(6) output t, N/t.



How much time does this algorithm take? Apart from the time of computing ordx(2) in step
(1), it seems that the running time of the algorithm mainly depends on the number of loops,

i.e., the value of s. In fact, it only depends on the upper bound for 01;4(—1;13[,_(12)' If 0?5:;(12) < k,

where k is an integer, then above algorithm will halt in k£ loops.

As for to verify that whether M? — 4N is a square, easy!

4 Conclusion

In this paper, we take advantage of the particular structure of a product of two primes
to design a quantum computer algorithm for factoring RSA modulus. we show that factoring
RSA modulus does not need to randomly choose number z such that the order of x relative to
modulus N is even. It only needs to find the order of 2 relative to modulus N, whether it is

even or not.
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