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Abstract

Based on the Chinese Remainder Theorem (CRT), Quisquater and Couvreur proposed an
RSA variant, RSA-CRT, to speedup RSA decryption. According to RSA-CRT, Wiener sug-
gested another RSA variant, Rebalanced RSA-CRT, to further speedup RSA-CRT decryption
by shifting decryption cost to encryption cost. However, such an approach will make RSA en-
cryption very time-consuming because the public exponent e in Rebalanced RSA-CRT will be of
the same order of magnitude as φ(N). In this paper we study the following problem: does there
exist any secure variant of Rebalanced RSA-CRT, whose public exponent e is much shorter than
φ(N)? We solve this problem by designing a variant of Rebalanced RSA-CRT with dp and dq
of 198 bits. This variant has the public exponent e = 2511 + 1 such that its encryption is about
3 times faster than that of the original Rebalanced RSA-CRT.

Keywords: RSA, RSA-CRT, CRT, lattice basis reduction, LLL.

1 Introduction

RSA [22], the first proposed public key cryptosystem, is the most widely used public key cryptosys-
tem. It is not only built into several operating systems, like Microsoft, Apple, Sun, and Novell,
but is also used for securing web traffic, e-mail, smart cards or IC cards. Many practical issues
have been considered when implementing RSA, such as how to reduce the storage requirement for
RSA modulus[16][24], how to reduce the encryption time (or signature—verification time)[12], how
to reduce the decryption time (or signature—generation time)[3][24], how to balance the encryption
and decryption time[23], and so on.

The encryption and decryption in RSA require taking heavy exponential multiplications modu-
lus of a large integer N which is the product of two large primes p and q. Without loss of generality,
we assume N is of 1024 bits, and p and q are of 512 bits. In general, the RSA encryption and
decryption time are roughly proportional to the number of bits in public and secret exponents
respectively. To reduce the encryption time (or the signature-verification time), one may wish to
use a small public exponent e. The smallest possible value for e is 3; however, it has been proven
to be insecure against some small public exponent attacks[13]. Therefore, a more widely accepted

∗This version is a revised version of the paper submitted to Eurocrypt’05. Based on the attack proposed by the
reviewers of Eurocrypt’05, we make some modifications on parameters. This work is a transcription of our previous
results in [27].
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and used public exponent is e = 216 + 1 = 65537. On the other hand, to reduce the decryption
time (or the signature-generation time), one may also wish to use a short secret exponent d. How-
ever, the use of short secret exponent encounters a more serious security problem due to some
powerful short secret exponent attacks[26][25][2][11]. For instance Wiener[26] announced an attack
on short secret exponent, called continued fraction attack. He showed that RSA system can be
totally broken if the secret exponent d < 1

3N
0.25. Verheul and Tilborg[25] generalized Wiener’s

attack to the case where one guesses high-order bits of the prime factors. Their attack needs to
do an exhaustive search for about 2t+ 8 bits, where t = log2(d/N

0.25) . Based on the lattice basis
reduction, Boneh and Durfee[2] further proposed a new attack on the use of short secret exponent.
They improved Wiener’s bound up to N0.292, i.e., RSA system can be totally broken if the secret
exponent d < N0.292.

Another well-known technique[21] to reduce the decryption time is to employ the Chinese Re-
mainder Theorem (CRT) for RSA decryption. Using this technique, two half-sized modular expo-
nentiations are required. Let N = pq be an RSA modulus and (e, d) be a pair of public exponent
and secret exponent. The first modular exponentiation gives the result Cp ≡ Cdp (mod p), where
dp ≡ d (mod p − 1); the second gives the result Cq ≡ Cdq (mod q), where dq ≡ d (mod q − 1).
These two results can be easily combined[20] to obtain the final result M ≡ Cd (mod N) by using
CRT. Such an approach, called RSA-CRT, achieves 4 times faster in decryption compared to the
standard RSA system. Based on CRT decryption, Wiener[26] suggested one can further reduce the
decryption time by carefully choosing d, such that both dp ≡ d (mod p−1) and dq ≡ d (mod q−1)
are small. That is, in the key generation phase, one first selects two small CRT-exponents dp and
dq, and then these two CRT-exponents are combined to get the secret exponent d satisfying dp ≡ d
(mod p − 1) and dq ≡ d (mod q − 1) . At last, he computes the corresponding public exponent e
satisfying ed ≡ 1 (mod φ(N)). Such a variant of RSA-CRT, called Rebalanced RSA-CRT[26][1][3],
enables us to rebalance the difficulty of encryption and decryption. In other words, we can speed up
the CRT decryption by shifting the decryption cost to the encryption cost. Note that in Rebalanced
RSA-CRT, both d and e will be of the same order of magnitude as φ(N). The decryption time
depends on the bit-size of dp and dq, while not on the bit-size of d. But the encryption time depends
on the bit-size of e. This will make the encryption for Rebalanced RSA-CRT very time-consuming.
Due to Wiener’s suggestion[26], a raised open problem [26][1][2] is whether there exists any efficient
attack on Rebalanced RSA-CRT. So far, the best known attack [1] on Rebalanced RSA-CRT runs
in time complexity O(min{

p
dp log2 dp,

p
dq log2 dq}) which is exponentially in the bit-size of dp or

dq. Boneh[1][3] suggested to use dp and dq of 160 bits in order to defend against this attack. Under
such parameters, the decryption in Rebalanced RSA-CRT will be about 512160 = 3.2 times faster than
that in RSA-CRT. It is still an open problem whether Rebalanced RSA-CRT using dp and dq of 160
bits is secure. On the other hand, based on the lattice reduction technique, May[19] showed that
there is a decrease in security for Rebalanced RSA-CRT using prime factors p and q of unbalanced
size. As for Rebalanced RSA-CRT with balanced prime factors p and q, May’s attack is not able
to work[19].

According to the key generation in Rebalanced RSA-CRT, if we first select small CRT-exponents
dp and dq, the public exponent e will be of the same bit-size as modulus φ(N). This causes heavy
encryption cost. If we can make the public exponent e much shorter than φ(N), it will be more
convenient and practical in many applications. In this paper, we are interested in studying the
following problem: does there exist any secure variant of Rebalanced RSA-CRT, whose public
exponent e is much shorter than φ(N)? We solve this problem by designing a variant of Rebalanced
RSA-CRT with dp and dq of 198 bits. This variant has the public exponent e = 2511 + 1 such that
its encryption is about 3 times faster than that of the original Rebalanced RSA-CRT.

The remainder of this paper is organized as follows. In Section 2, we briefly review previous
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work, including the basic RSA, RSA with short secret exponent, RSA-CRT, and Rebalanced RSA-
CRT. In Section 3, we review some well-known attacks on RSA variants. In Section 4, we propose
and analyze our Scheme-A, the first Rebalanced RSA-CRT with public exponent e = 2511 + 1.
Finally we conclude this paper in Section 6.

2 Overview of Some RSA Variants

2.1 RSA-Basic, RSA-Short-D, and RSA—CRT

We first review the original RSA and CRT decryption[22]. Depending on different choices for
parameters and different decryption algorithms used, we classify them as RSA-Basic, RSA-Short-
D, and RSA-CRT.

Key Generation in RSA

LetN be the product of two large primes p and q. Let e and d be two integers satisfying ed ≡ 1 (mod
φ(N)), where φ(N) = (p− 1)(q − 1) is the Euler totient function of N . In general, N is called the
RSA modulus, e is the public exponent, and d is the secret exponent.

Encryption in RSA

To encrypt a message (plaintext) M , one computes the corresponding ciphertext C ≡ Me (mod
N).

Decryption in RSA

To decrypt the ciphertext C, the legitimate receiver computes M ≡ Cd (mod N).

In general, d is a positive number which is smaller than φ(N). In fact, the secret exponent which
can used to decrypt is not unique. For instance, we can let d0 = d − φ(N). Thus d0 is negative
and equivalent to d (mod φ(N)). That means we can use d0 as another secret exponent to decrypt.
Indeed,

Cd0 (mod N) ≡Me(d−φ(N)) (mod N) ≡Med
³
Mφ(N)

´−e
(mod N)

≡Med (mod N) ≡M (mod N) =M

In general, we will not use such a secret exponent d0 which is negative, because it is more
time-consuming in decryption due to one more inverse operation required.

CRT Decryption

Based on CRT, Quisquater and Couvreur[21] proposed a fast decryption algorithm, called CRT
decryption. Let dp ≡ d (mod p− 1) and dq ≡ d (mod q − 1). The CRT decryption is as follows:

Step 1. Compute Cp ≡ Cdp (mod p).

Step 2. Compute Cq ≡ Cdq (mod q).

Step 3. Compute M ≡ (Cq − Cp) p
−1 (mod q).

Step 4. Compute M = Cp+Mp.

3



Note that the decrypter can compute p−1 (mod q) in advance. Thus the main cost for CRT
decryption is in Step 1 and Step 2. Therefore, CRT decryption is approximately 4 times faster than
the decryption in standard RSA[18].

Parameters for RSA-Basic, RSA-Short-D, and RSA-CRT

Here we consider three types of RSA system, called RSA-Basic, RSA-Short-D, and RSA-CRT. In
RSA-Basic, one first selects the public exponent e = 216 + 1, and thus the secret exponent d is
about of 1024 bits. If CRT decryption is applied to RSA-Basic, we call it as RSA-CRT. In RSA-
Short-D, one first selects a 512-bit secret exponent, and thus the public exponent is about of 1024
bits. Note that so far RSA can be totally broken if d < N0.292[2], but as mentioned by Boneh and
Durfree[2]the small inverse problem in [2] is very likely to have a unique solution when d < N0.5.
Therefore we choose a 512-bit d in RSA-Short-D for achieving high-level security. All these three
RSA systems will be compared with other RSA variants in Table 2.

2.2 Rebalanced RSA-CRT

Wiener[26] suggested an RSA variant, Rebalanced RSA-CRT, to further speed up decryption by
shifting the work to the encrypter. One version of this variant, which is similar to Boneh and
Shacham’s version[3], is described in the following.

Key Generation in Rebalanced RSA-CRT

Step 1. Randomly select two 512-bit primes p = 2p1+1 and q = 2q1+1 such that gcd(p1, q1) = 1.

Step 2. Compute p−11 (mod q1) satisfying p1p−11 ≡ 1 (mod q1).

Step 3. Randomly select two distinct odd numbers dp and dq of 160 bits such that gcd(dp, p−1) =
1 and gcd(dq, q − 1) = 1.

Step 4. Compute d ≡ (dq − dp)p
−1
1 (mod q1).

Step 5. Compute d = dp + dp1. (Note that gcd(dp, p − 1) = 1 and gcd(dq, q − 1) = 1 imply
gcd(d, (p− 1)(q − 1)) = 1)

Step 6. Compute the public exponent e satisfying ed ≡ 1 (mod (p− 1)(q − 1)).
Step 7. The RSA modulus is N = pq, the secret key is (dp, dq, p, q), and the public key is (N, e).

Encryption

The encryption is the same as the encryption in standard RSA, that is C ≡Me (mod N).

Decryption

Decryption is the same as the CRT decryption for RSA-CRT. The main difference between both
is that in Rebalanced RSA-CRT, the CRT-exponents dp and dq are only of 160 bits which are
much shorter than the CRT-exponents of 512 bits in RSA-CRT. Thus, decryption in Rebalanced
RSA-CRT is about 512160 = 3.2 times faster than that in RSA-CRT.
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3 Related Attacks on RSA Variants

3.1 Short Secret Exponent Attacks

We present some short secret exponent attacks, including Wiener’s continued fraction attack [26],
and some lattice attacks against on RSA [2][11].

Theorem 3.1[26] In RSA system, let N = pq be an RSA modulus and (e, d) be a pair of public
exponent and secret exponent satisfying ed = kφ(N) + 1 for some integer k. Let | eN −

k
d | = κ. If

κ < 1
2d2
, then we can efficiently recover d.

The proof of Theorem 3.1 is shown in Appendix A.1. Note that Wiener’s attack can still work
when k and d are negative. From this theorem we know if both e

N and k
d are close enough, then we

can obtain the value d from one of the values of the continued fraction expansion of e
N . Wiener[26]

showed the sufficient condition of κ < 1
2d2

is d < 1
3N

0.25. Besides, the extension of Wiener attack
was proposed by Verheul and Tilborg[25]. When d > N0.25, their attack needs to do an exhaustive
search for about 2t+ 8 bits, where t ≈ log2( d

N0.25 ). Here we omit reviewing this extension.

Theorem 3.2[2] In RSA system, let N = pq be an RSA modulus and (e, d) be a pair of pub-
lic exponent and secret exponent satisfying ed = kφ(N) + 1 for some integer k. Let |e| = Nα and
|d| < Nγ for some α and γ. If γ < 7

6 −
1
3(1 + 6α)

1/2, then we can heuristically factor the RSA
modulus N .

The proof of Theorem 3.2 is shown in Appendix A.2. Note that the public exponent and secret
exponent in the above theorem may be negative though Boneh and Durfee did not explicitly mention
in their paper. Besides, Durfee and Nguyen[11] generalized Boneh-Durfee attack to the case when
the difference between the primes p and q is large. They showed that the more unbalanced the
prime factors are, the more insecure the RSA system is. As for the case when p and q are balanced,
their attack works up to the same bound as the Durfee-Nguyen attack[2]. We omit describing their
attack here.

3.2 Attacks on Rebalanced RSA-CRT

May’s Lattice Attack on Rebalanced RSA-CRT with Unbalanced p and q

Theorem 3.3[19] In RSA system, let N = pq be an RSA modulus and (e, d) be a pair of pub-
lic exponent and secret exponent satisfying ed ≡ 1 (mod φ(N)) and dp ≡ d (mod p − 1). Let
p < Nβ and dp ≤ N δ for some integers β and δ. If these parameters satisfy the following condition:
3β − β2 + 2δ < 1, then there is an algorithm to factor N in time complexity O(log2N).

Note that May’s attack[19] is only suitable for the case when p and q are unbalanced. In this
paper, we omit reviewing his work because we focus on the case when p and q are balanced.

Boneh’s Factoring Attack on Rebalanced RSA-CRT

Here we review Boneh’s[1] factoring attack on Rebalanced RSA-CRT in the following.

Theorem 3.4[1] In RSA system, let (N, e) be the public key with N = pq. Let d be the cor-
responding secret exponent satisfying dp ≡ d (mod p − 1) and dq ≡ d (mod q − 1) with dp < dq.
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Then given (N, e), an adversary can expose the secret exponent d in time complexityO(
p
dp log2 dp).

The proof of Theorem 3.4 is shown in Appendix A.3. For current security level, we suppose 280

is a safe complexity which makes an exhaustive search infeasible. Therefore, in order to achieve 280

complexity for O(
p
dp log2 dp), we need use dp and dq of 160 bits.

3.3 Partial Key Exposure Attacks

Boneh, Durfee, and Frankel[4] showed that for low public exponent RSA, given a fraction of the
secret exponent bits, an adversary can recover the entire secret exponent. This kind of attack is
called the partial key exposure attack. Here we focus only on those attacks for the most significant
bits (MSBs) known. Note that all these partial key exposure attacks can still work when d is
negative. The secret exponent d in Scheme-A is about of 832 bits. Such a secret exponent d can
be regarded as exposing the 192 MSBs of a 1024-bit d (all the 192 MSBs are zero).

Theorem 3.5[4] In RSA system, let N = pq be a 1024-bit RSA modulus and (e, d) be a pair
of public exponent and secret exponent satisfying ed ≡ 1 (mod φ(N)).

1. Suppose e ∈ [2t, ..., 2t+1] is the product of at most r distinct primes with 256 ≤ t ≤ 512.
Then given the factorization of e and the t MSBs of d, there is an algorithm to compute all
of d in time complexity O(2r log2N ). (We refer the reader to the area BDF2 in Appendix
A.4-Fig.1. )

2. When the factorization of e is unknown, e is in the range [2t, ..., 2t+1] with t ∈ 0, ..., 512, and
d > �N for some � > 0. Then given the 1024− t MSBs of d, there is an algorithm to compute
all of d in time complexity O(1� log2N). (We refer the reader to the area BDF1 in Appendix
A.4-Fig. 1. )

In Appendix A.4-Fig. 1, we illustrate Boneh et al.’s results for MSBs of d. Among them, the
area BDF3 was suggested by Blömer and May[7] which can be easily derived from the method in
[5]. The idea is that the upper logN e bits of d immediately yield half of the MSBs of d and the
attacker can use the remaining quarter of bits to factor N .

Based on the above theorem, we know that if e is a 512-bit number of r distinct prime factors,
then given the 512 MSBs of a 1024-bit d, an adversary can recover the entire d in time complexity
O(2r log2N ). On the other hand, Blömer and May[7] proposed further result about the partial
key exposure attack for MSBs of d. Their result works for public exponent e in the interval [N0.5,
N0.725] (We refer the reader to the area BM in Appendix A.4-Fig. 1.). We omit reviewing it because
our public exponent e is of 512 bits and 432 bits in Scheme-A and Scheme-AI respectively.

Blömer and May[7] also presented a partial key exposure attack for MSBs of CRT-exponent
dp. Their result works for public exponent e < N0.25. We refer the reader to Appendix A.4-Fig. 2
instead of reviewing it.

4 The Proposed Scheme-A for Rebalanced RSA-CRT with Short
Public Exponent

In this section, we propose a variant of Rebalanced RSA-CRT, called Scheme-A. Scheme-A pro-
duces a 512-bit public exponent, e.g., e = 2511 + 1, two 160-bit CRT-exponents dp, dq and a RSA

6



modulus N = pq, where p and q are about of 512 bits. The encryption time is therefore reduced to
about one-third of the time required by Rebalanced RSA-CRT. In the following, we first introduce
a fundamental theorem in number theory[20] as the basis of our construction.

Theorem 4.1[20] If a and b are relatively prime, i.e. gcd(a, b) = 1, then we can find a unique pair
(uh, vh) satisfying auh− bvh = 1, where (h− 1)b < uh < hb and (h− 1)a < vh < ha, for any integer
h ≥ 1.

4.1 The Proposed Scheme-A

The key generation in the proposed Scheme-A is as follows:

Key Generation in Scheme-A

Step 1. Randomly select an odd number e of 512 bits.

Step 2. Randomly select an odd number x of 198 bits, such that gcd(x, e) = 1.

Step 3. Based on Theorem 4.1, we can uniquely determine two numbers dp, x < dp < 2x, and
p0, e < p0 < 2e, satisfying edp − xp0 = 1.

Step 4. If p = p0 + 1 is not a prime number, then go to Step 2.

Step 5. Randomly select an odd number y of 198 bits, such that gcd(y, e) = 1.

Step 6. Based on Theorem 4.1, we can uniquely determine two numbers dq, y < dq < 2y, and
q0, e < q0 < 2e, satisfying edq − yq0 = 1.

Step 7. If q = q0 + 1 is not a prime number, then go to Step 5.

Step 8. The public key is (N, e); the secret key is (dp, dq, p, q).

Note that from Step 3 and Step 6, we know that edp = x(p − 1) + 1 and edq = y(q − 1) + 1,
hence, gcd(e, φ(N)) = 1. Further we multiply these two equations, and hence obtain the following
equation:

(edp − 1)(edq − 1) = x(p− 1)y(q − 1)
⇒ e2dpdq − edp − edq + 1 = xy(p− 1)(q − 1)
⇒ e(−edpdq + dp + dq) = −xy(p− 1)(q − 1) + 1

Let d = −edpdq+dp+dq and k = −xy. Thus e and d satisfy ed = kφ(N)+1. Note that both d
and k are negative, but this will not affect encryption and decryption. In fact, we can rewrite the
above RSA equation “ed = kφ(N) + 1” to “e(d+ φ(N)) = (k + e)φ(N) + 1 ” by adding eφ(N) to
both sides. Therefore an equivalent secret exponent is d0 = d+φ(N), which is of the same order of
magnitude as φ(N). Such a secret exponent d0 looks like an ordinary secret exponent in standard
RSA.

In the following, we show that d (mod p−1) is exactly equal to dp ; and d (mod q−1) is exactly
equal to dq.

Because edp = x(p− 1) + 1 and edq = y(q − 1) + 1, we get

d (mod p− 1) ≡ −edpdq + dp + dq (mod p− 1)
≡ −[x(p− 1) + 1]dq + dp + dq (mod p− 1) ≡ dp; and

d (mod q − 1) ≡ −edpdq + dp + dq (mod q − 1)
≡ −[y(q − 1) + 1]dp + dp + dq (mod q − 1) ≡ dq.
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Special Public Exponent

In Scheme-A, the public exponent e is of 512 bits. Therefore, 768 modular multiplications are
required for encryption. Instead of selecting a random e, we can select a special public exponent
e = 2511 + 1. Thus only 512 modular multiplications are required for encryption. Compared to
a 1024-bit public exponent, which can not be arbitrarily selected, in Rebalanced RSA-CRT, the
encryption in Scheme-A is about 3 times faster than that in Rebalanced RSA-CRT. As an example,
we generate an instance for Scheme-A in Appendix B.

4.2 The Expected Number of Iterations for Loop: Step 2 to Step 4 in Scheme-A

In Scheme-A there are two loops running from Step 2 to Step 4 and from Step 5 to Step 7 respec-
tively. Here we want to show the expected number of iterations for these two loops. Because these
two loops work very similarly, we only evaluate the first loop running from Step 2 to Step 4. This
problem is almost equivalent to "how many random numbers of 512 bits or 513 bits are required
to test in order to find a prime?". We show the expected value is 361 in Appendix C.

4.3 Security Analysis for Scheme-A

Defending against Attacks on Short Secret Exponent

First we consider Wiener’s continued fraction attack. In our Scheme-A, the RSA modulus N is
of 1024 bits, the public exponent e is of 512 bits, the secret exponent d is of 908 bits, and the
parameter k is of 396 bits. Note that both d and k are negative. We list the intervals of these
parameters as follows:

2511 ≤ p, q < 2512, 2511 ≤ e < 2512,−2908 < d ≤ −2907,−2396 ≤ k < −2395

Following Wiener’s continued fraction attack[26], we get:

| e
N
− k

d
| = |ed−Nk

Nd
| = |k

d
× −p− q + 1 + 1/k

N
| > |k

d

p

N
| = k

d

1

q

>
1

2511
1

2512
>>

1

2d2
≈ 1

2× (2907)2

Since | eN −
k
d | >>

1
2d2
, we know Wiener’s attack can not be applied to Scheme-A.

Secondly, we consider the Boneh-Durfee attack[2]. From the parameters constructed by Scheme-
A, we can get α ≈ 0.5 and γ ≈ 908

1024 , where α and γ satisfy |e| = Nα and |d| < Nγ respectively. It
is clear that γ ≈ 908

1024 >
7
6 −

1
3(1 + 6α)

1/2 ≈ 1
2 . So, the Boneh-Durfee attack cannot succeed.

Defending against Another Lattice Attack

Here we consider another lattice-based attack which was suggested by reviewers from Eurocrypt’
05. Because edp = kp(p− 1) + 1 and edq = kq(q − 1) + 1, we can obtain the following two modular
equations:

(1). kp · p ≡ kp − 1 (mod e)
(2). kq · q ≡ kq − 1 (mod e)
Combine (1) and (2), we can obtain the following equation with two unknown variables kpkq

and kp + kq:
(3). kpkq(N − 1) ≡ −(kp + kq) + 1 (mod e)
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According to Coppersmith’s technique[8] of finding the small root of a modular equation[9], the
sufficient condition to solve the equation (3) is |kpkq| · |kp+kq| < e. Obviously the proposed scheme
makes |kpkq| · |kp + kq| ≈ 2396 · 2199 = 2595 >> 2512 ≈ e. It has 83 bits more than 512-bit public
exponent. Thus our scheme has 283 complexity to defend exclusive search upon this boundary
condition. Note that if kp and kq are known, then one can compute p = k−1p (kp − 1) (mod e) and
q = k−1q (kq − 1) (mod e) from equations (1) and (2). Since the length of e is 512-bit, which is
longer than p and q, one can get p and q immediately. Therefore we should keep the privacy of
information kp and kq in the proposed scheme.

Defending against Partial Key Exposure Attacks

First we consider the partial key exposure attacks for MSBs of secret exponent d[4][7]. The insecure
areas of these attacks are shown in Appendix A.4-Fig. 1. Scheme-A has e of 512 bits and d of
908 bits. Such a d can be regarded as exposing the 116 MSBs of a 1024-bit d (all the 116 MSBs
are zero). Therefore, our Scheme-A achieves the point (0.5, 0.1) which is secure against these
attacks. Secondly, we consider the partial key exposure attack for MSBs of CRT-exponent dp[7].
The insecure area of this attack is shown in Appendix A.4-Fig. 2. Scheme-A has e of 512 bits
and dp of 198 bits. Such a dp can be regarded as exposing the 314 MSBs of a 512-bit dp (all the
314 MSBs are zero). Note that the fraction for exposure is measured by a denominator 1024. Our
Scheme-A achieves the point (0.5, 0.3) which is secure against this attack.

4.4 More Security Considerations for Rebalanced RSA-CRT and Scheme-A

In this section, we will examine the difference between our Scheme-A and the original Rebalanced
RSA-CRT from the view of security. Further we will consider the security of these two RSA variants
by examining if the additional leaked information in these variants is helpful for an adversary to
break these two. Recall that Scheme-A has a secret exponent: d = −edpdq + dp + dq, where e is of
512 bits, dp and dq are of 198 bits, and d is about of 908 bits. Thus d (mod e) ≡ dp + dq is about
of 199 bits. This is obviously different from standard RSA of which d (mod e) is the size of order
e. Considering the original Rebalance RSA-CRT, we say its secret exponent d is computed from dp
and dq by using CRT. Such a reconstructed d will make d (mod e) be the size of order e. Therefore
it seems revealing no more available information on d (mod e) than that in standard RSA. In the
following we show that in fact, for the original Rebalanced RSA-CRT, there exists another secret
exponent, d0 ≡ −edpdq + dp+ dq, which could reveal available information on d0 (mod e) as that in
our Scheme-A.

Theorem 4.2 In the original Rebalanced RSA-CRT, the public key is (N, e) and the secret key is
(dp, dq, p, q). Let d0 = −edpdq+dp+dq, then d0 can be used as another secret exponent to decryption.

Proof: Based on the key generation in Rebalanced RSA-CRT, we know that the reconstructed
secret exponent d satisfies dp ≡ d (mod p− 1), dq ≡ d (mod q − 1), and ed ≡ 1 (mod φ(N)). Thus
there exists two numbers kp and kq such that edp = kp(p− 1) + 1 and edq = kq(q − 1) + 1. Similar
to Scheme-A, we know e(−edpdq + dp + dq) = −kpkq(p− 1)(q − 1) + 1. Let d0 = −edpdq + dp + dq.
Therefore ed0 ≡ 1 (mod φ(N)).

Note that here e is of 1024 bits, dp and dq are of 160 bits, and hence d0 is about of 1344 bits and
d0 (mod e) ≡ dp + dq is about of 160 bits. Now we want to measure the amount of information on
d and d0 in our Scheme-A and the original Rebalanced RSA-CRT respectively. For our Scheme-A,
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Table 1: Comparisons of various RSA variants in terms of encryption and decryption.
RSA-Basic RSA-Short-D RSA-CRT

Rebalanced
RSA-CRT

Our Scheme

Public Exponent 216+1 1024 bits 216+1 1024 bits 2511+1

Num of Multiplication 16+1 1024×1.5 16+1 1024×1.5 511+1

in Encryption =17 =1536 =17 =1536 =512

Unit Time for Encryption 0.011 1 0.011 1 0.333

Secret Exponent 1024 bits 512 bits - - -

CRT-Exponent - - 512 bits 160 bits 198 bits

Num of Multiplication
in Decryption
(Modular Size)

1024×1.5
=1536
(1024 bits)

512×1.5
=768
(1024 bits)

2×512×1.5
+2=1538

(512 bits)

2×160×1.5
+2=482
(512 bits)

2×198×1.5
+2=596
(512 bits)

Num of Operations
in Decryption

3
2× log2d×( log2N)2 2×3

2 × log2 dp × (
log2N
2 )2=

3
4
log2 dp×(log2N)2

Unit Time for Decryption 1 0.5 0.25 0.078125 0.0966

we can write d = Ae + B, where A is about of 396 bits and B is about of 198 bits. This means
the uncertainty for d is 592 bits. For the original Rebalanced RSA-CRT, similarly we can write d0

= Ae+B, where A is about of 320 bits and B is about of 160 bits. Thus the uncertainty for d0 in
the original Rebalanced RSA is 480 bits.

Now we further consider if the above property in Scheme-A will lead to insecurity. More
precisely, with the help of d = Ae+B, where e is of 512 bits, d is about of 908 bits, A is about of
396 bits and B is about of 198 bits, whether could those existing attacks on RSA variants become
workable for Scheme-A? And whether does there exist any new efficient attack? To the best of our
knowledge, the answer for the first question is negative. For Wiener’s attack, this property can not
further improve Wiener’s bound because the convergent condition for continued fraction remains
unchanged. For the Boneh-Durfee Attack, no obvious information from this property is available
to help solve the small inverse problem. As for the partial key exposure attacks for MSBs, we can
not obtain a good approximation of d by this property. So far, it is still an open problem if there
exists any new efficient attack on Rebalance RSA-CRT and/or our variants.

5 Implementations and Comparisons

In order to demonstrate our key generation algorithm in the proposed scheme-A is actually feasible,
we implemented our algorithm and measured the average running time. The machine used for our
implementations is a personal computer (PC) with 1.72 GHz CPU and 512 MB DRAM. The
programming language we used is C under NTL with GMP on Windows system using Cygwin
tools. We have experimented 1000 samples for the proposed scheme. The average key-generation-
time is 9 ms (milliseconds). The average number of iterations for loops running from Step 2 to
Step 4 is 352.

Table 1 summarizes the parameters used in various RSA variants and gives comparisons of
these RSA variants in terms of encryption and decryption. We recall that the number of binary
operations to compute Za (mod b) is 1.5× log2 a · (log2 b)2. If a is the special form of 2m +1, then
the number of binary operations will be reduced to (m+ 1) · (log2 b)2[10]. In addition, we assume
that a full modular exponentiation, Za (mod b), where both a and b are of 1024 bits, takes one unit
time to compute. It is clear that the encryption in Scheme-A is about 3 times faster than that in
Rebalanced RSA-CRT.
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6 Conclusions

This paper presents a variant of Rebalanced RSA-CRT to further reduce the encryption cost. We
do not only shorten the public exponent in Rebalanced RSA-CRT from 1024 bits down to 512 bits,
but also make the public exponent to be of the special form of 2m + 1 where m = 511. Scheme-A
produces a 512-bit public exponent, e.g., e = 2511+1, two 198-bit CRT-exponents dp, dq and a RSA
modulus N = pq, where p and q are about of 512 bits. The encryption time is therefore reduced to
about one-third of the time required by Rebalanced RSA-CRT.

Considering practical applications, most systems or softwares that are built for standard RSA
accept such keys generated by our two variants. An exception is MicrosoftC Internet ExplorerR

(IE) which accepts a maximum of 32 bits for public exponent. Therefore our RSA variants can be
widely applied to several systems and softwares.
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Appendix A

(Omitted)

Appendix B: An example of Scheme-A with e = 2511 + 1, dp and dq of 198 bits, p and q
of 512 bits.

N = 47888A59 8E2424D4 A2028A18 0FD1E48F 8768E4D9 904E9DC6 7D06B001

673C503E BE99846A 39B008E2 78575949 671651C7 D69072E0 845526FB

F6E300D2 96624A1E BAF1A05B FD326D08 C1CE200C 77C0E48F 26BDBB3F

FD191E99 80402EBA 5BABE134 1B66DDC7 87FDE72E 438EE6BC C99CEDFF

47488893 B3810881 22AA6E3C 31FB5915

p = 8AF105A8 85F84D30 16ED6D69 E1DA359F 09BDA979 6CDA651E DBCC4F52

994A8EB4 A70BED4B 3E3E0383 D73AF9B5 444919D1 7F00C09D F0765B4C

A1884148 3686F81B

q = 83CCE530 49C698ED 36032BBF B0F21A34 70B9608C 50BCB458 CE53F6C0

3E50BE33 16D59EA5 A77FA305 DBD2D6DE E99D5A78 11BA28D1 7E49C682

B6B8D086 34F4668F

dp = 3B 511D01FC 82437878 BB60BF77 47B30EC5 0CF65340 573A7503

dq = 27 0345E74F DC319B67 4DC6FD9A 7EDF33EA 0F6BB29B 434801FF

e =2511+1

Appendix C

(Omitted)
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