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" ABSTRACT

Perturbation analysis based on small « = Ra®?*F,%° where Ra is the Rayleigh number and F,, is the Froude
number, is used to study steady-state circulation and salinity distribution in estuaries. The classical Hansen
and Rattray’s similarity solution is obtained for the special case of linear variation of longitudinal dispersion
coefficient Ky, in a channel of constant width B and depth D. It is argued that K, B and D must vary in
real estuaries in such a way that the general solution is regular throughout the length of the estuary and shows
a salinity structure which resembles that observed in a real estuary.

It is shown that Hansen and Rattray’s theory for predicting the importance of upstream salt transport due
to the vertical gravitational circulation in estuaries is valid to a good degree of approximation for arbitrary
longitudinal variations in width, depth, fresh water discharge, wind stress and various dispersion and mixing
coefficients. This finding is checked against available observations in the Mersey estuary, in the channel of Rio
Guayas and in the Hudson River. It is also checked against a real-time three-dimensional numerical model’s
results of New York Harbor.

Finally, Pritchard’s classification of estuaries in terms of their principal tidally-averaged advective and diffusive
processes is translated on the Hansen~Rattray circulation-stratification diagram. The diagram shows the relative
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importance of various terms in the salt balance equation.

1. Introduction

The three-dimensional, tidally averaged salt balance
equation is

uS, + 18, + wS; = (€:Su)x + (€25,), + (€35,);, (1.1)

where X, y, z is a set of right-handed Cartesian axes
with the origin on the surface at the landward side of
the estuary; x is positive seaward, z positive downward;
u, v and w are the fluid velocities in x, y and z directions;
S is the salinity in parts per thousand (%), e,, e and
e; are mixing coefficients for S.

Pritchard (1955) has classified estuaries into four
different types according to their principal tidally-av-
eraged advective and diffusive processes. The type A
estuaries are laterally homogeneous and highly strat-
ified. They are produced by a combination of small
tidal action and strong fresh water discharge Q. Prit-
chard showed that (1.1) is then approximated by

uSy + wS; =0, (1.2)

and the dominant mechanism at work in this type of
estuary is therefore purely advective.

In type B estuaries, the tidal action is sufficiently
strong in relation to Qr and the sharp fresh water-
saline water interface which occurs in type A estuaries
breaks down. Vertical turbulent diffusion is important
and the salinity varies continuously with depth, al-
though the top to bottom salinity difference can still
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be large, of the order of 10%. at high discharges. Eq.
(1.1) is then approximated by

uS, + ws; = (&35;),. (1.3)

When the tidal action becomes so strong in relation
to Qs that there is negligible vertical salinity gradient
the downstream advective flux becomes balanced by
an upstream dispersive flux and (1.1) can be approx-
imated by

uS, + wS: = (e;Sx),. (1.4)

Pritchard called this a type D estuary. One can think
of type B and type D estuaries as being subclasses of
a more general class of estuaries in which both vertical
turbulent diffusion and longitudinal dispersion are im-
portant. More precisely, I shall assume an elongated
estuary and width-average (1.1) to obtain

B(uSx + wS;) = (BKySx)x + (BK,S:):, (1.5)

where B(x) = width of estuary at x, K,, K, = vertical
and longitudinal dispersion coefficients for S and u,
w and S are now interpreted as width-averaged quan-
tities. We can interpret K, as a turbulent diffusion
coefficient. The longitudinal dispersion coefficient K},
however, is due to a combination of turbulent diffusion,
transverse shear and temporal shear dispersions.
Fischer (1972) has shown that the transverse shear
dispersion can be important in many estuaries. He
calculated that the transverse variation of the velocity
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profile, induced by a combination of transverse vari-
ation of bottom topography and longitudinal pressure
gradient (density difference plus water slope), gives a
transverse dispersion coefficient

2
K ~ o.oz(D3 f Z—;B/32e3) e, (16)

where D is the depth, p the density and g = 9.81 m
s~2. Thus the combination of vertical turbulent dif-
fusion and mean transverse shear is very effective in
generating longitudinal dispersion because the width
of an estuary is usually large. Other mechanisms which
can be important in longitudinal dispersion of salt in
an estuary includes tidal “pumping” and “trapping”
(Fischer, 1976).

All these facts suggest that I should consider (1.5)
rather than (1.4) and (1.3) separately. Clearly, whether
a mechanism is important relative to other mechanisms
can only be decided by a proper scaling and nondi-
mensionalization of (1.5). This I shall do in Section
2. The question I shall address is “what parameters
determine whether an estuary is of type A, B or D?”
This problem is similar in spirit to Hansen and Rat-
tray’s (1965, 1966) classification of estuaries. Instead
of obtaining specific solutions as in their works I shall
base my arguments purely on scalings and nondi-
mensionalizations.

It is conceivable that a certain transition zone be-
tween the type B and type D estuaries exists within
which the estuary is “weakly” stratified. I shall define
precisely what “weakly” means in Section 3. I shall
also obtain perturbation solution around this weakly
stratified state and show that many estuaries. can be
classified as weakly stratified. These estuaries include
the James, Potomac and Hudson Rivers in America,
and the Mersey Narrows in England.

Hansen and Rattray use the nondimensional top to
bottom salinity difference 6S/Sy and the ratio of net
surface velocity to fresh water discharge velocity u/
Uz to classify estuaries where in this section S is taken
as the cross-sectionally averaged salinity at x. They
found that u,/uy, varies like F,, %, where F,, = uso/
(8ApDy/po)'"?, Dy is depth, po density of fresh water,
and Ap is the density difference between fresh and
ocean water; they also found that 6S/S, varies with
both F,, and a mixing parameter P = uso/ur, where
uris the tidal rms velocity. Fischer (1976) finds however
that if an estuarine Richardson number Riz = gApQ,/
pBuy® is used instead of P, §S/S, depends primarily
on Riz. From my perturbation solution, I have found
that .

8S/So ~ Rig'*F,,'"'" + hot, (1.7a)

u/uro ~ Rig"/°F,, 2 + hot, (1.7b)

where hot denotes higher order term. Both expressions
agree with Hansen and Rattray, and Fischers’ conclu-
sions that 65/, is insensitive to F,, and u; is insensitive
to Riz. They are more realistic in that the dependencies
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on both Rig and F,, are explicitly displayed: an increase
in fresh water discharge and/or a decrease in tidal action
must increase the stratification which drives a stronger
gravitational circulation and results in larger surface
velocity until a new equilibrium state is established.
Eq. (1.7a) shows that the seaward-landward density
difference will always induce a vertical stratification
and from (1.7b), is always required to drive a gravi-
tational circulation. Thus a gravitational circulation
cannot exist in a strictly vertically homogeneous es-
tuary.

The perturbation expansion approach allows one to
study estuaries of arbitrary variations in depth, width,
fresh water discharge and mixing coefficients rather
than specific variations considered by Hansen and
Rattray in their similarity solution methods. When the
depth (and/or width and/or the mixing coefficients)
increases seaward at a sufficiently fast rate I have found
it possible to construct solutions which vary contin-
uously from the upstream limit of the salinity intrusion
to the seaward ocean boundary. It is not necessary,
therefore, to separate the estuary into an inner, a mid-
dle, and an outer region.

Hansen and Rattray assumed a linear longitudinal
salinity distribution and a rectangular channel to obtain
equations which relate u;/uso, 65/S, and » (Fig. 1),
where (1 — ») is the fraction of upstream salt transport
by the vertical gravitational circulation. I have shown
that their equations are valid, to a good degree of ac-
curacy, to estuaries of arbitrary longitudinal variations
in width, depth, fresh water discharge, wind stress and
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FiG. 1. Hansen-Rattray stratification~circulation diagram. Given
5S/S, and u,/us from observations one can predict the fraction » of
upstream salt transport by longitudinal dispersion in an estuary. This
relation between » and 56S/S, and u,/u, is shown in the text to be
independent of longitudinal variations in cross section of the estuary,
fresh water discharge rate and the dispersion and mixing coefficients.
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various dispersion and mixing coefficients. From ob-
served u,/uso and 85/S,, one can therefore apply the
stratification~circulation diagram with confidence and
expect good prediction of v.

In Section 4, I shall compare the theory with ob-
servations in the Mersey, in the channel of the Rio
Guayas and in the Hudson River.

In Section 5, I shall compare the theory with a two-
dimensional (xz — ) model’s results in the Hudson
River and a three dimensional (xyz — 1) model’s results
in New York Harbor. I find to my surprise that the
integration time it takes for an estuary to reach an
equilibrium state depends very much on its initial state.
For an estuary of length of about 250 km, a “bad”
initial state can require as many as one hundred days
before equilibrium. A “good” initial state is one for
which the salinity distribution has an intrusion length
which is less than the actual expected (or observed)
salt intrusion length.

For the sake of completeness I should mention the
type C estuary defined by Pritchard to be one which
is homogeneous vertically but is so wide that the cen-
trifugal and/or the Coriolis forces become important
and there is a significant salinity difference across its
width. We have found in one of our simulations of
New York Harbor that this situation occurs at the
mouth of the harbor during low discharge (Oey and
Mellor, 1983). I shall not consider this type of estuary
in this paper.

2. Scaling the governing equations

Consider the following governing equations:

Py
B(uu, + wu,) + B 7 = (BAyuz):, (2.1a)

o 8 (2.1v)

(Bu), + (Bw), = 0, (2.1¢)

B(uS, + wS,) = (BK,,S,)« + (BK,S,);, (2.1d)
p = po(1 + «S), (2.1e)

where

D  Dpressure

p  density of water )

A, turbulent mixing coeflicients for momentum;
po density of fresh water

g (=981 ms™?

Kk (=7.5 X 107%,

and 1 have repeated (1.5) in (2.1d) for convenience.

In what follows, I shall assume that the width and the

various mixing coefficients are functions of x only.
Define a stream function ¢ such that

Bw=1y,, Bu= —y,;

eliminate p and p in the above system of equations
and obtain
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dInB
'pzwzzx - 2‘1’2\022 —E— - tpx"pzzz
+ Bzngx + B(AW::).. =0, (2.2a)
#’sz - \Psz + (Bkth)x + (BKsz)z = 0, (2~2b)
The boundary conditions are
atz = 0:
¥ = R(x)
A.,(f—z) = 7.4X) (2.3a)
B/, ’ .
S,=0
at z = D(x). .
¥=0
dap
¥ ’zd; -y, =01, (2.3b)
dD
K, x 3. T Kv z =
Y . S, =0 |
at x = 0:
—¥. = UyBy
s (2.3¢)
S = So
at x = Li:
S = SL,', (23d)

where R(x) is the fresh water discharge, D(x) the depth
of the estuary and 7.(x) the surface (kinematic) wind
stress. I shall consider Li to be the salinity intrusion
length rather than the physical length L of the estuary.
This is important because the dynamics of the density
induced flow is determined by 4S/dx, which depends
on Li, but not on L. The determination of Li is part
of the problem. The boundary conditions at x = 0
and x = Li should be considered as being tentative.
Due to the approximate nature of my solutions part
of these boundary conditions may have to be discarded.

Guided by the works of Hansen and Rattray (1965)
and Fischer (1972) I define the following nondimen-
sional variables:

& = YF¥ Ra‘/R,,

S = §/AS,
D B R
Fp=—, Fg=—, Fr=—, = F, P2,
2= Dy 5T TRTR F=Enbo
A" Kh v Avo
F=—’ F=—9 Fu=—, Pr ==,
A w0 h 40 Kvo 0 Kuo
z X
Z=-, X=—,
d Ly
2j
d=F2iRam’L0=(Kh0/uf0)‘ﬁ_T, 2.4)
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where Dy, By, Ax, Kr and K,y are some reference
values of the corresponding variables, Ry is the volume
rate of fresh water discharge at x = 0, AS is the salinity
difference between fresh water and ocean water, Ra is
the estuarine Rayleigh number Ra = gkASD*/ A0 Kyo,
and i, j, m, n, p and q are fixed dimensionless param-
eters to be defined later. Eq. (2.2) is transformed into:

P,0—1F2(1_2p+3i_j) Ra3m+n-—2q

' dIn(FpF
X [‘I’Z‘I’zzx - 20,9, _—S‘,}D—B) — <I’X‘I’zzz]
. 1
+FY Ra”FD3FBZ[SX _ 75,2 nFD]
dx
. F,F
+ F8-2 Ra“’”“’( ; ”)«pzzzz =0, (2.52)
D

FD—IFZ(l—p+i—j) Ram+n—q[SZ¢X —_ (I)ZSX] _ F2—4j

d
X Razn—l{(SX ~ ZS, —{dn%)(FBFh)X + (FpFy)
d InFp\’
X [Sxx + Z(Sz + ZSZZ)( dI;(F D)

,

d* InFp mpai FaF)
=282~ ]}— Ra’"F* (—;DTV)SZZ =0, (2.5b)

where for convenience I have omitted the over-bar in
S. The solution to (2.1) therefore depends on three
dimensionless parameters Ra, Fand P,o. Here Ra can
be written as

GGG
Ra =) (== ===5) .,
U, Avo Kho Fm

where u, is the friction velocity [=(Jwall shear stress|
/po)'/?], and is therefore related to the dimensionless
parameters ur/u,, Rig, F,, and Dyu,/A, used by
Fischer (1972, 1976). In addition, the dimensionless
parameter (Dyu,/Kyo) is introduced. While Dy, /A0
is nearly constant (=~0.07) Dou, /K, depends on phys-
ical factors such as irregular coastline and bottom ge-
ometry and unsteady winds and its value-varies from
one estuary to another (see Fischer 1973, Table 2, in
which the dispersion coeflicient “D” includes the steady

vertical circulation contribution which is omitted from .

my K3o). Henceforth, I shall assume that P, is of order
one and therefore ignore it completely from any scaling
considerations. I shall now choose the six parameters
i, j, m, n, p and g so that all the derivatives in (2.5)
are of order one.

From Pritchard’s works (1952, 1954) it is reasonable
to assume a balance between the vertical turbulent
diffusion term and horizontal salinity gradient term
in (2.5a) since it is this balance which gives rise to the
density-driven flow structure. Thus

4i—p=-—J

4m — q = n.

(2.6a)
(2.6b)
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The length L, is now chosen so that it gives a measure
of the salinity intrusion length. For this I resorted to
the data given in Quirk ez al. (1971) for the Hudson
river. | have plotted the salinity intrusion length versus
(AS)°3%(Qy0)°? in Fig. 2. The fit is fairly good. This
gives

j=04, n=0.25. (2.7a)

The intrusion length varies more with Oy, than it is
with AS. The values of AS given in Quirk ef al. range
from 19 to 29% and I have included the factor (AS)%33
in order that the data points lie closer on the straight
line shown in Fig. 2. The original data shows consid-
erable scatter, and the exponent “0.35” may not be
accurately determined. Nevertheless, I shall point out
shortly that the correlation does give the correct order
of magnitude of the scales of the intrusion lengths in
other estuaries also. Rigter (1973) and Hamrick (1979)
performed a series of laboratory experiments in which
they varied AS while keeping other flow variables con-
stant. I have examined their data and found that the
intrusion length varies like (AS)?, where a ranges from

0.3 to 0.7 for Hamrick’s data and >1.0 for Rigter’s

data. It appears that my value of 0.35 is too low. One
should note, however, that the data shows considerable
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FiG. 2. Correlating the salinity intrusion length.L; in the Hudson
River with fresh water discharge rate Qrand AS. L; depends primarily
on Qyand only slightly on AS. The line is the result of applying the
given correlation formula to the observations (open circles in the
figure).
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scatter, and it is uncertain at present what the correct
value is. I feel that more data are needed, not only in
laboratories, but also in real estuaries.

One might now be tempted to balance the vertical
turbulent diffusion of salt with its advection in (2.5b)
to obtain another relation. This is suggested by Prit-
chard’s (1954) work in the James River. This will not
be useful in the present case, however, because it is
the relative balance among terms in (2.5b) which is of
interest and this should come out as a product of the
analysis rather than its a priori condition. I shall instead
require that ® be of order one and with the data in
the James, Hudson and Potomac Rivers and the Mer-
sey Narrows to give estimates of F,,, Ra and |¢|/R, as
shown in the second through the fourth columns of
Table 1, I have chosen

! (2.70)

=1 =
p—‘s, [} 30 "

The resulting ®s are given in the fifth column of Table
1. The estimates for ||Ry™! represent some measure
of vertical averages of the absolute values of the velocity
taken from observations. While it is true that the ver-
tically averaged velocity profile must equal uy, its local
value is >us,. Since it is the velocity rather than the
integral of velocity which is of interest, one must not
scale Y with Ry. The modifying scale F? Ra‘’R;™!
should portray the effects of the density induced current
more readily through the dimensionless parameters F
and Ra.
Finally, from (2.6)

—1 13

1= —2'6 . = m ) (2.7C)
and (2.5) and (2.3) become
dIn(FpF,
Pro-'a[@zq’zzx — 29,9, dintFplp) ‘I’xq’zzz]
ax
dInF FgF

+ FD3F32(SX VAY dXD) + ( ;,DA)‘I’ZZZZ =0,
(2.8a)
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Fp'o(SzPx — 25x) — ay™!
d lnFD
X {(FBFh)X(SX Ay r )
d InFp\?
+ (FBF,.)[SXX + Z(Sz + zszz)( dX")
d? InF, FgF,
- Z8:—0> D]} - ( FBDZV)Szz =0, (28b)
Z=0:
® = F”Ra‘%x =R
2z = (Dou, /Ayo)(ur/u, X F?**/Ra*" %) ¢ , (2.9a)
X (FpFp*/Fy)t/uzitpo) = 7,
Sz =0
Z = Z, = Ra"F¥
=0 }
&z = Ra™"F *(Do/Lo)*FpdFp/dX
X [®x — Ra"F*®,d InFp/dX] L, (2.9b)
FvSZ = a'y"Zl FhFDdFD/dX
X [Sxy — Z,Szd InFp/dX]
X=0:
_472 = BQU()D(X = 0)
X Ra?™F2P-dIR ' = [, >,  (2.9¢)
S= So
Li
X=X, = E) :
S =S, (2.9d)
where
a= Ra3m—2qF2(l—2p+3i) - Ra0v23 F0.90’ (2103)
v = Ra!3"F~6i = Ra084f03, (2.10b)

The values of d/D, Ly, L;,, « and v are given in col-
umns six through ten in Table 1, where L;, is my

TABLE 1. Detemination of the scales for 1) streamfunction &, 2) Longitudinal distance X = x/L, and values of perturbation parameters
a and v from data in four estuaries. The distance from the mouth of the estuary L,, is where S; € 1%o. (The number in parentheses is

the exponent.)

L‘p-l- _d_ LO Lin
Estuary F, Ra R, D (km) (km a ¥

Mersey Narrows 1(—3) 2(+3) 40 2.0 0.5 65 50 0.02 80
Hudson

(H) 4(-2) 4(+2) 6 12 0.5 46 50 0.20 60

L) 7(-3) 1(+3) 15 1.6 0.4 70 100 0.07 75
James 9(—3) 1(+4) 10 1.1 0.36 57 40 0.16 1500
Potomac 1(—3) 3(+4) 40 1.8 0.3 140 150 0.02 680
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estimate of the observed distance from the open ocean
boundary, to the point upstream where S < 1%.. My
estimates of the relevant quantities used to compute
F,,, Ra and L, are given in Table 2. One notes the
close agreement of L, with L;, and, because of strat-
ification, d is always less than D, though not by order
of magnitude, in agreement with my intuitive picture
of the vertical scale of a partially mixed estuary. With
all variables properly scaled I can now estimate the
order of magnitude of the various terms in (2.8). Eq.
(2.8a) gives the expected balance between the hori-
zontal salinity gradient term and the vertical turbulent
diffusion term, with the advection term of O(a) which,
from Table 1, is <1 for the estuaries listed. Eq. (2.8b)
shows that the advection of salt is of O(a) while the
horizontal dispersion of salt is of O(y~!) smaller. In
order for (2.8b) to have a proper balance one must set

Szz =~ O(a). (2.11)

This balance is also suggested by Pritchard’s (1954)
work in the James River.

Figure 3 shows lines of constant a and 8 plotted on
a Hansen-Rattray stratification circulation diagram. I
shall explain the meaning of 8 more clearly in Section
3 where I shall also show how Fig. 3 is constructed.
For now # can be interpreted as being a measure of
the longitudinal dispersion term. One notes from the
figure that most of the so called partially mixed estuaries
(type B in the figure) fall in the region where a < 1.
This suggests a perturbation solution to (2.8) in terms
of small . Such a solution can hopefully be useful
fora < 1.

3. Approximate §olutions to (2.8)

I assume that « < 1 and place no restrictions on 1.
Also, I assume the following perturbation expansions

o0

BX, Z) = 3 a'bi(X, 2), (3.12)
i=0
S, Z) = 3 (X, Z), (3.1b)

=0

TABLE 2. Values of relevant quantities used to compute F,,, Ra -
and L, in-Table. 1. (The number in parentheses is the exponent).

T AS D A X100 Ky Yo - O
Estuary () (m) (@@2s') (m?>s™") (ms!) (m’s™)

Mersey Narrows 30 20 4 200 4(-3) —_
Hudson )

(H) 25 10 1 500 5(=2) 800

(L) 25 10 1 200 1(=2) 200

James 20 7.5 0.25 25 1(-2) —

Potomac 18 10 0.25 20 1(-3) 70
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F1G. 3. Pritchard’s classification of estuaries interpreted from the
present theory by the two parameters: a—a measure of salt advection
term and §—a measure of longitudinal salt dispersion. The types
A, B, D and E are explained in Table 3. The data points are the
approximate positions on this diagram of various estuaries: C—The
Columbia River; RG—The Channe! of Rio Guayas; H—The Hudson
River; J—The James River; Th—The Thames River; NM—The
Mersey Narrows;, P—The Potomac River.

and let F, F, and Fj vary sufficiently slowly that their
first and higher derivatives with respect to X are at
most of order one. I substitute (3.1) into (2.8) and
(2.9) and obtain the O(1) equations as

dInF,
FD4FB(00X — ZBoz WB) + Fapozzzz =0, (3.2a)
0022 = 0, (3.2b)
Z=0 N
$0 =R, ¢ozz=Tw, boz=0, (3.3a)
Z = ZI:
$0=0, ¢z=0, 6pz=0, (3.3b)
X=0: .
—doz = Un(Z
‘ doz _o( )} ’ (3.30)
00 = So
X= XLI: _
.00 = SL,', ’ (3.3d)

where I have assumed that Do/Ly < O(a'?) in the

second of (3.3b) and Sy and S;; in (3.3c,d) denote

vertically integrated averages of Sy and S;; respectively.
The solutions are

b0 = go(X), (3.4a)

3
b0 = 2 Poi(X)boi(Z), (3.4b)

i=1
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where -

Po(X) = Fp'FsF,'g0

P X) = 7.4X), Pos(X) = R(X)
-Z* z7,Z2* 732

A Y E A TR .
—23 22 VAVA

doAZ) = iz 2
z3 3Z

d0x(Z) = 2213 A +1 J

To determine the function go(X) I need the O(a) salinity
equation which, after making use of (3.4a), becomes

(FsFy/Fp)b.; + Fp 'godoz

+ Y7 '[(FsFr)xgo + (FaFy)g5] = 0, (3.5)
Z=0
012 = 0, (363)
Z= Zl:
Fp
Fo,z=~"'Z,F,Fp d (3.6b)

ngo

Integraté (3.5) with respect to Z from Z = 0 to Z
= Z, and apply (3.6), I obtain

v — [ﬁ _ dlnG]
8o G ax 20,

g =C epr (”R dlnG)dX] , (3.7b)

G dx
_ YR
& = leexp[f ( G

dInG
dXI

where the constants C; and C, are to be determined
from (3.3c,d) and

G(X) = Z,FpFgF). (3.8)

Hamilton and Rattray (1978) scaled x with Ko/
uro, ¥ with Ry and z with D and used RaF? = Dy’uy¢?/
K K as the small parameter to obtain a perturbation
solution of (2.1) and (2.2). In view of the field data
and discussions presented above, the magnitudes of
the terms in their nondimensional set of equations are
not properly ordered. It is therefore difficult to justify
the use of a perturbation technique on a mis-scaled
set of nondimensional equations. Hamrick (1979) used

= (depth/intrusion length) as the small parameter to
obtain a perturbation solution of (2.1) and (2.2). His
set of nondimensional equations is again not properly
scaled (see his Eqgs. (3.118) through (3.121) and his
Table 3.2). In all cases the linearizations which led to
(3.2) are the same, and I can obtain solutions which
are identical to (3.4). The range of validity of each

(3.7a)

)dX’]dX+ G, (3.7¢)
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solution is different in each case, however, and depends
on the particular small parameter chosen. Hamilton
and Rattray’s small parameter is ~Ra'’a 2a? which from
the values of Ra and a given in Table 1 imposes a
more restrictive range than simply requiring that o be
small. Indeed they indicated that their solution is only
valid for well-mixed estuaries in which tidal mixing
must be strong enough to reduce the stratification to
offset the tendency of the fresh water to strengthen it
(i.e., RaF? < 1). Hamrick’s parameter 6 is almost al-
ways small and one would have a false impression that
the perturbation solution is almost always valid, which
is clearly not true. The small parameter « I have chosen
here stems from a set of properly scaled equations and
therefore gives a more precise indication of the range
of validity of the resulting approximate solutions.

The solution for ¢, is Hansen and Rattray’s (1965)
solution in which Py, ¢, represents the density induced
flow, Pgag, the effect of surface wind shear and Py3 o3z
the parabolic velocity profile due to the fresh water
discharge and Z-independence eddy viscosity assump-
tion. With only two arbitrary constants C; and C, at
my disposal I choose to abandon the first of (3.3c). I
implicitly assume, therefore, that any realistic salinity
profile must be such that g4]x-0 < 1. A typical lon-
gitudinal salinity distribution in an estuary displays
the inner, middle and outer zone behavior as suggested
by Hansen and Rattray (Fig. 4). I should therefore
require a positive gg for 0 < X < X;;/2 say, and a
negative g for X;;, < X. Thus, as one moves seaward
along the estuary, there must exist a point beyond
which

dFpFFy YR

=Rl—n 2j
X Z a"F¥,

if Fr=1, (3.9a)
or

dFDFBFh/dX > ufo/Kho. (3.9b)

In the James River, for example u;o =~ 1 cm 57},
Kio =~ 10 m? 57! and x =~ 100 km. (3.9) suggests that
FpFgF, must increase by about 100-fold of its value
at the landward side of the estuary in order that, as
one moves seaward, the salinity distribution displays
the middle and the outer zone behavior envisioned by
Hansen and Rattray. Observed salinity distribution in
the James River suggest that nearly the whole length
of the river lies in the middle zone. Since depth and
width of the James River is fairly uniform, the 100-
fold increase in FpFpF) in the middle zone must
therefore be due to F; alone. The large increase in Fj
can be accounted for, ¢.g., by the transverse dispersion
mechanism proposed by Fischer (1972). It is common
for the vertical turbulent diffusivity coefficient near
the middle zone of the estuary to have a value which
is one-tenth or even one-hundredth of its value at the
inner zone of the estuary. This is because of the in-

- creased stratification as one moves seaward. From (1.6),

one sees that this transverse dispersion mechanism
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FIG. 4. Typical top and bottom salinity distributions in the Hudson river,
numerically calculated by Oey (unpublished results).

alone is capable of producing the required increase in
F,. Near the mouth of the James River where it opens
up to Chesapeake Bay, the observed salinity distri-
bution suggests an outer zone behavior, and the large
increase in Fp, F F, is here provided by large increases
in depth and width. Because of these intimate inter-
dependencies between the vertical salinity structure
(hence the stratification), the vertical turbulent diffu-
sivity coefficient, the longitudinal dispersion coefficient
and the longitudinal salinity structure, it is important
in numerical modeling of estuaries to predict well the
vertical structure (Oey and Mellor, 1983).

One might question if my analysis is still valid when
dF,/dX > 1. From (2.8b) I require ¥~ 'dF,/dX ~ O(1)
> R/Z, = Ra*™""Fé*% from (3.9a). For the James
River with Ra =~ 10* and F =~ 9 X 1073, I obtain
v~ 'dF,/dX ~ O(1) > O(107"), a condition which is
easily satisfied. Also, from (2.8), my analysis is valid
whenever d InFp/dX (or d InFg/dX) < O(1), or dFp/
dX < O(Fp). I can therefore allow fairly large seaward
increases in depth and width and still have a correct
theory. Such large seaward increases in depth and width

&olX) ={
Settingc = 1,5 = yRo,a = Z,, Fp = Fp = 1 and
P =+~Ry/Z,, 1 obtain F, = 1 + PX, or
Ky = Ky + urox,
&o(X) = gor(X) = C, X + (3.

(3.12a)
(3.12b)

(C1/vRo) explyRo(a + bX)' /b1 = O] + C;, c# 1
(C/vRo)a + bXYy™Rol +

occur when a river empties into a large bay as for
examples the Raritan and the Hudson rivers emptying
into New York Harbor, the James River emptying
into Chesapeake Bay and the Delaware River emptying
into Delaware Bay. It is clear that such large increases
in depth and width must also be accompanied by a
large increase in the longitudinal dispersion, -as indi-
cated for example by (1.6). It is this combined action
of width, depth and dispersion which gives rise to the
salinity distributions as observed in real estuaries.

a. Special solutions

To better understand the effects of width, depth and
dispersion functions variations upon salinity distri-
bution, density-induced circulation and stratification
in estuaries and to see how my theory is related to
others’ I shall focus on a special power form variation
of G: : '

G(X) = (a + bXY, (3.10)

where a > 0, b > 0 and ¢ are constants. I assume also

constant R = R, and so obtain from (3.7¢)

-(3.11
c=1. (3.11)

This corresponds to the x-variation part of Hansen-
Rattray similarity solution in the middle region of the
estuary. I shall now show that my perturbation solution
reduces to Hansen-Rattray similarity solution in the
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case when Fp=Fg=Fr=F=Fy=1land F, = 1
+ PX. For simplicity of presentation I shall also let
7w = 0.

The vertical salinity structure comes from the O(«)
solution #, which from (3.5) is

01X, Z) = P(X) + P(X)Z? + P3(X) f dndZ

+ Pi4(X) J ¢02dZ + PlS(X)(j $03dZ — Z) , (3.13)

where

P _gul(::’) 1
Pis(X) = _(?;ii)POl(X ) g
PuX) = (l;zf;") W)
Pt = (22280

Here g,(X) is determined from the O(a?) salinity equa-
tion in the same way as I determined go(X) from the
O(a) salinity equation

gi(X) = CuX + Cs, (3.14)
where C4 and Cs are arbitrary constants. Then
PC\\,,
S, Z) = golX) + o 810 = | 5212

- C? f dndZ — C, ﬁo(f $o3dZ — Z)] + O(a?),
(3.15)

after using (3.13). I require that the vertically integrated
average of .S satisfies (3.3¢,d) and obtain

c=3t

C=%

Ca=0

c, < GPZe _Z°C 9Ci Ry Z,
6y 576 40

I can now show that ¢; = 6;,; = 0, i = 1, so that
the perturbation expansions terminate at the zeroth
order in a for ® and at the first order in « for S. The
complete solutions are, after casting them in Hansen
and Rattray’s variables £ = xu0/Ku, 1 = z/Dp and
So = ASS,,
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S CAS (AS) s
_——= + § —— n2=-2j
S ! (So Ra'—"sz)E 5 o REF
7 2 7 C, Ra"F~%
X — —_—— — —
[120 + 8 + ( 48 )
-1 ,','2 37’4 2,”5
X(E+E—T —5")], (3.16a)
1
‘I'/Ro=5(2— 3n+7’)
C, Ra"F™%
- (‘ff—s——)(n — 30’ + 20%). (3.16b)
Differentiating (3.16a) with respect to £,
das
Kh() — = pU oso, (3178)
dx S
where
C,AS

is the fraction of the total salt flux at x = 0 carried
upstream by the longitudinal dispersive action caused
by transverse dispersion, turbulence, tidal “trapping,”
etc. (Hansen and Rattray, 1966; Fischer, 1976). If one
recalls that Hansen and Rattray define the estuarine
Rayleigh number by using .S, rather than AS as used
here, one sees that (3.16) and (3.17) reduce identically
to Hansen and Rattray’s solutions. An equation for v
can also be obtained from its definition:

Do
yv=1 +f qu.,dZ/ufoD()So,
0

where u, and S, are the deviations of velocity and
salinity from their vertical means. The result is

_ yF’Ra 76 so)
=1~ %0 [32+48( vRa s
Lild 20 1
+6912( vRazo) | G18)

which is identical with the corresponding formula in
Hansen and Rattray (1966).

The above discussions serve several purposes. First,
it shows the essential correctness of my theory. The
fundamental parameter « is a measure of the state of
stratification and can be used to classify estuaries as
outlined in Fig. 3. Second, the mathematical frame
work based on such a-classification becomes very sim-
ple and solutions can be obtained by solving a series
of linear equations in the routine expansion method.
The analysis can be readily extended to include variable
depth, width and other mixing coefficients. Finally,
divisions of estuaries into inner, middle and outer zones
are convenient physically. They are not, however, im-
portant mathematically. In practice, the salinity dis-
tribution in an estuary varies continuously and

152



638

smoothly and this variation can be taken into account
by selecting suitable variations of width, depth and
mixing coefficients in the theory. What I mean by
“suitable” is an open question but the important thing
is that in every case I should be able to obtain a global
solution valid .everywhere in the estuary. That such a
solution has a good physical basis and is not merely
an observational fit is shown by the agreement offered
by Hansen and Rattray’s theory with observations
(Bowden and Gilligan, 1971; Murray and Siripong,
1978; Section 4 of this paper).

The last remark in the previous paragraph brings
up some interesting questions. I shall now show that
Hansen and Rattray’s theory is remarkably general
and within the present small-a approximation frame-
work, can be used to determine with confidence the
importance of salt transport by vertical gravitational
circulations in many estuaries of various shapes.

b. Generalized Hansen-Rattray theory

The O(1) velocity field obtained from (3.4b) gives
the classical two-layer density induced circulation with
a seaward flowing water in the top layer and a landward
flowing water in the bottom layer. The interaction of
this circulation with the O(1), vertically homogeneous
salinity structure 6, = go(X) gives rise to an O(«) vertical
salinity structure given by (3.13). This separation of
vertical salinity variability from the horizontal salinity
variability allows one to derive a simple generalization
of Hansen-Rattray theory.

The fraction v of the total salt flux at any point x
along the estuary carried upstream by the longitudinal
. dispersion satisfies K,dSo/dx = vusS,, where S, is the
sectionally mean salinity at x. From (3.1b) I obtain

ds,
dx
= (gbAS Ra" 'F~%F, FgFp/So Fr)upSo[1 + O(a)]
so that
v = (goAS Ra" 'F~YF,FzFp/So Fr)[1 + O(a)].
3.19)

To obtain an equation for v I need &, and S,, which
from (3.4b) and (3.13) are -

K,—

1 — 342
u, = uf[Kl(l — 9% + 87%) + 3 ] , (3.20a)
2 4 2
_ w3t 2wy v 2]
Sv SoK2[4 8+K1(2 4 + 5)+2K311
+ constant, (3.20b)
where

Kx = (V RaSo/48ASF;,FBFD)(FD4FB/FA)
Kz =v RaFZFRz/FthFBZ
K3 =d ll’lFD/d lnSo
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and where the constant is inconsequential in the com-
putation of salt flux by vertical gravitational circulation.
From (3.20) I obtain

w3
Ur 2

3K,
(8’+ 20 T2 Ka)
By definition » = 1 + [, u,S.dn/usS, and hence

(3.21a)

65/So = (3.21b)

v=1-— Kz[(32 + 76K, + 1—? K,*)16807!

+13 Z K1 +K, )] (3.22)

Thus, apart from the last term in (3.21b) and (3.22)
involving Kj, the relationships between u,/uy, 8S/S,
and v are identical with those obtained from Hansen-
Rattray theory (Eq. 3.18). In practice the variation of
depth over the whole length of the estuary is usually
much smaller than the variation in salinity and there-
fore K; < 1. I can then conclude that the Hansen-
Rattray 6S/S, versus u,/u, diagram (Fig. 1) for pre-
dicting the importance of vertical gravitational cir-
culation in salt transport is valid under arbitrary lon-
gitudinal variations of width, depth, fresh water dis-
charge and various mixing and dispersion coefficients.
The theoretical and the observed »s in estuaries for
which a < 1 should therefore agree very well. I have
not been able to show that my conclusion is valid also
for &« > O(1). However, the agreement of my theory
with Hansen-Rattray theory when S is linear with x
suggests that the condition can be somewhat relaxed,
perhaps to the case when a ~ O(1). It is important
to note that although Hansen and Rattray derived their
model by assuming i) a longitudinal dispersion function
which increases linearly seaward at a rate equal to the
fresh water discharge velocity, ii) straight rectangular
channel and iii) the middle zone of the estuary, the
relationships between 8S/Sy, u;/urand » are completely

" independent of these conditions. Therefore, Hansen -

and Rattray’s theory is very general.

¢. Pritchard’s classification of estuaries

I mentioned in the Introduction how Pritchard
(1955) classified estuaries according to their dominant
tidally averaged advective and diffusive processes. I
now express his ideas in mathematical terms. It is not
possible to do this in full generality however, so I shall
restrict my analysis to the case when the estuary is of
constant cross section and F, = 1 + PX, the Hansen-
Rattray similarity condition on the longitudinal dis-
persion function [see Eq. (3.12a)].

From (3.16) I obtain

ﬁ = (Cl) Ral/4F12 4+ (Cl

AS 3 320) Ra'”2F%4  (3.23a)
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Lots+ (C ) Ra#F0%  (3.23b)
Ur 48
Therefore,
F? = (6S/AS8)b7, (3.24a)
Ra = a*[(8S/AS)/b]"6C, ™4, (3.24b)
where

a=48(i’— 1.5), b=24+ 2
Yr

Here “C,” measures the dimensionless salinity gra-
dient which should be ~1 if I have chosen the correct
scaled variables. This means that X ~ 1, or that the
salinity intrusion length is close to the x-length scale
L, chosen in the analysis. One sees from Table 1 that
this is approximately so and I shall henceforth set C;
=1.

From (2.8b), @ measures the magnitude of the salt
advection term and 8 = aFx/y = aP/y measures the
magnitude of longitudinal salt dispersion term; & and
@ are functions of Ra and F and are plotted in Fig. 3
after using (3.24). One notes the internal consistencies
of the theoretical analysis which require that 8 < «
when » =~ 0 and § ~ o when v ~ 1. Since 8 < «
always, the perturbation expansion based on o < 1
and @ arbitrary is therefore valid.

When a < 1 the estuary can be treated as if it were
vertically homogeneous. The estuary may not be of
type D however because vertical turbulent salt diffusion
is still balanced by salt advection and the longitudinal
dispersion of salt remains very small. A truly type D
estuary is one for which a ~ 8 < 1 and occupies only
a restricted portion in the Hansen-Rattray stratifica-
tion-circulation diagram. This type of estuarys is not
in the same class as the type for which & ~ 8 ~ O(1)
although both types are characterized by » ~ 1. The
underlying mathematics (and physics) are different for
both types. When a =~ 8 = O(1) all terms in the salt
balance equation are important and I shall call this
type E. The velocity profile does not display the classical
two-layer estuarine flow because the fresh water dis-
charge rate is very high, not because there is negligible
stratification. In this case fo uyS,dn ~ 0 because u,
= 0, not because S, =~ 0. The Columbia River at high
discharge belongs to this type (Hansen, 1965).

When a » 8 =~ O(1) the salt advection is important
and (2.8b) reduces to ¢xSz — ¢2Sy = O(1/«) and one
has a type A estuary.

When 8 < a < | vertical turbulent salt diffusion is
balanced by salt advection and one has a type B estuary.
This is the type of estuary for which I constructed the
approximate solution and it clearly includes the type
D estuary when a =~ 8 < 1.

The different types are shown in Fig. 3 where I have
further subdivided type B into regions for which
a > 0.1 (types B,) and a < 0.1 (types B,). Conditions
on « and 8 which distinguish the different types are
given in Table 3. One could conceive an estuary which
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TaBLE 3. Classification of estuaries (see Fig. 3).

Estuary Conditions on « and 8 Common names
A a>f Salt wedge
B, B<ax0.l . .
B, B<0l<as<] Partially mixed
D a=~fB<1 - Well mixed
E a = f20(1) —_

has characteristics intermediate of types D and E. The
channel of the Rio Guayas can be classified as this
type. I shall not, however, further break down the types.

d. Dependence of circulation and stratification on Rig
and F,

Hansen and Rattray (1966) empirically correlated
us/urand 6S/Sp to u/ur and F,, and found that wu,/u,
depends solely on F,,, while 6S/S, depends on both F,,
and us/ur. Fischer (1972, 1976) considered Rig in place
of us/ur and showed that 85/S, depends primarily on
Rig but only slightly on F,,. From (3.23) I obtain

2 ~ (DFurlKioAn)” Rig PE, 1513207, (3.259)

%:' ~ [(Do*ur* /Ko Aw)""* Rig"/®F,,23%1487" (3.25b)
Y

in which I have dropped the first terms in (3.23) (which
amounts to assuming that « > ) and have assumed
that C; = 1 and P,q = 1.

These expressions show the weak dependencies of
0S/AS on F,, and of u;/u; on Rig. Eq. (3.25a) shows
that the seaward-landward density difference will al-
ways induce a vertical stratification and from (3.25b),
is always required to drive a gravitational circulation.
Thus, a gravitational circulation cannot exist in a
strictly vertically homogeneous estuary. If I compare
(3.25b) with (3.21a) I can obtain the following formula
for v RaSy/AS:

& = (M)l“(ﬂ) /ZF -1.3 (3 26)
AS KhOAvO Ur i ’ )

This suggests that » RaSy/AS could be correlated with
(us/ur)'*F, ' obtained from observations. I have
taken the observational data from Hansen and Rat-
tray’s paper (1966, their Fig. 3) and these are plotted
in Fig. 5, together with my correlation formula (3.26)
and Hansen and Rattray’s formula:
So
Ra—'=
v Ra AS
My straight-line correlatlon formula (not drawn in Fig.
5) is

v Ra

16F,, 34, 3.27)

1/2
»Ra % — g, 5( Y ) Fa'3 (3.28)

AS ur
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FIG. 5. Correlating » RaS,/AS with F,, and w/ur.

It is difficult to conclude which of the two formulae
gives better correlation. I shall show in section 4 that
for the channel of Rio Guayas, (3.28) appears to predict
us/urand hence v more accurately than formula (3.27).
More comparison with observations is required to ver-
ify (3.27) or (3.28), however.-

4. Comparison with observations

I shall compare and interpret the available obser-
vations in different estuaries with my theoretical model.
I shall consider i) the Mersey Narrows which corre-
sponds very well with Hansen and Rattray middle zone,
ii) the channel of the Rio Guayas, a shallow and rig-
orously mixed estuary and iii) the Hudson River which
includes both Hansen and Rattray’s middle and outer
Zones.

a. The Mersey estuary

Bowden and Gilligan (1971) have made extensive
measurements of salinity and velocity at four sections
along the estuary (Fig. 6). The longitudinal salinity
distribution is approximately linear in this region (see
their Fig. 4) and corresponds closely to Hansen and
Rattray’s middle zone. The fourth column in Table 4
shows the observed mean » given by Bowden and
Gilligan. From their 85/So and u,/u,data I have com-
puted » directly from (3.21) and (3.22) and the results
are shown in columns 2 and 3. The range refers to the
different discharges which occur during the period of
observations. The agreement between theoretical and
observed »’s is good. The largest discrepancy is at the

Carmmell Lairds section. Two observations in this case
were taken at high discharges and I have estimated «
to be about 0.8, perhaps not small enough for the
theory to apply. At Rock Light the estuary suddenly
widens seaward; the original Hansen-Rattray theory
clearly breaks down here. The agreement with obser-
vation is very good however, as predicted by the general
theory.

Landward

FIG. 6. Location map of the Mersey estuary.
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TABLE 4. Comparison with observation in the Mersey (data from Bowden and Gilligan, 1971). The theoretical v is calculated by using
the observed 8S5/S, and u,/uy. (8S/So)rn and (u/upry are estimated from Hansen and Rattray correlation formulas.

v

B0, ©.6,
Section in Observed U/ ops\Us/ 1 So/ ops\So/
Mersey Range Mean Mean Mean Mean
Rock Light 0.63-0.95 0.83 0.85 0.42 0.77
Egremont 0.22-0.80 0.53 0.51 1.05 1.02
Carmmell Lairds 0.02-0.47 0.21 0.30 0.97 2.05
Oozle Wreck 0.16-0.93 0.62 0.95 1.73

0.58

A good prediction of v does not imply a good pre-
diction of 6S/S, and u,/urhowever. If I adopt Hansen
and Rattray’s (1966) correlation formulas (3.27) and

u 7/5
v RaF,? = 20(—’) , (4.1)
ur,
1 obtain from (3.21) (assume P,; = 1)

7/5 3 2

Fp’F,
~ | F ¥ _SD R 4.2
95750 [F " (uT) ](thFnFAFBZ)’ (4.22)

Us ~ [l F 3/4](_@)
uy 3" FyF,)’

where 1 have also assumed that K, > | and K; < 1.
The terms in the square brackets in (4.2a,b) are Hansen
and Rattray’s original forms for 65/, and u,/u,, mod-
ified now by the appropriate functions representing
the effects of variable width, depth and mixing coef-
ficients, Bowden and Gilligan’s values for (u;/u/)ons/
(us/up)ru and (8S5/S0)oss/(65/So )t are reproduced in
columns 5 and 6 of Table 4. Here, the subscript OBS
denotes observation and TH denotes values obtained
from (4.2) without the modifying factors.

Assuming Fp = F, = 1, qualitative effects of in-
creased F, can be seen from the value of (u/uo)ru at
the Rock Light section where (1,/u/)1y is too large by
about a factor of two and an increased F), from its
value further upstream should remedy this, according
to (4.2b). The assumption that F, = 1 throughout the
four sections is reasonable. The assumption that F,
= 1 is more questionable but F4 can only increase at
the Rock Light section due to a more intense mixing
there and hence less stratification. This again will re-
duce (u,/us)r and improve the agreement. However,
F, should not be sensitive to stratification (Ellison and
Turner, 1960). For example, at the Egremont, Carm-
mell Lairds and Oozle Wreck sections the assumptions
that F, = F, = F, = 1 lead one to conclude that (u,/
Uoss =~ (ts/up)ru.!

The overestimation of (85/So )}y at the Rock Light

(4.2b)

! Note that in Hansen-Rattray theory Kj, must increase linearly
seaward at a rate equal to us,. This increase is small however over
the three sections under discussion.

can again be corrected by an increase in Fj at this
section. The underestimation at Carmmel Lairds is
due to the decrease in F, because of large stratification
at this section. The underestimation at Oozle Wreck
is more difficult to explain but perhaps can also be
due to decrease in F,. This is because the data points
at this section are mostly for higher stratification case
where 65/S, > 0.1 and hence the mean is more heavily
weighted towards a region of low values of K.

I should mention Fischer’s (1972) calculations of
longitudinal dispersion coeflicients in the Mersey. He
concluded that the vertical gravitational circulation
cannot contribute significantly to upstream salt trans-
port because the transverse shear effects are much more
important. My calculations show definitely that this
can only be true near the mouth of the Narrows and
that in the Narrows both the vertical and transverse
shears contribute about equally to the total upstream
salt transport.

b. The channel of the Rio Guayas

Murray and Siripong (1978) called this a well-mixed
estuary, apparently because about' 80% of upstream
salt transport is carried out by the turbulent diffusive
action. The word “well-mixed” is misleading however
in this case because of the relatively high value of 85/
Sy = 0.14 over a depth of about 6.5 m. A more exact
measure would be to calculate the value of «, which
I estimate to be about 0.1, indicating that the vertical
stratification is quite significant, as observed.

With 45/S, = 0.14 and u,/u, = 3.0 I obtain from
(3.21) and (3.22) » = 0.938, which agrees well with
the observed » of 0.92. Murray and Siripong also es-
timated 65/S, and u,/u, using (3.27) and (4.1) which
give u;/uy= 5.65 and » = 0.79. If I use formula (3.28)
I obtain u,/uy= 3.85 and v = 0.915, which agree better
with the observed values. This good agreement could
be fortuitous however because Eq. (4.2) indicate that
the estimated u,/u, and 6S/S; must depend on the
geometric shape and mixing coefficients variations
along the channel.

¢. The Hudson River estuary

The portion of the Hudson River estuary that I shall
be discussing extends from about 50 km upstream of
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the Battery to the Narrows in the New York Harbor
(Fig. 8). The longitudinal salinity distributions for a
typical low discharge period and a typical high dis-
charge period are shown in Fig. 7. One se€s that at
high discharge the region of interest lies wholly in the
inner zone where the vertically integrated averaged
and tidally averaged salinity distribution is linear. My
theory reduces to Hansen-Rattray theory and I expect
good prediction of ». For the low discharge case the
outer zone starts just downstream of the Battery due
to the more intense mixing in the widened area (Fig.
8) Hansen-Rattray theory is no longer applicable here
but my analysis shows that I should still obtain good
prediction of ».

Hunkins (1981) has made salinity and velocity mea-
surements at Yonkers, some 30 km upstream of the
Battery and lies wholly in the middle zone at low dis-
charge, and at the Narrows. The fresh water discharges
for the three surveys are given in column 2 of Table
5. Based on these numbers, I assume that the salinity
distributions correspond to top of Fig. 7 for the low
-discharge survey and to bottom of Fig. 7 for the high
discharge survey. I use the observed 85/S, and u,/u,
in columns 3 and 4 to compute » from (3.21) and
(3.22). The results are shown in column 6 and can be
compared with the observed »’s directly obtained from
Hunkins’ measurements of salt fluxes across the sec-
tions. The agreements are not as good as I have ex-
pected and are only slightly improved when the theo-
retical »’s are corrected for wind effects. Hunkins noted
that the cross-channel differences in current and salinity

30’—

S %o

The Battery x

0 L | . 1 L L
10 20 30

DISTANCE FROM NARROWS (km)

FIG. 7. Salinity distributions in the Hudson (compiled from Bow-
man, 1977). The upper figure is for @y = 190 m> s~ and the lower
figure is for Oy = 1400 m® s™': surface salinity (crosses), bottom
salinity (open circles), and mean salinity (solid line).
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measurements were some five times larger than could
be accounted for by Coriolis and centrifugal forces. I
think that this anomaly is in some sense spurious and
is due to the short sampling period (25 h) and possibly
time-dependent effects (Hunkins, p. 733; Oey and
Mellor, 1983). These spurious effects result in larger
measured dispersion due to the transverse shear and
hence larger values of ».

5. Comparison with numerical simulations

I shall compare my theoretical results with two sets
of finite difference numerical model results in the New
York Harbor. I have described details of the numerical
method in Oey and Mellor (1983). One set of results
is from the two-dimensional xz — ¢ simulation of the
Hudson River. The other set is from the three-dimen-
sional xyz — ¢ simulation of the New York Harbor
(Fig. 8).

a. The xz — t Hudson River model

The model region extends from the Battery where
the river empties into New York Harbor, to the dam
at Troy, some 250 km north of the Battery. I have set
Oy =200 m? s and 5 = 0.7 sin(2nt/T), where T is
the M, tidal period (=~ 12.42 h), and 7 is the free surface
elevation at the open boundary at the Battery. These
values represent approximately the conditions of the
river in dry seasons. The salinity at the open boundary
is computed during ebb using one-sided difference and
is assigned a constant 26%o during flood (Thatcher and
Harleman, 1972). The grid spacings are AX = 3 km.
and AZ =~ 1 m. I have also performed a separate
calculation with AX = 1.5 km and the results agree
very well with the coarse grid calculation. This ensures
small numerical diffusivity which may give incorrect
salinity intrusion length. Since I shall compare model’s
results with steady-state theory I have also ensured that
the calculation has reached an “equilibrium” state de-
fined by

| (§>=-7170LT0{ffdezdxdy

i ~1
X [f f (H + n)dxdy] }a’t = constant,

where T, is an averaging period.
_ _ _ 1
Fig. 9 shows (S and (V), where (V) = T o
0
X [[ ndxdydt[[| dxdy]™', H is water depth below
mean tide level as functions of 7, for two calculations
with different initial conditions set I1 and set I2. The
linear, vertically homogeneous initial salinity distri-
butions for both sets are:
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FiG. 8. Map of New York Harbor. The depth contours are in meters below mean tidal level.
Set I1:

So(x) = 28(12 = x)/12, 12=x=0

=0, x> 12,
Set 12:
So(x) = 28, 60=x=0
= 28(72 ~ x)/12, x> 60,

where x is in km and is zero at the ocean boundary
(at the Battery). The final equilibrium salinity intrusion
length L;, defined as the x-length at which S,
= 0.1%0 is 51 km. Thus the initial salinity intrusion
length for the set I1 calculation is less than L; while

that for the set I2 calculation is greater than L;. One
sees from Fig. 9 that, although the volume storage (V)
for both sets I1 and I2 quickly come to an equilibrium
state in about 30 days, the salt storage (S) takes a
much longer time to settle. For set I1, {S') reaches an
equilibrium state in about 60 days, whereas set 12 has
not settled down. For set 11 the absolute value of d(S)/
dT, is about 1072 %e day ™! near énd of 60 days while
the value is 1072 %o day™' for set 12. In set 12, the
estuary has to empty its excess salt storage and, because
of the large ratio of tidal volume to fresh water volume
of about 100:1, this process is very slow. The opposite
is true for the set Il calculation, in which the salt
storage must increase from its initially low value. The
large mixing action of the tide now allows a much

TABLE 5. Comparison with observation in the Hudson River at the Narrows (in New York Harbor) and at Yonkers
(~45 km upstream of the Narrows) (data from Hunkins, 1981).

14

_ ) Ys Theory corrected
Section (m3s™) So us Observed Theory for winds
The Narrows 845 0.58 8 0.19 0.17 0.18
238 0.14 A 21 0.53 0.43 043
Yonkers 182 0.36 12 0.46 0.18 0.20
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FIG. 9. Time-averaged (a) volume and (bj salt storage for the Set
11 calculation and time averaged (c) volume and (d) salt storage for
the Set 12 calculation.

more rapid convergence to an equilibrium state. I have
carried out the set 12 calculation for another 60 days
before an equilibrium state is reached.

The results of these numerical calculations and
comparisons with observations will be reported sep-
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arately. For the purpose of comparing the numerical
model’s results with theoretical results I have chosen
the simplest case of constant depth and width. The
value of & is equal to 6.5 X 1072 for this calculation
when K} is chosen to be equal to 300 m? s™! and the
So is shown in Fig. 10. The agreement is good. The
numerically calculated S, shows the general exponen-
tial form predicted by (3.7¢c) for Fp = F, = Fg = 1.

b. The xyz — t New York harbor model

Oey and Mellor (1983) has computed this real-time,
three-dimensional model of New York Harbor for
ninety days. I shall use the results from the last thirty
days’ integration. The model is driven by real-time
data of tides, fresh water and sewage discharges and
winds. Because of its fine grid size (0.5 km in a 30 km
X 30 km domain and 1 m in depths of about 10 m)
the model resolves both the horizontal and vertical
circulations and salinity structures rather well. Oey
and Mellor have calculated the various components
of salt fluxes according to the format given by Fischer
(1972). Fig. 8 shows the various sections at which these
fluxes have been computed. From these I have cal-
culated ynym shown in the sixth column of Table 6.
I have also computed the averages of 6S/S, and u,/u,
across each section and these are shown in columns
3 and 4. From these averages I calculated vyy from
(3.21) and (3.22) with K; = 0. This is shown in column
5. The agreements are remarkably good, despite the
very complex coastline geometry and bottom topog-
raphy which exist in the harbor.

In Section 7 vnumMm is negative. I interpret this and
other discrepancies as being mainly caused by unsteady
subtidal oscillations which occur during the simulation
period. This and other discussions on the numerical
model’s results are discussed in Oey and Mellor (1983).
Nevertheless, negative vnym signifies very strong ver-
tical gravitation circulation, as predicted also by the
theoretical value of vty = 0.10.

25¢

S (ppt)

o 5
Theory. ~ \Numuicul

i
58 68 78
' grid index i
FIG. 10. Comparison of numerical model with theoretical lon-

gitudinal salinity distributions in a straight channel of constant ge-
ometry.
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TABLE 6. Comparison of theoretical » and numerical model’s » in New York Harbor. Refer to Fig. 8 for locations of the cross sections.

(The number in parentheses is the exponent).

[AY

&s U S S
Section (m?s7Y) So ur VrH UM F, AS from (5.1)
i 17 3.0(-2) 382 0.77 0.72 8.0(—4) 0.86 9.0(=3)
77 1.3(-1) 23.0 043 0.48 4.0(-3) 0.59 8.3(-2)
2 9 6.1(—3) 64.0 0.92 0.85 5.0(—4) 0.86 8.0(-3)
48 3.8(-2) 243 0.80 0.70 3.0(=3) 0.58 5.0(—2)
3 9 5.0(—3) 121.0 0.88 0.70 2.0(—4) 0.90 6.0(—3)
48 2.2(-2) 40.2 0.83 0.80 1.0(—3) 0.65 2.5(-2)
4 . 185 3.7(—3) 14.0 0.99 ©0.98 2.0(—3) 0.97 3.6(—3)
1000 4.0(-2) 6.3 0.92 0.92 9.0(—3) 0.85 2.5(-2)
5 80 2.0(=2) 25.4 0.90 091 2.0(=3) 0.92 1.4(=2)
700 1.8(-1) 6.2 0.87 0.84 2.0(-2) 0.68 8.7(—-2)
6 765 3.8(—-1) 8.0 0.45 0.43 2.0(-2) 0.54 3.3(-1)
7 36 1.6(—-1) 29.0 0.10 <0 2.0(-3) 0.59 2.0(-2)
8 6 3.2(-2) 26.8 0.83 0.85 1.0(=3) 0.61 1.5(~2)
33 2.2(-1) 12.0 0.50 0.40 7.0(-3) 0.19 2.8(—-1)

Finally, I assume a > 8, P,o = 1 and obtain from

(3.16) )
- o Us) (22
8S/S, = 1.2F,, (uf) (gf) ) (5.1)

This estimated 65/S; is given in the last column of
Table 6 and should be compared with the model’s 6S/
So of column 3. Again, the agreement is quite good,

desplte the various assumptions that have been made
in Hansen-Rattray theory.
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