
On Efficient Key Agreement Protocols

Anish Mathuria ∗

Vipul Jain

Dhirubhai Ambani Institute of Information and
Communication Technology

Near Indroda Circle
Gandhinagar - 382 007

Gujarat, India

February 28, 2005

Abstract

A class of efficient key agreement protocols proposed by Boyd is examined. An attack is demon-
strated on a round-optimal example protocol of this class, and a simple countermeasure is
suggested. The whole class is known to be vulnerable to an attack proposed by Bauer, Berson
and Feiertag. A new class of key agreement protocols without this vulnerability but having the
same advantages in efficiency is identified, and a number of concrete protocols are proposed.

1 Introduction

Key establishment protocols are mechanisms that allow any two or more users to establish shared
keys amongst themselves. There are two fundamental types of key establishment protocols [1]:
key transport and key agreement. Key transport protocols are those in which a single entity is
trusted to choose the key and securely transfer it to the other entities. Key agreement protocols
are those in which each entity involved in the protocol provides an input to the equation that
defines the key. Many of the key agreement protocols published in the literature employ public key
cryptography and do not require an on-line server. Rueppel and van Oorschot [2] discuss several
example protocols of this kind and compare their properties. We focus on key agreement protocols
which employ shared key cryptography and require an on-line server. Protocols of this type have
largely been ignored in the literature.

A fundamental property of any protocol for establishing session keys is the confidentiality of
the key. Another important property is the freshness of the key. While the main task of the
protocol designer is to ensure that the protocol achieves its security goals, it is always desirable
to know whether a protocol that achieves its security goals is also efficient. An obvious efficiency
measure is the number of message exchanges required between the parties involved in the protocol.
In many protocols, several messages can be sent in parallel; these messages are said to belong to
the same round. Gong [3] uses the minimum number of rounds needed by a protocol as another

∗Contact author. E-mail: anish mathuria@da-iict.org

1



efficiency measure. As noted by Hao, Clark and Jacob [4], communications efficiency issues such
as the number of messages or rounds can be discussed at an abstract level, that is, without paying
any attention to the algorithms used to provide cryptographic services. In contrast, computational
efficiency issues are often discussed at the implementation level since they are dependent upon the
choice of cryptographic algorithms.

In this paper we assume the usual scenario of two users who wish to establish a session key
with the help of an on-line server using symmetric cryptography. Gong defined twelve classes
of protocols of this sort and obtained lower bounds on the number of messages and the number
of rounds for each class. He considered the use of two types of freshness identifiers, nonces and
timestamps, to achieve key freshness. The bounds obtained by Gong suggest that protocols using
nonces use more messages and rounds than those using timestamps. However, Boyd [5] showed
that by a different design one can construct protocols using nonces for which the lower bounds on
the number of messages and the number of rounds are the same as for protocols using timestamps.
A protocol proposed by Kao and Chow [6] also lowers Gong’s bounds for nonce-based protocols,
but their protocol has the security disadvantage that one client can force reuse of an old key, a
property easily avoided in Boyd’s protocols. Recently, Crispo, Popescu and Tanenbaum [7] have
used Boyd’s design to devise a symmetric key based authentication infrastructure that enables key
establishment within an unlimited population of users, without requiring the server to be on-line.

The protocols of Boyd and Kao and Chow have the property that if a user’s long-term key is
compromised, then an attacker can masquerade as that user even after the compromised key is
replaced with a new one. By contrast, in protocols conforming to Gong’s bounds such an attack is
not possible once a new long-term key is installed. The first such attack on a published protocol
was proposed by Bauer, Berson, and Feiertag [8] against the Needham-Schroeder protocol [9]. For
lack of a better term, we will use the term BBF attack for any attack demonstrating that the
protocol’s security is not repaired even after a compromised long-term key is replaced. To avoid
the BBF attack on Boyd’s protocols, it is necessary to use a key revocation list containing keys
that are known to be compromised, similar to the use of certificate revocation lists in public key
infrastructures. In this paper we show that this constraint is incidental to the techniques used in
those protocols, and we can develop protocols that have the same benefit in efficiency without the
additional requirement of revocation lists to protect against the compromise of long-term keys. We
also show an attack on an example protocol of Boyd that minimizes the number of rounds. The
attack demonstrates that the protocol fails to achieve the key confirmation property which gives
confidence about the possession of the key by intended users.

The rest of the paper is organized as follows. In Section 2 we review the basic ideas from
Boyd’s work [10, 5]. In Section 3 we review some concrete protocols proposed by him which lower
Gong’s bounds for protocols using nonces. In Section 4 we propose an attack on his round-optimal
protocol, and strengthen the protocol against this attack. As already mentioned, the whole class of
protocols proposed by Boyd is known to be vulnerable to the BBF attack. In Section 5 we propose
alternative protocols that give protection against the BBF attack without needing key revocation
lists. Section 6 concludes the paper.

2 Protocol Classes

We begin by recalling some of the concepts and definitions described by Boyd. The security prop-
erties that are essential to any key establishment protocol are described in the following definition.

2



Definition 1 ([10]) A protocol to establish a session key is secure if it is secure for all users
involved. A protocol is secure for Alice if:

• Alice has acceptable assurance of who may have the key value.

• Alice has acceptable assurance that the key is fresh.

Each property in the above definition seems to naturally require that a user send a message to
achieve it, or receive a message to achieve it. The sending or receiving of a message has to be
integrated with cryptographic primitives in a secure manner. There are two possible ways of
achieving assurance of recipient names.

Recipients by Imposition (RI) A trusted entity controls who gets the key. Alice is told the
names of the intended recipients over an authentication channel from the trusted entity. The
property of such a channel is that Alice can be sure that the names of the intended recipients
were sent by the trusted entity.

Recipients by Choice (RC) Alice controls who gets the key. Alice generates keying material
and sends it over a confidentiality channel to the intended recipients. The property of such
a channel is that Alice can be sure that only the intended recipients will receive the keying
material.

Key freshness can be achieved in one of the following two ways.

Freshness by Receipt (FR) A trusted entity controls freshness of the key. A fresh element is
sent over an authentication channel from the trusted entity to prove freshness of the key.

Freshness by Input (FI) Alice controls freshness of the key. Alice generates a fresh input to the
key generation process.

Overall, there are four different classes of protocols assuming Alice achieves assurance of recipient
names and key freshness in the same way as Bob. Note that key agreement protocols lie in the
protocol classes where freshness is achieved by input (FI). There are four such classes taking into
account the possibility that Alice and Bob could achieve assurance of recipient names in distinct
ways. The protocols of Boyd that lower Gong’s bounds lie in the class where both Alice and Bob
achieve assurance of recipient names by imposition. The new protocols proposed in Section 5 lie
in the class where Alice achieves assurance of recipient names by choice and Bob achieves it by
imposition (or vice-versa).

The following notations are used in the remainder of the paper. The notation {M}K denotes a
string with the following properties.

1. The string can be used to recover M only with possession of K. (Confidentiality)

2. The string cannot be calculated from M without possession of K. (Integrity)

An encryption algorithm with a cryptographic checksum included would implement such a trans-
formation. The next two notations correspond to transformations that satisfy only one of the two
properties.

• [M ]K denotes a string that satisfies integrity. A message authentication code (MAC) would
be a typical implementation of such a transformation.

• 〈M〉K denotes a string that satisfies confidentiality. An encryption algorithm would be a
typical implementation of such a transformation.

3



3 Existing Protocols

We assume two users A (Alice) and B (Bob) who share long-term keys KAS and KBS with a server
S respectively. In what follows, NA, NB , and KS are random values chosen by A, B, and S,
respectively. The first example protocol proposed by Boyd is as follows [5, p. 4].

1. A → S: A, B, NA

2. S → B: {A,B,KS}KAS
, {A,B,KS}KBS

, NA

3. B → A: {A,B,KS}KAS
, [NA]KAB

, NB

4. A → B: [NB ]KAB

Neither of the values NA and NB is kept secret. The value KS is kept confidential to A and B.
The session key KAB is the result of the operation of a one-way function f of two variables,

KAB = f(KS , NA | NB),

where NA | NB denotes the concatenation of NA and NB . The following two properties are essential
to the security of the above protocol.

1. f should be such that it is infeasible to calculate f(KS , .) without knowledge of KS .

2. f should be such that if one of the values NA or NB is fresh then it is infeasible to choose the
other value so that the output of f is an old value.

The first property is needed to achieve assurance of recipient names. The second property is needed
to achieve assurance of key freshness. A typical implementation of f would be a MAC algorithm.

The protocol above is more efficient in the number of messages than any protocol using nonces,
where freshness is achieved by receipt, and where a handshake is included. The lower bounds Gong
has found for nonce-based protocols of this class are 6 messages and 5 rounds if the two users jointly
choose the key, or 5 messages and 4 rounds if the server chooses the key. The following example
protocol, also due to Boyd, is similar in goal to the protocol above but requires only 3 rounds [5,
p. 5].

1. A → S: A, B

2. A → B: A, NA

3. S → B: {A,B,KS}KBS

4. S → A: {A,B,KS}KAS

5. B → A: B, NB

6. B → A: [NA]KAB

7. A → B: [NB ]KAB

4



The session key is defined as before. This protocol can be executed in 3 rounds by sending the
following sets of messages in parallel: messages 1 and 2, messages 3, 4, and 5, and messages 6 and
7.

The protocols described so far do not provide the forward secrecy property, that is, past session
keys are compromised if long-term keys are compromised. Each of these protocols can be extended
to provide forward secrecy. We take as example the following protocol [5, p. 6] in which the number
of rounds remains the same as the second protocol above. In the description below, g is a generator
of a suitable group in which the discrete logarithm problem is hard.

1. A → S: A, B

2. A → B: A, gNA

3. S → B: {A,B,KS}KBS

4. S → A: {A,B,KS}KAS

5. B → A: B, gNB

6. B → A: [gNA ]KAB

7. A → B: [gNB ]KAB

The session key is the value gNANBKS . It is obtained by A as (gNB )NAKS and by B as (gNA)NBKS .
Observe that knowledge of at least one of NA or NB and KS is needed in order to obtain KAB

from the exchanged messages. The values NA and NB are destroyed by A and B respectively, after
their time of use.

4 Attack

Key confirmation is a desirable goal in many key establishment protocols. It can be achieved by
having each user send a message to the other that requires knowledge of the session key, usually
called ‘handshake’ message. Since all the protocols above include handshake messages, it seems
that key confirmation is a goal of these protocols. We demonstrate below an attack on the second
example protocol to show that it does not provide key confirmation to A; the same attack is also
applicable to the variant protocol which provides forward secrecy. In the following, C denotes an
attacker who acts as B in the protocol.

1. A → S: A, B

2. A → C: A, NA

3. S → C: {A,B,KS}KBS

4. S → A: {A,B,KS}KAS

5. C → A: B, NA

6. A → C: [NA]KAB

5



7. C → A: [NA]KAB

The first thing to note is that C obtains the value NA in message 2. C is now able to send this
value back to A in message 5 as B’s nonce. C then waits for the handshake message sent by A,
delaying the sending of the handshake message expected by A. The handshake message sent by A
will be [NA]KAB

. After it receives this message, C can complete the protocol by simply replaying
it to A. The attack shows that the protocol fails to assure A that B did actually obtain KAB .
Observe that C does not learn KS and consequently cannot obtain KAB . There is no failure of
confidentiality or freshness of KAB but there is loss of key confirmation.

Attacks which exploit the same pattern of weakness have been published in the literature; for
example by Mitchell [11]. The usual remedy is to include identity fields in the handshake messages.

1. A → S: A, B

2. A → B: A, NA

3. S → B: {A,B,KS}KBS

4. S → A: {A,B,KS}KAS

5. B → A: B, NB

6. B → A: [B,NA]KAB

7. A → B: [A,NB ]KAB

The inclusion of identity fields ensures that the victim entity A cannot be used as an oracle by the
attacker. Note this modification does not affect the number of rounds in the protocol.

The attack above does not apply to the first example protocol. The attack cannot succeed
because in that protocol B sends his handshake message and nonce in the same message. The
problem for the attacker now is that he cannot form the correct handshake message even though
he can replay A’s nonce.

5 New Protocols

It was noted by Boyd that his protocols are vulnerable to the BBF attack. To see this, suppose
A’s long-term key KAS is compromised. As a consequence of this the attacker would gain access
to KS and thus be able to impersonate A to B. It would however be reasonable to expect that
the protocol would become secure once the compromised key is replaced with a new one. This is
not true for the protocols above. Even after a new key is installed, the attacker can continue to
masquerade as A to B by simply replaying the value {KS , A,B}KBS

containing a compromised KS

from an old run that took place before A’s long-term key was replaced. Boyd suggested that the
attack can be prevented by publishing a list of KS values that are known to be compromised, similar
to certificate revocation mechanisms used in public key infrastructure. However, this may be seen
as an important disadvantage of his protocols since protocols where key freshness is achieved by
receipt do not require such mechanisms. In this section we show that it is possible to avoid the use
of key revocation lists without loss of security, while maintaining the level of efficiency achieved by
Boyd’s protocols.

The first protocol we propose is as follows.

6



1. A → S: {B, gNA}KAS

2. S → B: {A, gNA}KBS

3. B → A: gNB , [gNA ]KAB

4. A → B: [gNB ]KAB

As in Diffie-Hellman key exchange, the session key is KAB = gNANB . Note that A sends her
contribution gNA in a confidential way to B via S, so A achieves assurance of recipient names by
choice. B obtains recipient information by imposition. Both A and B obtain freshness of KAB by
input. Thus from A’s viewpoint the protocol lies in class RC/FI, and from B’s viewpoint it lies in
class RI/FI.

Similar to Boyd’s first protocol, the protocol above has four messages. By rearranging the
messages, we obtain the variant protocol below that can be executed in three rounds.

1. A → S: {B, gNA}KAS

2. A → B: A, B

3. S → B: {A, gNA}KBS

4. B → A: gNB

5. A → B: [gNB ]KAB

6. B → A: [gNA ]KAB

As before, the session key is KAB = gNANB . A useful property of this protocol is that it requires
one less message than the round-optimal protocol of Boyd’s class. The attack described in Section 4
does not work against the protocol above because the attacker does not gain access to the value
gNA . It therefore does not seem necessary to include the identity fields in the handshake messages.

Before examining the security of the proposed protocols against the BBF attack, we construct
a ‘split channel’ protocol similar to the one constructed by Boyd. The advantage of this proto-
col is that it makes explicit distinction between those message elements that need confidentiality
protection and those that need integrity protection, leading to greater flexibility in the choice of
cryptographic algorithms.

1. A → S: 〈gNA〉KAS
, B, [B, gNA ]KAS

2. S → B: 〈gNA〉KBS
, A, [A, gNA ]KBS

3. B → A: gNB , [gNA ]KAB

4. A → B: [gNB ]KAB

7



5.1 Compromise of long-term keys

Let us consider the security of our proposed protocols against the BBF attack. There are two cases
to consider.

Suppose that Alice’s old key KAS is compromised and subsequently replaced. Consider what
an attacker may gain from this compromise. Compromise of KAS reveals gNA , but does not reveal
NA. The attacker could replay the value {A, gNA}KBS

to B, but he cannot find the value of the
session key since it requires knowledge of NA. The attacker could also generate a new value of the
form {B, gNX}KAS

and send it to S, but S will not accept this message since the value KAS has
been replaced with a new one.

Suppose that Bob’s old key KBS is compromised and subsequently replaced. The attacker
cannot masquerade as B to A because it requires knowledge of gNA , which can be retrieved only
with knowledge of B’s new key or A’s key.

5.2 Re-issuing of keys

Boyd’s protocols have the feature that the values {A,B,KS}KAS
and {A,B,KS}KBS

generated by
S are independent of the random inputs chosen by A and B. As a consequence of this it is possible
to cache the value KS and re-use it to establish new session keys without contacting S again. This
feature may be obtained in our protocols by modifying the messages sent by S and B. Consider
the following example protocol.

1. A → S: {B, gNA}KAS

2. S → B: {A, gNA}KBS
, {A,B,KS}KAS

, {A,B,KS}KBS

3. B → A: gNB , [gNA ]KAB
, {A,B,KS}KAS

, {A,B,KS}KBS

4. A → B: [gNB ]KAB

The session key is now defined as KAB = gNANBKS . Notice that Alice achieves assurance of
recipient names in more than one way. Considering that her own key component is sent over a
confidentiality channel, Alice achieves assurance of recipient names by choice. Considering that
she receives information from the server on who else knows KS , she achieves assurance of recipient
names by imposition.

With the protocol above, the following protocol can be used to re-establish new keys without
using S.

1. A → B: gN ′
A , {A,B,KS}KBS

2. B → A: gN ′
B , [B, gN ′

A ]K ′
AB

3. A → B: [A, gN ′
B ]K ′

AB

The new session key is defined as K ′
AB = gN ′

AN ′
BKS , where gN ′

A and gN ′
B are new inputs chosen by A

and B. It should be noted that one feature of the original protocol is lost, namely resistance to BBF
attack without using key revocation lists. The view may therefore be taken that this particular
class of protocols is not particularly attractive over Boyd’s protocols.

8



6 Conclusions

In this paper we proposed new key agreement protocols that lower Gong’s bounds for protocols using
nonces. Our protocols do not require any additional mechanisms such as key revocation lists for
protection against the BBF attack, unlike existing nonce-based protocols that lower Gong’s bounds.
The lesson to be learned from the attack on Boyd’s protocol is that the security of any protocol
must always be considered relative to all its goals. There are intuitive arguments for the security
of the proposed protocols, but no proof has been given. There is wide recognition that proving
protocols secure is a difficult task. Bellare and Rogaway [12] have pioneered a reductionist security
proof methodology for protocols which is widely used today. Although a number of protocols exist
for which security proofs are available, these protocols turn out to be less efficient in the number
of messages and rounds than our protocols. The Bellare-Rogaway definition of security is violated
if the session key is used within the protocol. Thus it rules out proofs of protocols that provide
key confirmation. Furthermore, in their model there is no notion of installing a new long-term key
after discovering a compromise; thus a security proof does not imply that the protocol is secure
against the BBF attack. For example, Shin and Lee [13] have shown that two protocols proposed
by Shoup and Rubin [14, 15], which have been proven secure and implemented, are vulnerable to
the BBF attack.

References

[1] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996.

[2] Rainer Rueppel and Paul C. van Oorschot. Modern key agreement techniques. Computer
Communications, 17:458–465, 1994.

[3] Li Gong. Lower bounds on messages and rounds for network authentication protocols. In 1st
ACM Conference on Computer & Communications Security, pages 26–37. ACM Press, 1993.

[4] Chen Hao, John Clark, and Jeremy Jacob. Synthesising efficient and effective security pro-
tocols. In IJCAR 2004 Workshop on Automated Reasoning for Security Protocol Analysis.
http://wwww-users.cs.york.ac.yk/~jeremy/papers/ARSPA2004.pdf.

[5] Colin Boyd. A class of flexible and efficient key management protocols. In 9th IEEE Computer
Security Foundations Workshop, pages 2–8. IEEE Press, 1996.

[6] I.-L. Kao and R. Chow. An efficient and secure authentication protocol using certified keys.
ACM Operating Systems Review, 29(3):14–21, 1995.

[7] Bruno Crispo, Bogdan Popescu, and Andrew Tanenbaum. Symmetric key authentication
services revisited. In Proceedings of ACISP 2004, volume 3108 of LNCS, pages 248–261.
Springer-Verlag, 2004.

[8] R. Bauer, T. Berson, and R. Feiertag. A key distribution protocol using event markers. ACM
Transactions on Computer Systems, 1(3):249–255, August 1983.

[9] R. Needham and M. Schroeder. Using encryption for authentication in large networks of
computers. Communications of the ACM, 21(12):993–999, December 1978.

9



[10] Colin Boyd. A framework for design of key establishment protocols. In Proceedings of
ACISP’96, volume 1172 of LNCS, pages 146–157. Springer-Verlag, 1997.

[11] Chris J. Mitchell. Limitations of challenge-response entity authentication. Electronics Letters,
25:1195–1196, 1989.

[12] Mihir Bellare and Phillip Rogaway. Provably secure session key distribution – the three party
case. In 27th ACM Symposium on Theory of Computing, pages 57–66. ACM Press, 1995.

[13] Jun-Bum Shin and Kwang H. Lee. Bauer-Berson-Feiertag attack revisited. Technical Report
2002/146, Cryptology ePrint Archive, 2002. http://eprint.iacr.org/2002/146/.

[14] Victor Shoup and Aviel Rubin. Session key distribution using smart cards. In Advances in
Cryptology - Eurocrypt’96, volume 1070 of LNCS, pages 321–331. Springer-Verlag, 1996.

[15] R. Jerdonek, P. Honeyman, K. Coffman, J. Rees, and K. Wheeler. Implementation of a
provably secure, smartcard-based key distribution protocol. In Proceedings of CARDIS ’98,
volume 1820 of LNCS, pages 229–235. Springer-Verlag, 2000.

10


