¹⁰C 次级束的产生

苏 俊,李志宏,连 刚,王友宝,郭 冰,曾 晟, 颜胜权,王宝祥,白希祥,柳卫平

(中国原子能科学研究院 核物理研究所,北京 102413)

摘要:在中国原子能科学研究院 HI-13 串列加速器次级束流线上通过¹ H(10 B, 10 C)n反应产生了能量为 (55.9±0.9) MeV的 10 C 放射性次级束。经过磁刚度和速度选择,准直后的 10 C 束流纯度达到 90%以上,强度约为 6 s⁻¹ · pnA⁻¹。

关键词:次级束;磁刚度;速度选择器

中图分类号:O571.423 文献标识码:A 文章编号:1000-6931(2006)05-0513-04

Production of ¹⁰C Secondary Beam

SU Jun, LI Zhi-hong, LIAN Gang, WANG You-bao, GUO Bing, ZENG Sheng, YAN Sheng-quan, WANG Bao-xiang, BAI Xi-xiang, LIU Wei-ping (China Institute of Atomic Energy, P. O. Box 275-46, Beijing 102413, China)

Abstract: A ¹⁰C beam with the energy of (55. 9 ± 0.9) MeV was produced via the ¹H(¹⁰B, ¹⁰C) n reaction on the secondary beam line of the HI-13 tandem accelerator at China Institute of Atomic Energy. The purity of the collimated ¹⁰C beam is better than 90% after the magnetic and velocity selection. The beam intensity is about 6 s⁻¹ • pnA⁻¹.

Key words: secondary beam; magnetic rigidity; wien filter

大爆炸原初核合成标准模型预言的"金属" 元素丰度只有太阳系的 10⁻¹²,与对最古老贫金 属恒星观测的结果 10⁻⁴ 相距甚远。根据重子 密度不均匀的非标准模型,核合成可以在相对 丰质子的高密度区和相对丰中子的低密度区中 进行,许多不稳定核引起的反应变得非常重要, 其中,包含了几个与不稳定核¹⁰ C 相关的反 应^[1]。因此,涉及¹⁰ C 的核反应对原初核合成 模型的研究具有重要意义。 现代核物理对奇异核的研究发现了许多新 的现象,如晕核、β延迟粒子发射等。目前,在 实验上,滴线附近的奇异核主要靠稳定核之间 的多次反应产生,无法预设反应末态的自旋宇 称,对核谱学研究具有很大的限制。利用放射 性核反应产生滴线附近的核素则不存在这一问 题。其中,1个典型的例子是用¹⁰C次级束轰击 厚氢靶,利用¹⁰C与质子的弹性共振散射研究 非束缚核¹¹N的性质^[2,3]。此外,¹⁰C的同位旋

收稿日期:2006-02-20;修回日期:2006-03-30

基金项目:国家自然科学基金资助项目(10375096,10575137,10575136) 作者简介:苏 俊(1983—),男,江西贵溪人,博士研究生,粒子物理与原子核物理专业

T=1,研究它的 0⁺→0⁺ 超容许 β 跃迁 ft 值, 对检验矢量流守恒假设有重要意义^[4+5]。

¹⁰C次级束在核天体、核结构及核理论等 领域具有许多应用价值。本工作在中国原子能 科学研究院 HI-13 串列加速器次级束流线上产 生¹⁰C 束流,对放射性次级束流线未来的研究 工作、研究领域的拓宽具有重要意义。

1 ¹⁰C 次级束的产生和纯化

在次级束流线^[6]上利用 HI-13 串列加速器 提供的 72 MeV ¹⁰B 初级束轰击长度为4.8 cm 的氢气靶,通过¹H(¹⁰B,¹⁰C)n 反应产生¹⁰C 次 级束流。氢气靶前后窗均为厚度 1.9 mg/cm² 的 Havar 膜,氢气的气压约为 1.6×10⁵ Pa。 由于反应是逆运动学的,¹⁰C 集中出射在最 大角度为 3.2°的小角锥内,便于收集、分离 和传输。

为尽量避开透射的初级束,次级束流线的 接收角设置在 3°。进入次级束流线的离子包 括¹⁰C 等反应产物和初级束在气体靶室散射 的¹⁰B。¹⁰C 与杂质离子经过一最大磁刚度为 1.4 Tm 的二极磁铁偏转而实现第 1 步分离。 离子在磁场中运动时,磁刚度与其质量、能量和 电荷态的关系可表示为:

 $B\rho = \frac{0.003\ 335\ 6}{q}\ \sqrt{2Mc^2E_{\rm k} + E_{\rm k}^2} \quad (1)$

其中: B_{ρ} 为离子的磁刚度;q为电荷态;M和 E_{k} 分别为离子的静止质量和动能;c为光速。 计算得到 $\theta_{lab} = 3^{\circ}$ 出射的¹⁰ C⁶⁺的能量为 55.84 MeV,磁刚度为 0.568 4 Tm。按照目标 核¹⁰C⁶⁺的磁刚度设置二极磁铁的磁场,其它杂 质若混入¹⁰C 次级束中,能量需要与磁刚度设 置相匹配。表 1 列出了这些离子进入二极磁铁 的实际能量和与目标核¹⁰C⁶⁺的磁刚度相匹配 的能量。

由表1可见,除目标核¹⁰C⁶⁺外,绝大多数 出射离子实际能量显著高于匹配能量。选取适 当的二极磁铁磁场设置可将它们有效排除,但 它们的低能拖尾会部分与磁刚度匹配而成为少 量杂质。实际上,初级束在靶窗、气体上的卢瑟 福散射截面远大于各反应道的截面,次级束的 主要杂质是从靶窗、气体以及管壁上多重散射 过来的¹⁰B。为了进一步纯化次级束流,在次级 束流线下游安装了速度选择器,将次级束中的 杂质进行第2步分离。

速度为 v 的离子在速度选择器中运动时受 到的力可表示为:

$$F = q(E - \beta cB) \tag{2}$$

其中:E和B分别为速度选择器的电场强度和 磁感应强度; $\beta = v/c$,c为光速。

假设速度为 v_o 的被选择离子在速度选择 器中受到的电力和磁力刚好相等时,速度为 v_o 的杂质离子所受到的力为:

$$F = q_{\rm c} E(\beta_{\rm o} - \beta_{\rm c}) / \beta_{\rm o} \tag{3}$$

其中: q_c 为杂质离子的电荷; β_c 和 β_c 分别为目 标离子和杂质离子的 β 值。

表 1	不同产	物在	3°的≆	实际能	量和	匹配	能量

Table 1 Energies of different reaction products at $\theta_{lab} = 3^{\circ}$ and their needed energies

to match magnetic rigidity of ¹⁰C⁶⁺

离子	质量 /MeV	实际能量 /MeV	电荷态	匹配能量/MeV
¹⁰ C	9 330.64	55.84	6+	55.84
¹⁰ C	9 330.64	55.84	5+	38.78
$^{10}\mathrm{B}$	9 326.99	65.27	5+	38.79
$^{10}\mathrm{B}$	9 326.99	65.27	4+	24.83
⁷ Be	6 536.23	62.13	4+	35.43
⁷ Be	6 536.23	62.13	3+	19.93
4 He	3 728.43	48.23	2+	15.53
4 He	3 728.43	48.23	1 +	3.88
2 H	1 876.14	14.04	1+	7.72
$^{1}\mathrm{H}$	938.79	23.06	1 +	15.42

杂质离子在速度选择器终端的位移和发散 角分别为:

$$y = (q_{c} E l^{2} / 2 p_{o} c) (\beta_{o}^{-1} - \beta_{c}^{-1})$$
(4)

$$\theta = (q_c El/p_o c)(\beta_o^{-1} - \beta_c^{-1}) \tag{5}$$

其中:*l*为速度选择器长度;*p*。为目标离子的动量。

根据目标离子¹⁰C⁶⁺的能量和电荷态,速度 选择器电场和磁场分别设置为 18 kV/cm 和 55.08 mT。速度选择器长度为 103.2 cm,次 级靶室距离速度选择器终端 420 cm。根据各 种离子经磁刚度选择后的能量,计算得到它们在 次级靶室前的偏转距离。计算结果列于表 2。

表 2 各种离子在次级靶室前的偏转距离

 Table 2
 Deflected distance of different ions

before secondary	reaction (chamber
------------------	------------	---------

离子	偏转距离/mm	离子	偏转距离/mm
$^{10}\mathrm{C}^{6+}$	0	$^7\mathrm{Be^{3+}}$	-188
$^{10}\mathrm{C}^{5+}$	-94	$^{4}\mathrm{He^{2+}}$	-93
$^{10}\mathrm{B}^{5+}$	-93	$^{4}\mathrm{He^{+}}$	-660
$^{10}\mathrm{B}^{4+}$	-234	$^{2}\mathrm{H}^{+}$	-97
$^7\mathrm{Be^{4+}}$	-24	$^{1}\mathrm{H}^{+}$	184

次级靶室前安装了孔径分别为 5 和 3 mm 的准直光阑。由表 2 可看出,各种杂质离子在 次级靶室前的偏转距离均远大于准直光阑孔 径,无法进入次级靶室。使用速度选择器可进 一步排除束流中的杂质,从而得到纯度较高 的¹⁰C 次级束流。同时,准直光阑还可降低次 级束的固有角散。

与以前的实验^[7,8] 类似,在次级靶室内使 用 1 套 Δ E-E 计数器望远镜收集和鉴别次级束 流。 Δ E 探测器选用厚度 19.3 μ m 的穿透型硅 探测器,E 探测器为厚度 300 μ m 的阻止型硅探 测器。

2 结果与讨论

利用 72 MeV ¹⁰ B 初级束轰击氢气体靶,经 过次级束流线优化后,得到能量为55.9 MeV、 纯度约为 92%、能散约为 2.14 MeV(FWHM) 的¹⁰ C 次级束。¹⁰ C 次级束能谱和 ΔE - E_x 二维谱 分别示于图 1、2。

在调束过程中,为进一步确认次级束流

图 1 ¹⁰C 次级束能谱

Fig. 1 Energy spectrum of ¹⁰C secondary beam

Fig. 2 Scatter plot of ΔE vs. E_{t}

为¹⁰C,还进行了空靶实验,即不改变实验条件, 抽出初级靶室中的氢气,以期确认此时次级束 流不含有¹⁰C。由图 2 可以看出,次级束流中的 杂质主要还是多重散射过来的初级束流¹⁰B,能 量约为 46 MeV。经速度选择器偏转后,¹⁰B 以 及其它一些较轻离子在次级束流中所占的比例 已很小(<10%),对次级反应实验影响不大。 在调束时,使用了天然硼作为离子源,其中的 ¹⁰B含量为 19.8%,¹⁰B 初级束的最大强度为 30 pnA,准直后得到的¹⁰C 次级束强度约为 170 s⁻¹。如果使用纯¹⁰B 作为离子源,¹⁰B 初级 束的最大强度可达 15 pnA,¹⁰C 次级束的最大 强度能够达到 850 s⁻¹,可满足在本次级束流线 上进行核反应实验的要求。

作者对 HI-13 串列加速器运行人员给予的 帮助表示感谢。

参考文献:

[1] KAJINO T, BOYD R N. Production of the light

elements in primordial nucleosynthesis[J]. The Astrophysical Journal, 1990, 359: 267-276.

- AXELSSON L, BORGE M J G, FAYANS S, et [2] al. Study of the unbound nucleus ¹¹N by elastic resonance scattering[J]. Physical Review, 1996, C54:R1 511-R1 514.
- MARKENROTH K, AXELSSON L, BAXTER [3] S, et al. Crossing the dripline to ¹¹N using elastic resonance scattering[J]. Physical Review, 2000, C62:034 308.
- [4] SAVARD G, GALINDO-URIBARRI A, HAG-BERG E, et al. ¹⁰C superallowed branching ratio and the cabibbo-kobayashi-maskawa matrix unitarity[J]. Physical Review Letters, 1995, 74: 1 521-1 524.
- [5] FUJIKAWA B K, ASZTALOS S J, CLARK R M, et al. A new measurement of the strength of the superallowed Fermi branch in the beta decay of ¹⁰C with GAMMASPHERE[J]. Physics Let-

ters, 1999, B449:6-11.

- [6] BAI Xixiang, LIU Weiping, QIN Jiuchang, et al. A facility for production and utilization of radioactive beams [J]. Nucl Phys, 1995, A588: 273c-276c.
- [7] 曾晟,柳卫平,李志宏,等.⁸Li次级束的产生 [J]. 原子能科学技术, 2002, 36(3):227-229. ZENG Sheng, LIU Weiping, LI Zhihong, et al. Production of ⁸Li secondary beam [J]. Atomic Energy Science and Technology, 2002, 36(3): 227-229(in Chinese).
- [8] 王宝祥,李志宏,曾晟,等.¹⁵O次级束的产生 [J]. 原子能科学技术, 2005, 39(4):289-292. WANG Baoxiang, LI Zhihong, ZENG Sheng, et al. Production of ¹⁵O secondary beam for measurements of reactions of nuclear astrophysical interests [J]. Atomic Energy Science and Technology, 2005, 39(4):289-292(in Chinese).

存储式放射性能谱测量仪

【公开日】2006.04.19 【分类号】G01V5/04 【申请日】2005.07.07

【申请号】CN200510044014.4

【公开号】CN1760695

【申请人】中国石化集团胜利石油管理局测井公司 【文摘】本发明涉及一种存储式放射性能谱测量仪,适合在产液井长期监测其产出液体的放射性。采用的技术 方案是:由存储式放射性能谱探测器、仪器电缆、电源组成。存储式放射性能谱探测器由放射性传感器、存储式放 射性能谱测量电路板、铅屏蔽、高压电源、电路板支架、仪器外壳、指示灯、仪器插座组成。存储式放射性能谱测量 电路板由前置电路、放大电路、脉冲鉴别电路、峰值检测电路、A/D、CPU、高压检测、温度检测、电源检测、实时时 钟、时钟电池、主机电源、测量电源管理、测量电源、数据存储器组成。存储式放射性能谱探测器采用一体化、低功 耗设计,这种设计能使仪器结构紧凑,便于施工和长期作业。配以专用对话软件,计算机通过专用通讯电缆与存储 式放射性能谱测量仪连接,用于下载数据和工作程序,具有仪器对话、编程、数据回放、绘图、检测、维修与标定等 功能。

摘自中国原子能科学研究院《核科技信息》