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ABSTRACT

This paper has two purposes: One is to present a new and efficient multilevel numerical model for calculating
the response of the ocean to a moving storm; the second is to show how, on a time scale of a few inertial
periods following the arrival of the storm, the maximum horizontal and vertical velocities found in the wake
can be calculated using a linear Ekman model and a knowledge of that part of the change in the depth of the
wind mixed layer due to entrainment. This is demonstrated over a range of experiments with the multilevel
numerical model. These integrate the full nonlinear equations of motion with realistic ocean stratification and
involve substantial entrainment of water into the wind mixed layer.

It is also shown that on this time scale, the horizontal currents are confined near the surface but that the
vertical velocity field extends throughout the depth of the ocean. It is shown in Appendix B that the wind
forcing need only be “large™ or “fast” for the forced response not to feel the effect of the ocean stratification
and to extend through the depth of the ocean in this way.

The parameter which determines the horizontal structure of the response, in coordinates scaled with respect
to the scale L of the storm, is k = U/Lf. Here U is the storm translation speed and fthe Coriolis parameter.
This parameter also determines the magnitude of the response, after suitable nondimensionalization.

Finally, it is shown how to apply these results to an interpretation of observations and other model results.
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Introduction

The problem of the response of the ocean to a storm
is, on the face of it, a complex one involving both
storm scale dynamics and also substantial mixed layer
effects. A number of models have been developed with
which to study it. Most notable of these have been
O’Brien and Reid (1967) and O’Brien (1967) who
looked at stationary storms, O’Brien (1969) who looked
at a slowly moving storm, Geisler (1970) who looked
at the linear dynamics of the response to a moving
storm but did not include mixed layer effects, Elsberry
et al. (1976) who were primarily concerned with ther-
mal effects and therefore placed emphasis on modeling
the wind mixed layer, Chang and Anthes (1978) who
combined mixed layer effects and dynamics in a one
active layer model, Price (1981) who embedded a
mixed layer model in a multilayer dynamical model
and Martin (1982) who considered a one-dimensional
model that included both dynamics and vertical mix-
ing. This paper has two purposes: One is to present a
new and efficient multilevel numerical model (in which
a model for the wind-mixed layer has been embedded)
for calculating the response to a moving storm; the
second is to show how, on a time scale of a few inertial
periods following the onset of the storm, the maximum
horizontal and vertical velocities found in the wake of
the storm can be calculated using a linear Ekman model

1 Present affiliation: Geophysical Fluid Dynamics Program,
Princeton University, Princeton, NJ 08540.
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and a knowledge of that part of the change in the
mixed layer depth due to entrainment. This is dem-
onstrated over a range of numerical experiments. These
integrate the nonlinear equations of motion using re-
alistic ocean stratification and involve substantial en-
trainment of water into the wind-mixed layer.

To achieve this second purpose, we consider the
limit of large, fast storms introduced by Greatbatch
(1984) and used there to elucidate those features of
the response associated with the nonlinear terms in
the equations of motion. The crucial approximation
associated with this limit is that of dropping the hor-
izontal pressure gradient terms from the equations of
motion. Consideration of this limit leads to some ad-
ditional resuits in this paper concerning the vertical
structure of the response. In particular, it is found that
the horizontal currents generated by the storm are ini-
tially confined near the surface, while the associated
vertical velocity field extends throughout the depth of
the ocean. In the large, fast storm limit this is just the
inertial pumping' and varies linearly from the base of
the wind-mixed layer to the ocean floor. In Appendix
B, it is shown that it is sufficient that the wind forcing
be either fast or large for the forced response to extend
throughout the depth of the ocean in this way.

! By “inertial pumping” we mean the pumping associated with
inertial currents in the mixed layer. This seems a more appropriate
term to use than “Ekman pumping” since the latter usually refers
to time scales long compared with 1/fand is given by assuming a
steady state Ekman balance with the wind forcing.
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The limit of large, fast storms is formally defined
in Section 1 of this paper, following the setting up of
the governing equations. The structure of the response
in the large, fast storm limit is discussed in Section 2.
The parameter which governs the response in this limit
is k = U/Lf. This measures the ratio of the time scale
L/U for the passage of the storm to the local inertial
time scale 1/f. Section 3 describes the multi-level nu-
~ merical model which is used in Section 4 to generate
resuits over many experiments. These are used to verify
the conclusions of Section 2, showing that the nu-
merically generated solutions are approximated quite

- well by the large, fast storm limit. Section 5 applies
these ideas to give an interpretation of the model results
of Price (1981) and also demonstrates that when con-
sidering observations or model results at a fixed point,
it is important to consider the effects of horizontal
advection. A summary and discussion is given in Sec-
tion 6.

The paper also includes two appendices. In Appen-
dix A, an alternative approach to the limit of large,
fast storms is given which does not involve separating
into vertical normal modes. Appendix B consists of a
note on the depth of penetration of the ocean response
to wind forcing. The aim here is twofold: 1) to find
sufficient conditions under which the forced response
is deep so that a description in terms of vertically prop-
agating waves is inappropriate and 2) to demonstrate
that it is the wave speeds associated with the baroclinic
modes that measure the penetrability of the ocean and
it can be misleading to consider only the upper highly
stratified part of the ocean in isolation.

1. The equations

We consider a steady storm translating with speed
U in the direction of x increasing. The forcing (X, Y)
is then a function of the two independent variables £
= Ut — x and y, where ¢ is time and y is the cross-
track coordinate. It therefore makes sense to seek so-
lutions that are functions only of £, y and z, where z
is the vertical coordinate measured positively upwards,
and this we shall do throughout this paper.? We shall
ignore salinity effects so that instead of working with
density p, we shall work with temperature 7 via the
equation of state

p = poll — (T = Tp)),

where p, is the density at temperature T, and « the
coeflicient of thermal expansmn whose value will be
fixed at 2 X 1074 °C™.

An important simplification in this paper will be to
consider only the baroclinic response. In the context
of the nonlinear equations to be considered, we shall

2 This simplification is crucial only to the numerical technique
described in Section 3. It can be relaxed throughout the remainder
of this paper.
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define the barotropic response to be that associated
with the vertically-averaged velocity field and the baro-
clinic to be that remaining when the barotropic is re-
moved. Scale analysis can be used to show that it is
reasonable to neglect the forcing of the baroclinic re-
sponse due to the barotropic, provided the depth of
the wind mixed layer 4 is small compared with the
total depth H of the ocean and the scale of the storm
is small compared with the barotropic Rossby radius
of deformation. These conditions are generally satisfied
in the open ocean. Indeed, throughout this paper, at-
tention is restricted to the deep, open ocean in the
sense that it is assumed that # < H and that we are
away from the influence of coastal boundaries and
continental shelves. The equations for the baroclinic
response in terms of the independent variables £, y
and z are then

u(U — 1) + une + vu, + wu, — fo

=p5+X+v_uy+Iv72+(%)mix, (1.1a)
v(U — u) + uv; + vv, + wo, + fu
=-p,+Y+ovv,+ wo, + (%)mix, (1.1b)
0 = —p, + gab, (1.1¢)
—u;+ v, +w, =0, (1.19)

0U — 1) + v, + w(® + T),
d
= (Ziz 0+ T))mix’ (1.1e)

where the overbar denotes vertical average and
(d/dt),ix denotes terms associated with turbulent mix-
ing. Here 7(z) is the temperature of the ocean in its
undisturbed state and # the temperature perturbation
from that state. Similarly, p is the perturbation pressure®
divided by p,. The velocity components (i, v, w) are
in the x, y, z directions, respectively; g is the accel-
eration due to gravity and f the Coriolis parameter
which is assumed to have a uniform value. The hy-
drostatic and Boussinesq approximations have been
made, with p, being taken as a representative density.

Since the atmospheric surface pressure anomaly as-
sociated with the storm is only significant as a forcing
of the barotropic mode [this is discussed by Geisler
(1970)}, it is neglected here. The forcing (X, Y) therefore
consists only of wind forcing which will be modeled
as a body force acting on a wind-mixed layer of depth
h. We therefore have

3 Throughout the rest of this paper, p will be called the perturbation
pressure rather than the quantity (pop).
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X, ¥) = — (s, T)FL2), (1.22)
poh

where 7 = (7, 7,) is the surface wind stress and

1—-hH —-h<z<0
Fy2) = { ‘
—h/H, —-H<z<—h.
The projection of the wind forcing onto the barotropic
mode has been removed so that (1.2) is the forcing
appropriate to the baroclinic response.

Throughout this paper [and also Greatbatch (1984)],
the wind mixed layer is modeled as a slab within which
both horizontal currents and temperature are assumed
to be uniform in the vertical. The depth # of this layer
is given by the equation

(1.2b)

Uh, — (hu); + (hv), = (@) (1.3)

dt

where (dh/df)m;x is the rate of entrainment. It is assumed
that all the mixing takes place in the form of entrain-
ment of water into the wind mixed layer and that
momentum is conserved in this process. The terms
(Au/db) mix, (AV/dDmix in (1.1) are therefore zero every-
where except in the wind mixed layer where they are

given by
(@)~ 5 ()
dt mix h dt mix,

(19) -4 (@)
dt mix h dt mix.

Au = Uiy — U_p, AV = Uy — V_y, 1s the difference
in u, v, respectively, across the base of the layer, (t4yix,
Vmix) being the horizontal velocity in the mixed layer
itself.

(1.4)

a. Boundary and initial conditions

The equations (1.1) will be solved subject to the
boundary conditions

w=0 at z=0, (1.5a)

w=0 at z=-—H. (1.5b)

Eq. (1.5a) is the rigid-lid approximation and is con-
sistent with restriction to the baroclinic response.

To obtain an initial condition .ahead of the storm,
we note that in linear theory, the group velocity for
internal waves is bounded above by the nonrotating
wave speed ¢, associated with the first baroclinic mode.
Typically ¢, has a value in the range between 1 and
3 ms™'. When the storm translation speed U is greater
than this, it follows that no disturbance will be felt
ahead of the storm. This is the only situation we shall
consider here. We therefore take as our initial condition
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=v=w=p=§=0
u=v=w=p } (L6)

h=HM

ahead of the storm. In the context of the nonlinear
equations, this will be correct provided U is greater
than the wave speed ¢, associated with the undisturbed
ocean ahead of the storm.

b. The limit of large, fast storms

Linearizing the equations (1.1) about the undis-
turbed state ahead of the storm and dropping the terms
(d/dt)mix associated with turbulent mixing, we can use
the boundary conditions (1.5) to separate the equations
into vertical normal modes. This procedure is described
in Gill and Clarke (1974) and in detail in Gill (1982).
The equations for the horizontal structure of each mode
are then just the linearized form of the forced shallow
water equations studied by Greatbatch (1983). In par-
ticular, the scale analysis presented in Section 4 of that
paper carries over directly to each mode. It follows
immediately from the conclusions established there,
that the horizontal pressure gradient terms p; and p,
in (1.1) will be small compared with the Coriolis terms
fv and fu, if

YL < 1, (1.7a)

U <1, (1.7b)

where ¢, is the nonrotating wave speed associated with
the nth mode, L is a length scale characteristic of the
half-width of the response across the storm track and
the conditions (1.7) are to be satisfied for each baro-
clinic mode (i.e., for n = 1). We note that since the
wave speeds ¢, are such that ¢; > ¢ > +++ > ¢
> Cp > Cyy1 > - ¢ *, the conditions (1.7) need only be
satisfied for the first baroclinic mode to be satisfied for
all baroclinic modes.

The conditions (1.7a) and (1.7b) correspond to large
and fast storms, respectively. In the limit of large and
fast storms, the terms p; and p, will be dropped from
(1.1), this being taken as a definition. It is important
to appreciate that the dispersion of energy either out
from the storm track or down from the mixed layer
into the thermocline is absent in this limit, these pro-
cesses being crucially dependent on the neglected terms
p; and p,. It follows that consideration of this limit
cannot provide useful information on time scales char-
acteristic of the dispersion process; i.e., typically about
five inertial periods or longer (see Price, 1983).

2. The response in the limit of large, fast storms

Throughout this section, the horizontal pressure
gradient terms p; and p, will be-dropped from (1.1a)
and (1.1b) in accordance with the definition of the
limit of large, fast storms given at the end of the pre-
vious section. It should be noted that the numerical
model, to be described in Section 3, which is used to
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generate the results discussed in Section 4 integrates
the full system (1.1), including these terms.

We begin by considering the linearized equations
about the undisturbed state ahead of the storm. These
are

Uu, — fo = X, (2.1a)

Uv.+ fu=17Y, (2.1b)

0= —p,+ gab, (2.1¢)
—u:+v,+w,=0, (2.1d)
Ub, + (N*/ga)w = 0. (2.1e)

The mixing terms (d/dt)nix have been temporarily
dropped—their effect will be included later. This
means, in particular, that the mixed layer depth A
which appears in the expression for the forcing (1.2)
is, for the time being, fixed at the undisturbed depth
H,;; N* = gaT, is the square of the buoyancy fre-
quency. If L is the horizontal scale of the storm (which
is assumed to be radially symmetric), it follows im-
mediately that the solution to (2.1) can be written in
the form

(u, 9) = (Tmax L/ po Hpr U)F(2)(14zs, vy, (2.2a)

W = (Tmax/Po U)G2)Wh, (2.2b)
NZ
0 = (Tma/po Uf) g—;’ 0,(2)0x, 2.2¢)
v P = (Tmax/po UM )NGHrP(2)0y, (2.2d)
where
) = ~H,,/H, ~H<z<—H,,
G = {(1 — Hy/H)z/Hy, —Hy<z<0
42) —(z + H)/H, —H<z<~Hy,
(2.3b)
2,
0U2) = 2 6o, (.39
PJz) = F{l? fm O.(2)dz, (2.3d)

where H is the vertical scale of the thermocline. Use
has been made of the boundary and initial conditions
(1.5) and (1.6) and z; is chosen so that P,(2) has zero
vertical average, a necessary requirement of restricting
to the baroclinic modes only. The point of writing the
solution in this form is that the nondimensional vari-
- ables uy, vy, wy and 8 depend only on the horizontal
coordinates y and £ and the single nondimensional
parameter
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In particular, the horizontal structure of the response,
in coordinates scaled with respect to the scale L of the
storm, is seen to depend only on k. Here k™! measures
the time scale for the passage of the storm L/U in
units of the local inertial time scale 1/f and can be
conveniently labeled the “passing time” of the storm,
large k corresponding to short passing time.* Note that
although k can take a range of values, it can be near
unity, in which case we have an inertial resonance.
For example, letting U = 5m s™', L = 75 km and
f=17.5X107%s"! gives k = 0.9. Since it is clear from
(2.1a) and (2.1b) that L is also the cross-track scale of
the response, it follows that k also measures the ratio
of the along-track to the cross-track scales of the os-
cillations in the wake behind the storm.

The vertical structure of the response in (2.2) is
given by the functions Fy(z), G(z), O,(z) and Pz2).
Hence for the deep ocean, H;, < H, the horizontal
currents, with vertical structure given by F,, are seen
to be confined to the surface Ekman layer of depth
H,,. Associated with these currents is the corresponding
vertical velocity field given by (2.2b). This is just the
inertial pumping. It is seen to extend throughout the
depth of the ocean varying linearly from the base of
the Ekman layer to the ocean floor. This large vertical
scale for the w field was a feature of the model results
of Price (1983, 1984) and also seems to be a feature
of the observational studies described in Price (1981).
In particular, the upwelling was often found to be in
phase with depth deep into the main thermocline. A
particularly fine example is provided by the study of
the response to Typhoon Phyllis of 1975 described in
Schramm (1979). In this case, the upwelling appears
to be almost in phase throughout the thermocline with
no apparent decay with depth over the 300 m covered
by the observations.

We shall now allow the mixed layer depth A to vary
by including the effects of vertical advection and en-
trainment but neglecting the horizontal advection. We
shall see in Section 4 that this simplification is a rea-
sonable one in that the conclusions of the following

. analysis are found to apply in the case of numerical

experiments which include horizontal advection. It is
clear that provided 2 < H, i.e., we are in the deep
ocean, as before, we can consider the mixed layer in
isolation from the ocean below, which can be taken

4 In Price (1984), k is the nondimensional storm speed S. Note
that whereas Price refers to a fast storm as being one for which &k
> 1, in this paper a fast storm is one for which U* > ¢? as in (1.7b).
Note that a storm can be large and fast in the sense that L*(?%/c?
» 1 and U?*/c?> 1 [asin (1.7)] but k = (U/c)/(Lf/c) can be less than
or greater than 1.
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to have no horizontal motion. The equations that de-
scribe the wind mixed layer are then

7. ufdh
UuE —ﬁ) = m h (dt)mix’ (2.58)
_T Y ﬂ)
Uv, + fu b h ( o mix., (2.5b)
Uh; + h(—u; + v)) = (%) . (2.5¢)

It is convenient to separate /2 in two parts: /1 for which
changes are associated with entrainment and A, as-
sociated with vertical advection, i.e., upwelling. We,
therefore, define A by

- dh
Uhse = () 5 helves ot m = oy .60
t mix
and hD by
UhDE = h(—ug + vy); hD‘ahead of storm — 0 (26b)

Note that £ = hg — hp. Combihing (2.5a), (2.5b) and
(2.6a) gives

Ulhgu); — f(hgv)
_ 1 (= fdh dny
= E-d%) ) {%), e
l —_—

hg
Uhgv); + flheu)
1

- Ty _ % dh
) (1 — @) {PO v(dt)mix} " v(dt)mix, (2.70)

he

which in the limit Ap/hg — O reduces to

Ulhsu), — flhsv) = p— , (2.82)
0

Uhgv), + fheu) = :{ . (2.8b)
0

The equations (2.8) are effectively just (2.1a) and (2.1b)
but with the constant Ekman layer depth H,, replaced
by the variable depth Az from which it follows that
the solutions to (2.8) can be written in the form

TmaxL)(u vg)
POhEU Hs YH)>

(u,v) = (

[cf. (2.2a)]. '
Equation (2.9) is fundamental to achieving the sec-
ond purpose of this paper—that of showing how to
calculate the maximum horizontal and vertical veloc-
ities found in the wake of the storm using a linear

(2.9)
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Ekman model and a knowledge of that part of the
change in the mixed layer depth due to entrainment.
This latter is represented in (2.9) by Az, the former by
the function (uy, vy). Indeed, it should be noted that
the function (uy, vy) in (2.9) is the same as (uy, vy)
in (2.2a) and satisfies the linear Ekman equations (2.1a)
and (2.1b). We shall use (uy, vy) and wy to define two
further functions that are easily calculated using (2.1a)
and (2.1b) given the surface wind stress field (7, 7,).
These functions are V,,(k) and Wy,(k) given by

Varlk) = T35 WK (2 1 )2}, (2.100)
Wg(k) = X Wake g, 1y (2.10b)

of storm

Here the maxima are taken over the wake, behind the
storm and it is clear that both V,, and W,, depend
only on k. We shall find in Section 4 (see Table 2)
that, to a very good approximation the maximum hor-
izontal current V. found in the wake of the storm
in each of the numerical experiments considered is
given by

Tmax L
Vnax = [m] Va(k), (2.11)

where here Ah is the maximum entrainment found
following a material column of fluid in the wind-mixed
layer. In fact, (Hj, + Ah) is the maximum value of A
found in the wake of the storm where now /. is defined
by

Dhy _ (dh

’E‘ = (E)mix; hEIahead of storm — HM- (212)

Here (D/Dx) is the total derivative following a fluid
particle and (2.12) is the extension of (2.6a) when hor-
izontal advection is included. It is important to realize
that (2.11) is found to hold in experiments that include
horizontal advection. It is clear that (2.11) is a natural
extension from (2.9).

In extending (2.9) to calculate the vertical velocity
field win the wake, account must be taken of the cross-
track variation of Ag. In fact, substituting (2.9) into
the continuity equation (2.1d) and integrating down
from z = 0, where w = 0, we obtain

Tmax\ 7 ( 1 ) :| z
w=l—I—wyg+Ll—)vg|-,
(pOU)[hE e hel, Hlh
-h<z<0. (2.13)
It turns out that a good approximation for the max-.
imum at depth —z in the wake, W,,,,,, can be obtained
by neglecting [L(1/hg),vy] and is in fact given by
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T max 4
Wenan = (ETJ){(HM + Ah)} Wan(k),

-h<z<0,

(2.14)

where (H,, + Ah) is again the maximum value of %z
defined by (2.12) found in the wake. As before, this
is verified in Section 4 over a range of experiments
that include horizontal advection (see Table 3).

It is apparent from the foregoing discussion that
horizontal advection does not appear to have any sig-
nificant influence on the magnitude of the response.
However, it can affect the horizontal structure as de-
scribed in Greatbatch (1983), though not in a way
that is more than a distortion by means of advection
of the linear picture. A case in which it is important
to consider horizontal advection is when interpreting
observations or model results at a fixed point as dem-
onstrated at the end of Section 5. Two parameters A7
and Py were introduced in Greatbatch (1983) which
measure the importance of the along-track and cross-
track advection terms, respectively, in the equations
of motion. These are given by

V |4

Ar=135 PT=Z:f, (2.15)

where ¥V is a scale for the horizontal velocity (these

parameters arise when the cross-track coordinate is
scaled by L and the along-track coordinate by U/f).

The importance of horizontal advection in the wake

poH

0, otherwise,

where here L has been chosen to be the half-width of
the region in which positive vorticity is imparted by
the storm which is also the half-width of the region of
net upwelling due to the storm. The forcing (2.17) will
be used later as a standard by which L can be chosen
for an arbitrary storm.

It is an easy matter to solve (2.1a) and (2.1b) with
(X, Y) given by (2.17) and with the initial condition
u = v =0 for § < —2L. The function (#y, vy) can be
written in the wake of the storm as

(uy, vy) = {A(k) sin(—g ky*) + B(k) cos(% ky*)}

X (cost*, —sinf®),

where £* = f£/U, y* = fy/U and k = U/Lf. Vy(k),
given by (2.10a), is now found by maximizing

[A(k) sin(g ky*) + B(k) cos(% ky*)]

X, ¥) = Tmax Fo(2) [—sin(é%) cos(fz) , —cos(%) sin(%)] , (I, 1€l < 2L)

VOLUME 14

of the storm can now be assessed by taking ¥ to be
the maximum horizontal current found in the wake
of the storm, i.e., V., given by (2.11). We then have

TmaxL

= LT 160

T max
Pr= {m} Va(k). (2.16b)

It is clear from (2.16) that, all othér factors remaining
the same, the importance of horizontal advection de-
creases as the storm translation speed U increases (note
that £ = U/Lf can be allowed to vary, keeping L and
[ fixed, since as we shall see, V),(k) has only a weak
dependence on k for kK = 1 and is in fact bounded

. above throughout this range).

The remainder of Section 2 is concerned with the
variation of the functions V), and W), with k and with
giving the method that is used here and in Greatbatch
(1984) for choosing the scale L of the storm. Readers
who are not concerned with these details can proceed
to Section 3.

a. The variation with k

We return to the linearized equations (2.1) and con-
sider the dependence of V', and W), defined by (2.10)
on k. Only the wake behind the storm will be consid-
ered. The wind forcing (X, Y) is here modeled using
trigonometric functions, essentially corresponding to
a single Fourier mode. We therefore put

- (2.17)

as a function of y* and this maximum is plotted as a
function of k in Fig. 1a (solid line). Having obtained
(uy, vy) we can now find wy using (2.1d). The max-
imum of |wyl in the wake of the storm, Wy, (k), (here
also restricted to being along the storm track) is shown
in Fig. 1b (solid line).

The initial peak in both curves as k increases cor-
responds to the inertial resonance referred to earlier.
For values of k greater than the resonance value, the
dependence on k shown in Fig. 1 is comparatively
weak. It is of interest to consider what determines the
limiting values as k — oo. In the case of Vj,(k), this
obviously depends on the choice of L. For Wy (k) it
is independent of L [cf. (2.2a) and (2.2b)].

b. The limit k — co: A method for choosing L
The functions (uy, vy) are now given by
UuHE —’ﬁ)H = 0, U'DHg +qu =0
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FIG. 1. (@) The maximum surface current found in the wake of
the storm, nondimensionalized with respect 10 (7maxL/po UH)F.(2)
and plotted as a function of k = U/LS. The solid line was obtained
analytically using the wind forcing (2.17). The points marked by an
asterisk and a dot are the results of linear and nonlinear numerical
experiments without mixing (experiments 7-12, inclusive, in Table
1), respectively; (b) as in (a), except for the maximum vertical velocity
found in the wake of the storm, nondimensionalized with respect
10 (Tmax/Po U)Gv(z)~

subject to

1
Uplg=o =

D)
o—zj; X'd§ = uy, say

> (2.18)
1 [é
Vllg0 = I J; Y'dt =v,, say
where 0 < £ < £ encloses the storm and (X', Y') is

the forcing nondimensionalized with respect to (7ma/
poH ) Fu(2). It follows immediately that

Uy = Up cos(%) + v sin(ﬁ)

U
fe ; (2.19)
Vg = —Uy sin(z) + v cos(bg)
and hence that
I}im Va(k) = max [(u + v3)'/?], (2.20)
0 ¥

where the maximum in (2.20) is taken over the range
of y.

When (X, Y) is given by (2.17), v, = 0 and so
]lim Vir(k) = max |up| = 8/7 ~ 2.55
o ¥

It is important to realize that its precise value depends
crucially on how L is chosen. The dimensional quantity

Lmax[(u3 + v3)"?)
y
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is however, dependent only on the storm [cf. (2.18)],
and it is always possible to choose L so that
max[(u3 + v3)'/?], and hence lim Vy,(k), is equal to

y k—oo
8/w. This is the method used to choose L in this paper.
In the limit k — oo, i.e., U/f > L, only derivatives
in the cross-track coordinate y will be important in
determining the divergence. It follows that
Wy = —va
where ' = y/L and hence

Wy = —Ugy 'cos(%) + ugy sin(%) .

It follows that

lim W, (k) = max{(v3, + ud,)].
k—oo y

(2.21)

When (X, Y) is given by (2.17) [and the maximum
in (2.21) is further restricted to the storm track y = 0
so as to afford comparison with the solid curve in Fig.
1b], this value is 4. In this case, the value is independent
of how L is chosen. It is, however, dependent on the
horizontal structure of the storm—the value 4 is not
unique.

The fact that W,,(k) is independent of L, except
insofar as it depends on k = U/Lf, has an interesting
consequence that will be referred to in Greatbatch
(1984). It might be thought that increasing the hori-
zontal scale L of the storm, keeping all other factors
constant and so decreasing the positive wind stress curl
in the core of the storm would decrease the vertical
velocity. However, the weak dependence of Wy, on k
in the range k = 1 means that within this range this
is not true [using (2.2b) and (2.10b) the magnitude of
wis given by (Tmax/poU)War(k)]. Increasing L, keeping
Tmax, U and f fixed decreases k only. This apparent
paradox arises because the storm is moving—it is not
true for a stationary storm. In fact, we can see from
(2.21) [using the definition of 1, and v,, (2.18)] that
it is the integrated wind stress curl (in the case of u)
and wind stress divergence (in the case of 1) that are
important. It is usual for the wind stress curl to dom-
inate, and so we can see that the value of Wj(k) can
be comparable both for a storm with a tight core of
large positive wind stress curl and for a storm in which
the positive wind stress curl is less but distributed over
a wider area.

3. An efficient numerical model

In this section a novel and efficient numerical model
is described for integrating the equations (1.1). Both
the novelty and the efficiency come from seeking so-
lutions that are in a steady state translating in equi-
librium with the storm; i.e., working with the inde-
pendent variables £, y and z. (The method has already
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been used by Greatbatch (1983) in a case where there
is no z dependence.) The basic approach is then to
solve (1.1) as an initial value problem in the time
variable ¢ with initial condition (1.6) applied at the
leading edge of the storm. The method can be thought
of as either integrating to find the time development
of the solution on a vertical cross section perpendicular
to the storm track or integrating backwards along the
storm track to find the spatial distribution of the so-
lution at a given time. It is clear that considerable
savings in computer resources are achieved by com-
bining the along-track coordinate and the time de-
pendence into the single coordinate £.

The model ocean consists of a stack of fixed levels
of variable thickness. The temperature 7 and vertical
velocity w are stored at the edge of each level and the
variables u, v, p at the centers. The variables are stored
horizontally according to the Arakawa C-grid (Arakawa
and Lamb, 1977) with u, p, w and T at the same
horizontal position and v at intermediate points. The
leap-frog scheme is used in time (£) with second-order
centered differencing in space (3, z).

In discussing how we solve the resulting finite dif-
ference equations we will drop both the mixing terms
(d/dt)mix and the terms uu, etc. The method for dealing
with the former will be discussed in detail in Greatbatch
(1984)° and the latter terms are readily incorporated
by means of inverting a simple matrix.

A basic problem with solving the finite difference
form of (1.1), when the leap-frog scheme is used in
time £, is that the vertical velocity w needed to update
the temperature # via (1.1¢) is dependent on the new
value of the velocity component u because of the con-
tinuity equation (1.1d). This problem can be overcome
if the vertical temperature gradient (¢ + T), is always
nonzero everywhere, in which case the finite difference
equations can be solved exactly. To see this, we note
that w can be expressed in terms of the perturbation
pressure p using (1.1¢) and (1.1¢). When this expression
for w is substituted into (1.1d), we obtain

Pzt 1y _
o (U—u)+ 08,

6 + T, = U

z

Uy + 3.1)

We can then eliminate u; between (1.1a) and (3.1) to
give an ordinary differential equation in z for p. The
corresponding finite difference form of this equation
is then solved at each time step for.the new value of
p subject to p having zero vertical average (correspond-

5 The fields of u, v and T are first updated with (d/df)mix = O.
These updated fields are then “mixed” before being returned to the
model. In the case of « and v, this involves redistributing the mo-
mentum of the updated field over the new. mixed layer depth £ [this
is equivalent to the form of (du/df)mix and (dv/dt)mix given in (1.4)].
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ing to restricting only to the baroclinic modes). The
new value of u is then obtained from either (1.1a) or
(3.1) enabling w to be diagnosed from the finite dif-
ference forms of (1.1c) and (1.1e), respectively.

The above method is dependent on (6 + T), being
always nonzero everywhere. However, we shall want
to integrate (1.1) in cases when we have a surface mixed
layer in which it will be assumed that the vertical gra-
dient of temperature, (§ + T),, is indeed zero. In this
case, an iterative method is used to find w starting
with the most recently calculated values which are
used to integrate (1.1¢) to give a first guess for # and
hence p. This then enables a new u field to be found
from (1.1a) which can be substituted into (1.1d) to
give a second guess for w. This process is then repeated
until the solution converges. In practice, only three
iterations are usually necessary.

Both methods can be compared in cases where
(0 + T), is always nonzero everywhere. In test cases,
the results have been found to be indistinguishable.

The accuracy and properties of the finite difference
scheme are discussed in.Greatbatch (1980). In partic-
ular, the solutions found by Geisler (1970) have been
reproduced.

4. Numerical experiments

In this section, we describe experiments using the
numerical technique presented in the previous sectlon
to integrate the equations (1.1).

The vertical temperature profile ahead of the storm
is given by '

(28.61, (-35m <z<0)
(—z + 10)]}/
02 —In| —— 21 [0.122,
{5 02 ln[ T 0
°oC) = <. . 4.1
e —ss0m<z<-35m P
4 + 4(z + 2000)/1450,
L —2000 m < z < —550 m,

the total depth of the ocean being fixed at 2000 m.
The structure above 550 m is a least squares fit to data
from the EB-10 buoy prior to the passage of Hurricane
Eloise in 1975 [Johnson and Withee (1978)] using a
method described by Friese (1977). This structure is
shown in Fig. 2, together with the grid levels used in
the numerical model. The 1n1t1al mixed layer depth is
35 m.
The surface wind stress 7 is given by

r
- = =
5 O<srs< 'y
4%
ro r
T = (T,«, Tﬂ) = (—'Trmax, Tomax) ) 1473 srs ro
o — v
O, Yo <.
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FIG. 2. The temperature structure for the upper 550 m of the
undisturbed ocean ahead of the storm used in the model experiments.
The vertical resolution is shown down the left-hand side.

where 7, and 7, are the radial and tangential com-
ponents of the stress with respect to the storm center
and r is the radial distance from the center. We put
Troae = 1 Nm™2, 7, = 3 Nm~2 and ry = 10r),. The
choice of ry, the radius of maximum winds, sets the
horizontal scale of the forcing.

Throughout all the experiments, the cross-track grid
spacing Ay is fixed at ry/14.5. This is 20.7 km in all
experiments except experiments 3, 7 and 8 (see Table
1) for which it is 41.4 km. The along-track grid spacing
At is fixed at 2 of this. In test experiments, the solutions
were not found to be significantly changed when the
resolution is doubled.

Twelve levels are used in the vertical with the base
of each level being at depths of 19.8, 32.9, 51.9, 79.2,
118.7, 175.5, 257.5, 375.8, 550, 1000, 1500 and 2000
m. The depths above 550 m were obtained from the
logarithmic profile in (4.1) by taking an interval of
3°C across each level.

Each integration was run for 60 time steps, corre-
sponding to an along-track distance of 931 km (1862
km in experiments 3, 7 and 8). Free-slip boundary
conditions are applied at the edges of the cross-track
grid (i.e., zero normal velocity and zero flux). In test
cases, no significant reflection was found on the time
scale considered here.

a. Model experiments

Twelve experiments are considered, each in linear
and nonlinear versions without mixing and a nonlinear
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version with mixing that integrates the full equations
(1.1). In all the experiments, the wind forcing is mod-
eled as a body force acting on a surface Ekman layer.
In the linear and nonlinear experiments without mix-
ing, this is kept fixed at depths of 35 and 50 m, re-

" spectively. In the experiments that include mixing, this

depth is just the mixed layer depth 4 as in (1.2a), with
h being given by (1.3) with initial value 35 m. The
rate of entrainment (dh/dt) ;i is parameterized follow-
ing Gill and Turner (1976) using the implementation
for a model with fixed grid levels in the vertical (as
here) described in Wells (1979). A detailed discussion
of this is given in Greatbatch (1984).

The twelve experiments are summarized in Table
1. They are divided into three groups: experiments 1,
2 and 3 for which k = U/f L has value 0.92; experiments
4, 5 and 6 for which k = 1.85 and experiments 7, 8,
9, 10, 11 and 12 which cover a range of values of k.
The scale L used to define k has been chosen so that

lim Vy,(k) is the same for both the stress field (4.2)
rk—o0

used in the numerical experiments and for the stress
field (2.17) as described in the previous section. This
gives

L = 2.4ry. 4.3)

- It should be realized that the factor 2.4 is dependent

on the detailed structure of the storm and is special
to the wind stress field (4.2). The values of k appropriate
to each experiment, calculated with this scale, are given
in Table 1. Note that experiments 9 and 1! are the
same as experiments 1 and 4, respectively.

'b. Model results

1) VERIFICATION OF (2.11) AND (2.14)

The maximum horizontal current and vertical ve-
locity found in the wake of the storm at depths of 9.9
and 19.8 m, respectively, are given for each experiment
in Tables 2 and 3. [In the case of experiments 7 and

TABLE 1. Summary of the experiments.

'm U f k= 2

Experiment (km) (ms™) (s™' X 10%) Lf
i 30 5 7.5 0.92
.2 30 6.7 10 0.92
3 60 10 7.5 0.92
4 30 10 7.5 1.85
5 30 13.3 10 1.85
6 30 6.7 5 1.85
7 60 5 7.5 0.46
8 60 1.5 1.5 0.69
9 30 5 7.5 0.92
10 30 7.5 7.5 1.38
i1 30 10 7.5 1.85
12 30 12.5 7.5 2.31
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TABLE 2. The maximum horizontal current found in the wake of the storm at a depth of 9.9 m; L and N denote linear and nonlinear.
experiment without mixing, respectively; M denotes nonlinear experiment with mixing. Note that only in experiments 7 and 8 are larger

currents found in the region of forcing.

Horizontal current

(ms™) Maximum (nondimensional)

entrainment =Y

Experiment L N M (m) L N M Vae (K) Lf
1 3.5 24 LS 47.7 2.8 2.8 2.8 3.0 0.92
2 2.8 1.9 1.4 '35.7 3.0 29 3.0 3.0 0.92
3 3.8 2.6 1.8 38.3 3.0 3.0 3.0 3.0 0.92
4 24 1.7 1.5 23.7 3.8 39 4.0 4.0 1.85
5 1.9 1.3 1.2 19.3 4.0 4.0 4.0 40 1.85
6 3.5 2.6 1.9 345 3.7 40 4.0 4.0 1.85
7 1.9 1.6 0.8 . © 592 0.8 0.9 0.9 0.9 0.46
8 3.1 2.1 1.3 46.5 1.9 1.8 1.8 1.8 0.69
9 - 35 24 1.5 47.7 2.8 2.8 2.8 3.0 0.92
10 3.2 23 1.8 32.1 38 40 4.2 4.0 1.38
11 24 1.7 1.5 23.7 3.8 3.9 4.0 4.0 1.85
12 1.9 14 1.3 20.1 38 4.0 4.1 39 2.31

8 (for which k < 1), higher values are achieved in the
region of forcing.] Following (2.2a) and (2.2b), the
horizontal current has been nondimensionalized by
(TmaxL/poHsU)F, [-9.9 m] and the vertical velocity
by (Tmax/PoU)G, [—19.8 m] for both the linear and
nonlinear experiments without mixing. Note that F,
and G, are given by (2.3a) and (2.3b), respectively. In
the nonlinear experiments with mixing, the nondi-
mensionalization follows (2.11) and (2.14); i.e., the
horizontal current has been nondimensionalized by
(TmaxL/po(Hyy + AR)U) and the vertical velocity by
(rmax/poU )[z = 19.8 m/(H,, + Ah)] where (H,, + Ah)
is the maximum value of /x found by integrating (2.12)
as part of the model solution. The corresponding max-
imum entrainment (A/) is shown in each of Tables 2
and 3. Also given are the values of V,(k) and Wy (k)
given by (2.10) and calculated by numerically inte-
grating the linear Ekman equations (2.1a) and (2.1b)

with the wind stress 7 given by (4.2) and using the
same finite difference scheme as in the full numerical
model.

The overall closeness of the nondimensional values
in each case to the corresponding values of V,(k) and
W (k) demonstrates one of the purposes of this paper,
i.e., it shows that the maximum horizontal current and
vertical velocity in the wake of the storm can be cal-
culated using the formulae (2.11) and (2.14), respec-
tively; i.e., using a linear Ekman model to calculate
Va(k) and Wy, (k) and a knowledge of that part of the
change in the mixed layer depth due to entrainment,
in this case AA. It also demonstrates that at least in
the cases considered, horizontal advection is not im-
portant as far as determining the magnitude of the
response is concerned.

The nondimensional horizontal current and vertical
velocity for the linear and nonlinear experiments with-

TABLE 3. As in Table 2, but for the maximum vertical velocity found in the wake of the storm at a depth of 19.8 m.
Only in experiments 7 and 8 are larger vertical velocities found in the region of forcing.

ms™' X 10° Maximum Nondimensional

entrainment - U

Experiment L N M (m) L N M Wy (k) Lf
i 1.55 1.07 0.70 47.7 4.5 4.5 4.8 49 0.92
2 1.21 0.79 0.61 35.7 4.7 44 4.8 49 0.92
3 0.83 0.56 0.42 38.3 4.8 4.7 5.2 49 0.92
4 0.85 0.55 0.46 23.7 49 4.6 4.5 5.0 1.85
5 0.66 0.43 0.40 19.3 5.1 4.8 4.8 5.0 1.85
6 1.21 0.77 0.58 345 4.7 4.3 4.5 5.0 1.85
7 0.61 0.51 0.27 59.2 1.8 2.1 2.1 2.0 0.46
8 0.71 0.53 0.32 46.5 3.1 33 33 32 0.69
9 1.55 1.07 0.70 47.7 4.5 4.5 4.8 4.9 0.92
10 1.09 0.74 0.58 32.1 4.8 4.6 49 5.2 1.38
11 0.85 0.55 0.46 23.7 4.9 4.6 4.5 5.0 1.85
12 0.67 0.42 0.38 20.1 4.9 44 4.4 5.2 2.31
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out mixing are plotted on Fig. 1 to afford comparison
with the analytic curves that were obtained using the
greatly simplified wind stress field (2.17). It is clear
that the numerical results, which are computed using
the more realistic wind stress field (4.2), follow the
basic shape of the analytic curves in both linear and
nonlinear cases. Note that lim V,,(k) has been fixed to

k—

be the same for both the nu:;lerical experiments and
the analytic curve by our choice of L. On the other
hand, lim (k) does not depend on the choice of L

k—oo
and can be calculated—it is given by (2.21). The nu-
merically calculated value for the wind stress field (4.2)
is 5.1.

2) THE HORIZONTAL STRUCTURE OF THE SOLU-
TIONS

Figure 3 shows the vertical velocity field at 19.8 m
depth for each of experiments 1-6 in both linear and
nonlinear experiments without mixing. The contours
are drawn at intervals of { the maximum response and
the horizontal coordinates are stretched so that the
area occupied by the storm appears the same in each
case. It is clear that, when plotted in this way, i.e., in
coordinates scaled with respect to the size of the storm,
the horizontal structure of the response is essentially
the same in each group of experiments with the same
value of k = U/Lf—these are experiments 1, 2 and 3
for which £ = 0.92 and experiments 4, 5 and 6 for
which k = 1.85. This was one of the conclusions drawn
in Section 2 about the response in the large, fast storm
limit. Furthermore, the along-track wavelength of the
oscillations left behind by the storm is close to the
local inertial wavelength 27 U/f in each case, as can
be seen by extending the integration sufficiently behind
the storm, again indicating that the solutions are well
approximated on this time scale by the large, fast limit.

The nonlinear distortions, which can be seen by
comparing the plots for equivalent linear and nonlinear
experiments, were described in Greatbatch (1984).
Values for the parameters 4 and Py, which measure
the importance of the horizontal advection terms in
the equations of motion, are given in Table 4 with the
scale Vin (2.15) taken to be the maximum horizontal
current found in the wake of the storm in each case.
Values calculated using (2.16) are also given, showing
that these formulas provide a good means of measuring
the importance of nonlinear effects in the wake.

3) THE VERTICAL STRUCTURE OF THE SOLUTIONS

So far, only the structure and amplitude of the so-
lutions near the surface have been considered. Fig. 4a
shows the vertical velocity field on a section across the
storm track under the eye of the storm in the nonlinear
version of experiment 1 (without mixing). This is at
the beginning of the initial upwelling in response to
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the storm, as can be seen from Fig. 3a. It is clear that
the vertical structure of the solution at this time is well
described by that found in Section 2, i.e., by the func-
tion Gv(z) defined in (2.3b). In particular, the upwelling
is taking place throughout the depth of the ocean so
that a description in terms of vertically propagating
waves is clearly inappropriate (cf. Price, 1983). It is
shown in Appendix B that the forced response to any
fast or large disturbance [in the sense of (1.7)] does
not feel the stratification and will extend throughout
the depth of the ocean.

Figure 4b shows the vertical velocity structure during
the second upwelling phase, again in the nonlinear
version of experiment 1 (without mixing). It is clear
that departures from the simple picture described in
Section 2 are taking place, the maximum near 500 m
depth being associated with the first baroclinic mode
which is separating out from the solution. These de-
partures are in association with the horizontal pressure
gradient terms which were neglected in Section 2.

The vertical structure of the horizontal velocity field,
on the same section as Fig. 4b, is shown in Fig. 4c.
Although there is some departure from the simple pic-
ture given in Section 2, the response is basically surface
trapped and given by the function Fv(z) [cf. (2.3a)] at
this time. Price (1983, 1984) give a detailed discussion
of how horizontal currents are subsequently generated
in the thermocline.

Figure 5 shows the temperature structure on a section
across the storm track, again in the nonlinear version
of experiment 1 (without mixing). Note once again,
the large vertical structure of the upwelling response,
extending throughout the thermocline. The bias to the
right of the track, particularly evident in Fig. 5b, is a
nonlinear effect.

5. Interpreting the results of observations and other
numerical experiments

As an example, we consider the data set recorded
by the EB-10 buoy during the passage of Hurricane
Eloise of 1975 [Johnson and Withee (1978)]. This has
been simulated by Price (1981) and here we use the
model winds used by Price rather than the raw data
recorded by the buoy (see Fig. 12 in Price’s paper).
We can then calculate the surface wind stress = using
the drag coeflicient

¢p =(0.73 + 0.0697) X 1073 5.1

and the bulk aerodynamic formula 7 = pcpV?, exactly
as done by Price, where V' is the wind speed (at 10 m
height) in m s]! and p is the density of air; (5.1) is
essentially the composite form given by Garratt (1977).

Given this wind stress distribution, it is a simple
matter to integrate (2.1a) and (2.1b); i.e.,

UuE"ﬁJ—_“X}

U+ fu=Y ©-2)
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FIG. 3. The vertical velocity field at 19.8 m depth in each of (a) experiments 1, 2 and 3; and
(b) experiments 4, 5 and 6: L indicates linear experiment (without mixing) and N nonlinear
experiment (without mixing). The contour interval is Y% of the maximum response in each case,
the solid contours denoting upwelling and the dashed downwelling. The coordinates are measured
in kilometers from the storm center, the along-track coordinate increasing behind the storm.
The storm moves up the center of each figure, the storm track being shown by the dotted line.

The zero contour is drawn as a solid line.

where (X, Y) = (7, 7,)/poH; with u = v = 0 ahead of
the storm. The translation speed U is 8.5 m s~ in this
case. Here H; is fixed and can be assigned any value.
If V; is the maximum calculated horizontal current
and D, the maximum calculated horizontal divergence,
then we know from (2.10)-and (2.2a,b) that

v, = ( Tmanl- ) Vae(k) (5.3)

pOHIU

DH, = (T'“——“") Wi(k). (5.4)

poU

a. Calculating the entrainment Ah

Unfortunately, the mixed layer current was not
measured by the EB-10 buoy. However, Price obtained
a maximum in this current of V., =~ 1.15 ms™!. We
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FiG. 3. (Continued)

saw in the last section that (2.11) can be used to cal-
culate the maximum current in the wake—in this case
Vamax- We can therefore write

Vo = (ﬂé) Vi), (5.5)

poHEU,
where Hg = Hyp + Ah, Hy, being the initial mixed
layer depth (taken to be 30 m in Price’s experiments)
_ and Ah the maximum entrainment due to the storm.
[It is also assumed that A (mixed layer depth) < H
(ocean depth); this was used to establish (2.11)].
Combining (5.3) and (5.5), we deduce that

_ vt
Vmax

Hg (5.6)

from which we can estimate the entrainment Ah. [Al-
ternatively, if we know H then V., can be calculated
from (5.6)].

Substitution of appropriate values into (5.6), gives
an estimate for Hg of 98 m and of Ah = Hg — H, of
68 m. This seems to agree quite well with what Price
actually found (see Fig. 19 in Price’s paper). This shows
plots of mixed layer depth h and 7, the upwelling just
below the base of the mixed layer. Here, Hg, the max-
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TABLE 4. The importance of the nonlinear terms as measured by the parameters A7 and Pr and as estimated by (2.16)
in the nonlinear experiments without mixing.

. m xL Vv T max U
Experiment Y ( Tma )V k =— (————)V k ==
number Ar U poHyU? u(®) Pr Lf poH , Uf) u(®) k Lf

1 0.5 0.5 0.4 ' 0.5 0.92

2 0.3 0.3 0.3 0.3 0.92

3 0.3 0.3 0.2 0.2 0.92

4 0.2 0.2 0.3 0.3 1.85

5 . 0.1 0.1 0.2 0.2 1.85

6 0.4 0.4 0.7 0.7 1.85

7 0.3 0.3 0.1 0.1 0.46

8 0.3 0.3 0.2 0.2 0.69

9 05 . 0.5 0.4 0.5 0.92

10 0.3 0.3 04 0.4 1.38

11 0.2 0.2 0.3 0.3 1.85

12 0.1 0.1 0.3 0.3 2.31

imum of (£ + 75,), seems to be a little over 90 m, as
can be seen by superposing the two plots.

b. Calculating the sea surfdce temperature response

Given the entrainment, we can estimate the sea sur-
face temperature response and compare it with what
Price actually found in his model. The equation for
the heat content of the wind-mixed layer is

dQ\ _ hDT, 4&) ~
(dt )mix - Dt +(dt mix(Tx T——h)’ . (5.7)

where D/Dt is the total derivative following a fluid
particle, —(dQ/dl)mix the sensible and latent heat flux
to the atmosphere, T the sea surface temperature (i.e.,
the temperature of the wind-mixed layer) and T
— T_, is the temperature difference across the base of
the wind-mixed layer. It is convenient to define Ag
and Ap as in (2.6) so that

Dhy _ (d_h)
Dt dt ] ix
hElahead of storm = Has

hp=hg—h

) (5.8)

where H,, is the depth of the wind-mixed layer ahead
of the storm.

In Price’s model, the temperature 7, below the
wind-mixed layer varies linearly with depth and with
gradient 8 = —0.125°C m~'. We can see from (2.3b)
that provided A is always small compared with the
total depth H of the ocean, then the upwelling below
the wind-mixed layer can be assumed to be indepen-
dent of depth so that we have

T_h = To + ﬁhb

\

(5.9)

In Price’s model, T, = 32.45°C. Note that if there
were no upwelling, then A, = 0 in which case & = Ay
in (5.9).

Equation (2.11) uses the assumption that Ap < Ag.
We can apply the same idea to (5.7)° in which case
we have

dQ\ _, DT éﬁ) a
(a't )m,.x = hs a T (dt mix(Ts Ton)-

Using (5.8) and (5.9), this equation can be written as

g\ _Da_, Dhs
R

dt Dt
where a = hg(T; — T_;). (5.10) can be intégrated fol-
lowing a fluid particle under the storm to give

f (gd%)mixdt = (a—a0) +3BHY — H), (.11

where qy is the value of a = hg(T; — T-;) ahead of

"the storm.

Knowing ay, 8, H), the entrainment Ak = hg
— H,, and the sensible and latent heat transfer to the
atmosphere, (5.11) gives a = hg(T; — T-,) behind the
storm and hence the sea surface temperature 7. Sub-
stituting values from Price’s model and the entrainment
depth Az = 98 m previously estimated, we obtain T
= 25.6°C. This corresponds to a maximum surface
cooling of 3.2°C which is close to that found by Price
(see his Fig. 15b).

Note that of the information needed to obtain this
estimate from (5.11), ay, 8 and H), refer to the ocean
ahead of the storm with only [ (dQ/d!)mixdt and the

¢ It turns out that, in general, this is not as good an approximation
as it is for the horizontal and vertical velocity fields. The reader is
referred to Greatbatch (1984) for a detailed discussion of the sea
surface temperature response.
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FIG. 4. (a) The vertical velocity field on the section A-B shown
in Fig. 3a in the nonlinear version of experiment | (without mixing)
at the beginning of the first upwelling cycle. The contour interval is
1.7 X 10~*m 57, Y, of the maximum response shown. Solid contours
denote upwelling, dashed downwelling. The zero contour is drawn
as a solid line. (b) As in (a) except on the section C~D shown in
Fig. 3a. The contour interval is 5.5 X 10~* m s™!, ' of the maximum
response shown. (¢) The horizontal currents on the section C-D
shown in Fig. 3a. The contour interval is 0.33 m s™!, ' of the
maximum current shown.
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at intervals of 2°C. (b) As in (a) except that here the change in temperature from the
initial state is shown. Warming is indicated by dashed contours; cooling by solid
contours. The contour interval is 1°C. The zero contour is shown as a solid line.

entrainment depth Ay referring to the action of the
storm. Of these two, the former is a small term in
(5.11). The sensible and latent heat transfer found by
Price in his model was used in the calculation above.
If, however, we put this [i.e., [ (dQ/dl)mid!] equal to
zero, we obtain T = 25.9°C.

We could do this calculation in reverse. Knowing
the sea surface temperature response, we can calculate
the entrainment depth A from (5.11). Then, knowing
the surface wind stress field and hence V; in (5.6),
we calculate the maximum current in the mixed
layer, Vax-

¢. Calculating the upwelling

It was also shown in the last section that the max-
imum vertical velocity in the wake W, is given by
(2.14). If we assume that (2.14) holds here, then by
using (5.4), we have '

h

Wnax = (_)DIH 1-

H, (5.12)

Superposing Fig. 19a and Fig. 18b from Price’s pa-
per, we see that the mixed layer depth # at the position
where the vertical velocity w, at the base of the wind

TABLE 5. The maximum horizontal current and maximum entrainment found in the wake of the storm and along the storm track in
each of the nonlinear experiments with mixing. The nondimensional current amplitude is compared with that found in equivalent linear

and nonlinear Ekman models.

Nondimensional Ekman

Maximum Maximum current
-Experiment current entrainment Nondimensional
number (ms™") m current linear nonlinear
1 1.4 o 45.0 2.6 2.5 2.5
2 1.2 . 34.3 25 . 2.5 —_
3 1.5 36.5 2.5 2.5 —
4 0.93 222 24 2.6 2.2
5 0.76 18.3 25 2.6 —_
6 1.2 ) 31.0 24 2.6 —_
7 0.60 - 56.8 0.6 0.8 0.7
8 1.1 : 44.6 1.5 1.5 1.4
9 1.4 45.0 2.6 ) 2.5 2.5
10 R 30.5 34 29 34
11 0.93 222 24 2.6 2.2
12 0.72 18.8 2.2 2.3 2.0
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mixed layer is a maximum is 70 m. Taking the esti-
mated value for Hg from (i) of 98 m, it follows that
the maximum value of W, given by (5.7) is (70/98)D,H,
(it is also assumed that # < H once again). The cal-
culated value for D;H; is 1.76 X 1073 m s™', so that

(70/98)D;H; is 1.3 X 107> m s™! which is the value

given by Price in Fig. 18b of his paper. (Superposing
Fig. 19b and Fig. 18b suggests that n; =~ 15 m where
W, has its maximum value of 1.3 X 107> m s~!. This
implies a local value of hz of 85 m. (70/85)D;H, is 1.4
X 1073 m s,

d. Observations at a fixed point

Tables 2 and 3 both referred to the maximum hor-
izontal and vertical velocities, respectively. The effect
of the nonlinear terms, however, is to displace the
positions of these maxima between equivalent linear
and nonlinear cases. It is of interest, therefore, to ex-
amine the importance of this effect, given that obser-
vations measured by a buoy usually refer to a fixed
point and it may not be appropriate to use the linear
Ekman equations (5.2) to draw conclusions about the
amplitude of the response at that point.

Table 5 shows the maximum current found in the
wake of the storm and along the storm track in
each of the twelve experiments with mixing described
in Section 4. These values nondimensionalized by
[T maxL/ po(Hp + AR)UY [cf. (2.11)] are also given where
Ah is the maximum entrainment found along the storm
track (also given in Table 5). Also given are the equiv-
alent nondimensional values obtained by integrating
the linear Ekman equations (5.2) and the nonlinear
Ekman equations

Du Tx
Dt jb"(ﬁﬁi)

Dv T,
u= (POHI)

Dt
Obviously, the importance of the nonlinear effect de-
pends now on our choice of H;. In the cases presented,
it has been fixed at 50 m.
A particularly interesting case study is that of ex-

(5.13)

periment 10 in which there is clearly a large discrepancy

in the current amplitude along the storm track that is
predicted by the linear Ekman equations, a discrepancy
which is removed when we consider the nonlinear Ek-
man equations. Fig. 6 shows the horizontal currents

at the surface in each of linear, nonlinear (without

mixing) and nonlinear with mixing versions of ex-
periment 10. Note how in the nonlinear case, the band
in which the maximum current amplitude is found
first bends away from the storm track, but then bends
back again and almost reaches the track at the end of
the integration, significantly contributing to the max-
imum given in Table 5. In the linear case, the band
of maximum current remains at a fixed displacement
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FiG. 6. (a) The horizontal current field in the linear version of
experiment 10 (without mixing). The contours are drawn at intervals
of 40 cm s™* and the arrows denote the vector velocity. The coordinates
are measured in kilometers from the center of the storm, the along-
track coordinate increasing behind the storm. The storm moves up
the center of the figure. (b) As in (a) except for the nonlinear version
of experiment 10 (without mixing). The contours are at intervals of
20 cms™'. (c) Asin (a) except for the nonlinear version of experiment
10 with mixing. The contour interval is 20 cm s,
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away from the storm track. [These features of the non-
linear solution have been explained by Greatbatch
(1983) who showed that to a first approximation the
fluid particles move in inertial circles in the wake of
the storm. The maximum current of 1.8 m s~! given
in Table 2 for the mixing version of experiment 10
corresponds to an inertial circle of radius 24 km. It is
clear from Fig. 6 that the current amplitude near the
storm track varies significantly over this distance, again
demonstrating the need to consider the nonlinear
equations (5.13).] '

In- conclusion, when interpreting results or obser-
vations at a fixed point, we note that it can be important
to consider nonlinear effects and to consider the non-
linear Ekman equations (5.13) rather than the linear
Ekman equations (5.2). ‘

6. Summary and conclusions

The two purposes of this paper set out in the In-
troduction have been achieved: first, to present a new
and efficient multilevel numerical model for calculating
the response to a moving storm (Section 3) and second,
to show how, on a time scale of a few inertial periods
following the onset of the storm, the maximum hor-
izontal and vertical velocities found in the wake can
be calculated using a linear Ekman model and a
knowledge of that part of the change in the depth of
the mixed layer due to entrainment. This second result
is expressed by Egs. (2.11) and (2.14) and was verified
using the results generated by the multilevel numerical
model over a range of experiments described in Section
4 and applied to an interpretation of Price’s (1981)
model results in Section 5. It was also demonstrated
in Section 5 that when considering model results or
observations at a fixed point, it is important to consider
the effect of horizontal advection.

An important feature of the numerically generated
solutions described in Section 4 is the confinement of
the horizontal currents near the surface although the
large vertical scale of the vertical velocity field extends
throughout the depth of the ocean. These were features
found in Section 2 when considering the structure of
the response in the limit of large, fast storms. In this
case, the vertical velocity, which is just the inertial
pumping, varies linearly from the base of the wind-
mixed layer to the ocean floor. This is discussed further
in Appendix B where it is shown that the wind forcing
need only be large or fast, in the sense of (1.7), for the
response to extend throughout the depth of the ocean
in this way. We have also seen that on the time scale
considered—a few inertial periods following the arrival
of the storm—the horizontal structure of the response,
in coordinates scaled with respect to scale L of the
storm, is given by the value of the parameter k = U/

. Lf. Here U is the translation speed of the storm and
[ the Coriolis parameter. The nondimensional func-
tions Vi, (k) and W, (k) which we used in (2.11) and
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(2.14) to calculate the magnitude of the response, also
depend only on k.

We have seen that (2.11) and (2.14) can be used to
calculate the maximum horizontal and vertical veloc-
ities in the wake of the storm. These involve knowledge
of that part of the change in mixed layer depth due
to entrainment. A discussion of how this can be cal-
culated is given in Greatbatch (1984). It should be
noted, however, that although the fundamental equa-
tion (2.9), on which (2.11) and (2.14) are based, in-
volved taking the limit Ap/hz — O [see (2.6) for the
definitions of Az and 4p), this does not mean that we
are neglecting the effect of upwelling on Ay [alterna-
tively on the rate of entrainment of water into the
wind-mixed layer (dh/df)mi]. In fact, as shown in
Greatbatch (1984) (see Table 4 in that paper), hg
can be significantly increased by the effect of storm
induced advection; in particular, upwelling.
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APPENDIX A

An Alternative Formulation of the Limit
of Large, Fast Storms

Two alternative nondimensionalizations of the equa-
tions are given depending on whether cross-track or
along-track derivatives are more important, i.e., k> 1
or k < 1, respectively. The scales chosen are those
appropriate to the large, fast storm limit found in Sec-
tion 2. In particular, nondimensional variables, de-
noted by a prime, are defined by

. U 4
E=-—£—; y=Ly; z=Hyz
f :
WN3
(u,v) =V(',v), w=Www, 0= (——-—-)0’
gaf
= (VWV%HT)p,
—
When
VH,,
k>1, W=—=
> L
VHyf
k<l, W=——
U

The linearized momentum equations, written in
terms of these variables, are (dropping primes)
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TABLE 6. Values of E, and E,, which measure the importance of
the horizontal pressure gradient terms in the momentum equauons
calculated for each experiment (without mixing). Ny = 1.5 X 1072

| Hr = 550 m and L = 2.4 ry [cf. (4.3)]. Note that E; is the
important parameter when k < 1, E; when k > 1 and E, and E,
are related by E, = k’E,.

= N3HuH/L*f? = N3HHU?
Experiment
number Linear Nonlinear Linear Nonlinear
1 0.15 0.21 0.18 0.26
2 0.08 0.12 0.10 0.15
3 0.04 0.05 0.05 0.07
4 0.15 0.21 0.05 10.07
5 0.08 0.12 0.03 0.04
6 0.33 0.47 0.10 0.15
7 0.04 0.05 0.18 0.26
8 0.04 0.05 0.08 0.12
9 0.15 0.21 0.18 0.26
10 0.15 0.21 0.08 0.12
11 0.15 0.21 0.05 0.07
12 0.15 0.21 0.03 0.04
N k>1
1
uz_v="E1pE+X
k ,
Ug+u=“E1py+ Y
2 k<1
U, — v= Ezpz + X
v tu=—kEp,+7Y
where E, = N3H\H/(L*f?) and E, = N}H\H/U>.

The limit of large storms then corresponds to the limit
in which E; = 0 and the limit of fast storms to the
limit in which E, = 0. Clearly E, and E, correspond
to the ratios given in (1.7) with ¢ = (N3H,H7)"? being
a representative baroclinic wave speed, effectively
amalgamating the discrete set of wave speeds ¢;, ¢, + *
Cny * * + used previously,

Values of E, and E, appropriate to each of the 12
experiments described in Section 4 are given in Table
6. Representative values chosen for Ny and Hrare 1.5
X 1072 s7! and 550 m, respectively. [A problem in
choosing N is the wide variation over the depth of
the ocean in the buoyancy frequency N. It is important
to choose Np so that ¢ = 0 (1 m s7').] Hy,is 35 m in
the linear and 50 m in the equivalent nonlinear ex-
periments.

APPENDIX B

A Note Concerning the Depth of Penetration of the
Ocean Response to Wind Forcing

A feature of the solutions found in the limit of large,
fast storms discussed in Section 2 and of the numerical
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results presented in Section 4 (see Fig. 4a, for example)
is that the response extends throughout the depth of
the ocean and does not seem to propagate down from
the surface in the form of waves. In this section, we
show that this deep response is forced and depends
only on the storm being either fast in the sense of (1.7b)
or large in the sense of (1.7a). Consequently, in either
limit a description in terms of vertically propagating
waves is inappropriate. It follows that, because these
limits are defined in terms of the baroclinic wave speeds
¢, [or, equivalently the wave speed ¢ = (N3HH)'?
introduced in Appendix A}, it is precisely these wave
speeds which measure the penetrability of the ocean
and not the stratification immediately below the surface
mixed layer, as suggested by the vertically propagating
wave approach. To see how this can be misleading,
we note that the maximum buoyancy frequency as-
sociated with the temperature profile (4.1) is 1.9
X 1072 s7'. If the buoyancy frequency had this uniform
value throughout the depth of the ocean (2000 m in
this case), then the wave speed associated with the first
baroclinic mode would be 12 m s™! and the entire
response to a storm translating at 5 m s™' would be
completely different from that presented in this paper.
It follows that consideration of only the upper, highly
stratified part of the ocean, can be misleading.

We begin by showing that only fast storms are suf-
ficient to produce a deep response. Fig. 7 is the equiv-
alent of Fig. 4a but for a storm of one-tenth the size—
ry in (4.2) is 3 km, as against the previous 30 km. It
is clear that the initial response extends throughout
the depth of the ocean, as it did before. To see why
this feature does not depend on storm size, consider
the equations for a single baroclinic mode as given
according to linear theory

(U= A — Py + i =F (B1)

where 7 corresponds to the interface displacement in
a two-layer model and # represents the forcing. The
solution consists of a particular integral—the forced
response, depending on F—and a free wave solution
that satisfies (B1) with &F = 0.

We concentrate on the particular solution with the
same horizomal scale L as the forcing #. The terms
¢?ng; and ¢?n,, are then of the same order of magmtude
in (B1) and both will be small compared with U2y,
if U2 » c2 In the fast storm limit (U? > c?), this
solution satisfies

Summing over all baroclinic modes, it follows that 5
has the same vertical structure as F—this is just Gv(z)
defined by (2.3b). This forced response, therefore, ex-
tends throughout the depth of the ocean and a de-
scription in terms of vertically propagating waves is
inappropriate.

The same conclusion follows whenever the forcing
has a larger scale in y (perpendicular to the direction
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F1G. 7. The vertical velocity field immediately following the passage
of the eye of a storm of one-tenth the horizontal scale that was used
to produce Fig. 4a. This is the initial response in the vertical velocity
field. The contour interval is 1.1 X 107* m s™! which is Y of the
maximum response shown. Solid contours here denote downwelling
and dashed upwelling. The zero contour is drawn as a solid line.

of motion) than in { (the direction of motion)—this
ensures that derivatives in £ are more important than
those in y in (B1). An example of such forcing is an
atmospheric front. '

Similarly for a large storm, the particular solution
to (B1) with the same horizontal scale as the forcing
F will again satisfy (B2) with this equation reducing
to .o

=9, (B3)

when U <€ O(c). The forced response therefore extends
throughout the depth of the ocean as before. In par-
ticular, the response to a stationary storm that is “large”
in the sense of (1.7a) will also extend throughout the
depth of the ocean. [Note the large vertical scale of
the vertical velocity field computed for a stationary
storm by Adamec et al. (1981).]
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