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ABSTRACT

A thin-jet model predicts the location of the axis of a strong current such as the Gulf Stream by using the
vertical and cross-stream integrated vorticity balance, under the assumption that the meandering scales are
large compared to the width of the jet. We demonstrate that such an integral provides a matching condition
upon the barotropic component of the wave or eddy fields which, on either side of the jet, have north-south
scales on the order of the meander wavelength. For steady meanders, these exterior fields do not influence the
path and our model reproduces the dynamics of Robinson and Niiler, but for the transient case, the determination
of the jet axis motion and of the external field is a coupled problem.

When the disturbances in the axis position are time-dependent but are very small, the exterior wave problem
can be linearized and the matching conditions can be applied at the mean position of the jet. We can therefore
derive a dispersion relation for the meandering motion, allowing us to compute the phase speed and growth
rates for the meanders in terms of the wavenumber and two integral properties of the stream: the mass and
momentum transports. This dispersion relation predicts instability for waves shorter than a critical scale.

We also derive via standard four-dimensional instability theory a long wave approximation to the dispersion
relation for perturbations of a quasi-geostrophic jet with both horizontal and vertical shears. The result is
identical to that from the thin-jet theory for an interesting class of perturbations, which we therefore identify
as meandering modes. Thus thin-jet theory has been calibrated by reduction to both finite amplitude steady
meandering and infinitesimal instability cases. For the understanding of large amplitude, time-dependent
motions of the Gulf Stream and their role in the general circulation, the thin jet theory offers a semi-analytical
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approach for process studies.

1. Introduction

The variability in the track of the Gulf Stream was
recognized long before the realization that mesoscale
motions were prevalent throughout the ocean. Maury
(1855) comments on supposed seasonal variations in
the Guif Stream position and on eddy currents. In the
1930s, analysis of hydrographic data and sea level vari-
ations led Iselin (1936, 1940), Montgomery (1938) and
others to recognition of the rapid changes in position
of the Stream, the large fluctuations in isotherm depths
near the Stream, and even the presence of Gulf Stream
rings. Ship-surveying techniques became more so-
phisticated with the development of the BT (Iselin and
Fuglister, 1948; Fuglister, 1963) and, later, the XBT;
the rapidly repeated tracks of Hansen (1970) and Rob-
inson, Luyten and Fuglister (1974) showed the down-
stream progression of meanders at 5 to 20 cm s~! with
a gradual growth in amplitude of many features. The
latter work also showed the value of aircraft surveys
of infrared radiation as an indicator of deep structure;
more recently, satellite-based surface temperature maps
have been used to trace the structure of meanders by
Maul et al. (1978) and Halliwell and Mooers (1979).
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Recent studies of the Northwestern Atlantic using sat-
ellite altimetric data have increased our knowledge of
the variability (e.g., Cheney and Marsh, 1981), and
Robinson et al. (1983) have shown that the signal of
the meandering and the surrounding field can be readily
detected; this technique has great promise in the future
for giving synoptic data on the geostrophic surface
flow field. This suite of techniques has been comple-
mented by moored instrumentation (Luyten, 1977;
Watts and Johns, 1982) and drifter data (Richardson,
1981; Schmitz et al., 1981). The modern observational
programs have indicated the breadth and complexity
of the wavenumber and frequency spectrum for Gulf
Stream meandering motions; the reader is referred to
review articles by Fofonoff (1981) and (specifically fo-
cused on the variability) Watts (1983) for summaries
of the time-dependent fluctuations.

Theoreticians have been concerned with the source,
nature and predictability of the meandering motions.
In the recent literature, there have been two approaches
to the problem. The first has been the application of
linearized instability theory, either barotropic or baro-
clinic or both, in order to calculate the properties of
waves upon the current; the second approach has been
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the derivation of equations for changes in direction of
the current using the cross-stream integrated vorticity
balance. Here we contribute to the second framework
by finding the proper cross-stream integrated balance
for a time-dependent meandering model and explain
the role of the wave fields external to the jet in deter-
mining the evolution. In addition, we derive via con-
ventional instability theory a dispersion relationship
for long waves on a baroclinic jet of width comparable
to the deformation radius. From this new result, we
can prove that the small amplitude limit of the thin-
jet model gives the same dispersion relationship as
instability theory in the long wave limit.

The instability theories have followed the well-un-
derstood technique of examining linearized pertur-
bations upon a zonal flow and attempting to predict
dispersion relations including temporal or spatial
growth rates. Representative analytical theories wherein
applications have been made directly to the Gulf
Stream include barotropic (Haurwitz and Panofsky,
1950), baroclinic (Nikitin and Tareev, 1972) and mixed
(Orlanski, 1969; Flierl, 1975; Holland and Haidvogel,
1980; Talley, 1982) models. One remarkable result is
that when the best attempts are made to choose model
parameters (such as flow speeds in the various layers)
in a consistent fashion from integrated properties of
the Stream, the dispersion relations for all the models
are rather similar. Instabilities occur for wave scales
{A\/27) less than about 150 km with the maximum
growth rate occurring at short scales; generally this
growth rate is more rapid than that indicated by ob-
servational data (except in the study of Nikitin and
Tareev, 1972, where a large eddy viscosity is used to
weaken the downstream growth). The difficulties in
extending the instability approach to finite amplitude
for the thin jet are significant. Analyses along the lines
of Pedlosky’s (1970) work on finite amplitude baro-
clinic waves seem implausible for this problem. The
fluctuations are clearly large with respect to the mean
and it does not seem likely that changes in the mean
flow by Reynolds’ stress or heat flux are necessarily
more important than wave-wave interactions in the
equilibration of an individual quasi-steady synoptic
meander (if such even occurs, rather than the wave
growing and breaking).

The thin-jet approach to analyzing the finite am-
plitude behavior of Gulf Stream meanders was sug-
gested by Warren (1963) and Robinson and Niiler
(1967). This second technique for exploring mean-
dering uses the approximation that the Guif Stream’s
width (and the deformation radius) is small compared
to the length scale of the meander pattern. By inte-
grating the vorticity balance across the jet, one deter-
mines the change of angle of path (from due east) as
one follows the jet downstream. These calculations
indicated that topographic and B-controlled quasi-
steady meandering could not successfully reproduce
both the downstream growth and average wavelengths
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of the features. It was also clear in the data (Robinson,
1971) that the temporal changes of vorticity were not
negligible. Robinson ez al. (1975) (hereafter referred
to as RLF) recognized the importance in a theoretical
model of including the time-dependent changes in
Stream position and direction while preserving the ap-
parently coherent cross-stream density structure and
the lowest order geostrophic balance. This paper in-
dicated the possible form of such a model, but devel-
opment of a time-dependent thin-jet meandering
model has proved quite difficult. There are many pos-
sible choices for the relationships among the various
nondimensional parameters and it is difficult to think
of comparisons that might be drawn between the thin-
jet and other theories.

This paper begins with a discussion of the dynamics
of a thin jet (Section 2), following the work of RLF
but correcting certain inconsistencies in the choice of
nondimensional parameter relationships. We show that
the interior dynamics of the jet manifest themselves
as matching conditions for the exterior fields on either
side of the jet, thereby determining the evolution of
the path. (An analogous problem is determining the
location of the interface between two fluids in Kelvin-
Helmholtz instability.) Next, we pose the linearized
version (Section 3) and derive the dispersion relation
which demonstrates that there is a critical scale
(= KV2)/B{V H]'"*) below which meandering motions
become unstable. Here the bracket is a vertical and
horizontal integral and V is the downstream flow rate.
In the succeeding section (Section 4) we use standard
instability theory to derive the dispersion relationship
for long waves of a jet with both vertical and horizontal
shears. From comparison of these two models, we find
the criteria for the neutral or unstable modes such that
they appear as a meandering motion. Finally, we sum-
marize the results obtained from this model and suggest
applications of these ideas to the Gulf Stream (Sec-
tion 5).

These analytical process studies continue to serve
as a valuable complement to both the large numerical
general circulation models, which are now beginning
to show meandering and eddy-shedding behavior
(Holland, 1978), and the process model computations
of Rhines (1977), Tkeda (1981) and Ikeda and Apel
(1981) which followed the evolution of a periodic jet.
The synthesis of all of these approaches, together with
the observational data, is necessary to achieve a deeper
understanding of the phenomenon of large amplitude
nonlinear meandering, its relationship to the sur-
rounding field of rings and eddies, and its crucial role
in the general ocean circulation.

2. Thin-jet model

We shall use the notation and general procedure of
RLF, to which the reader is referred for a detailed
presentation of the kinematics (RLF Section 3) and
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basic dynamics (RLF 3.1). A coordinate system is in-
troduced based upon an unknown Stream axis position
Y(X, t) (Fig. 1), which is the primary dependent variable
to be predicted from the theory. A cross-stream co-
ordinate (n) is defined normal to this curve, the equa-
tions are transformed to X, n coordinates, and the
velocity field is resolved into downstream (k) and cross-
stream (v) components. The vorticity equation which
can be derived from RLF’s Egs. (3.6-3.8)! is

Dy Jd Db
”—"‘ o S e Mo 5
é Dd
+hV'a—‘D—+7\h,3[ﬂ sinf — v cosf)
TN Ow
l:l+€ﬁ(Y 7\170080)'{'63[] ha_Z 0. (1)

Implicit are the usual Boussinesq and beta-plane as-
sumptions; in addition, the radius of curvature of the
jet must be sufficiently large compared to the width
of the current so that the Jacobean of the transfor-
mation, A, does not become zero. Topography has
been neglected since the existence of a bottom flow
coherent with the upper level jet is dubious (Luyten,
1977); in addition, its inclusion would not fundamen-
tally alter the theory. In Eq. (1), changes in relative
vorticity (the first two terms) occur because of Coriolis
acceleration when the path angle (6) changes (the sec-
ond two), advection of planetary vorticity (the third)
or vortex stretching (the last term). The nondimen-
sional parameters in this equation are ¢, the Rossby
number based on the downstream length scale and
Stream velocity; ), the. ratio of the jet width to the
meander length scale; 8, the strength of the beta effect.
All symbols are defined in Table 1. The substantial
derivative [see also RLF Eq. (3.5)] is written in terms
of the horizontal velocities (u, ») and the vertical ve-
locity (w) and various functionals of Y expressing the
motion of the coordinate system fixed to the Stream
axis. Of particular importance are the two ‘“axis ve-
locities” u4 and v, which a particle fixed at a particular
downstream arc length on the axis would have as the
axis wiggles. The parameter ¢ measures the propagation
speed of disturbances in the axis position compared
to the Stream speed.

The velocity fields (downstream, cross-stream and
vertical) are decomposed into the downstream velocity
[V(n, z), 0, 0; the barotropic axis velocity field [au (X,
1), av(X, t), 0] and finally the residual field [mu,(X,
n, 2, ), mAv(X, 1, 2, 1), mow,(X, n, z, )] associated
with the meandering motions. The nondimensional
parameter m (the ratio of the meander-induced down-

stream velocity to the basic jet flow velocity) must be -

' RLF Eq. (3.7) has a typographical error—a factor of A should
multiply the dp/oX term.
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FiG, 1. The geometry of the thin-jet model. The position of the
axis of the jet is labeled Y(X, #). A point (x, ) off the axis can be
located by coordinates (X, n). The downstream (u) and cross-stream
(v) velocity components are also sketched.

found by consistently balancing terms in the various
equations of motion. We have also introduced a new
parameter  to clarify the proper scaling of the vertical
velocity in the vorticity budget. The density equation

D n
= (f vV, + mpmz) + N? A mew = 0,
Dt €

N 2= N (2:limensionalH 2/ﬁ)21 23

will also place constraints on « which were not con-
sidered in RLF. We will not discuss the density equa-
tion in great detail here, but our scaling (v = ¢/m,
m = X < 1) will be consistent with the deformation
radius being comparable to the stream width (N?
~ 1), whereas RLF (with w = ¢/m, m ~ e K A <€ 1)
would require the fluid to be more weakly stratified,
having N2 ~ (¢/\) or the deformation radius order
(¢/\)"? smaller than the stream width.

We now substitute the kinematic decomposition of
the velocities above, defining also a decomposition of
the substantial derivative,

% = g + [V + ay — aknb, C‘;:e :
AR L
and s1mphfy part of the vorticity tendenqy by using
a—aé\—h%u,, + havAai—lD)i;
= Mgy, — Mav(V + ap — aknb) °°hso :ﬁ,

~ which follows from the definitions of u, and »,. The

resulting vorticity equation will be written here in
symbolic form
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TaBLE 2. Terms in vorticity equation.

X longitude
n perpendicular distance from Stream axis
z vertical distance
t time
“ downstream velocity
7 cross-stream velocity
w vertical velocity
V(n, z) basic flow associated with stream
Y(X, ) position of axis; primary dependent variable
0 angle of axis from east (=tan~'dY/8.X)
. PY -2
X curvature of axis ( e [l + (9Y/0X )2] )
14X, ) downstream velocity of inextensible stream
(* —— £ dq sinf(q, t)BzY/OXat)
v(X, ) cross-stream velocity of axis (= —cosf3Y/dt)
WYX, 1) correction for motion of initial point
X
(= —f dg siné(g, t)azY/BXat)
'Xo
h Jacobian of transformation (=1 + Ank)
D 6 cosf 6 v—vy 9 I
—=a—+ (- — ay — ainf —_—t—=—
D Gyt A ab) St ST Y
substantial derivative
a ratio of axis phase speed to jet velocities
m ratio of meander-induced velocities to jet velocities
€ Rossby number based on jet velocity and
downstream scale (Vo/foL)
A ratio of cross-stream to downstream length scale (//.£)
w ratio of meander-induced vertical velocities to
corresponding horizontal velocities
N? nondimensional Brunt-Vaisala frequency squared
. (N dimcnsionnle 2/]{)212)
g nondimensional beat parameter (8.£/f;)
m?2
ad + ﬂP + —

(I+,8KP,)+TM

=2 (1 + fPy + edo + emd;) (2)
[

with each symbol defined in Table 2.2 All of the terms
represented by A4, P, I, S, M are independent of m or
¢ and have order | terms and terms that are higher
order in A. The symbols represent: 4, axis vorticity;
P, planetary vorticity; /, interaction between axis or
downstream flows and the meander field, M/, meander
flow vorticity; and S, vortex stretching.

The thin-jet approximation consists of assuming that
the downstream scale is much larger than the cross-
stream scale (A <€ 1) and that the Rossby number based

2 One difficulty with the thin-jet formation is the algebraic com-
plexity. For readability, we have adopted an abbreviated symbolism
for the equations in the text, with the terms written out fully in
tables.

, cosf 3 Dyv
A = kpy, — kv (V — ay — arn) —— A — cosf — ax ;tA

9 Dyp

+-(V+ 80~ —>

( apy) co 3% Di
Df
Ao =T
Y
‘U Dr

P =h{(V + auy) sind — av, cosf]
P, = My, sin — M»,, cosf])
P, =Y — Aq cosf

aw,,
S—h";

9D Do ]
I—an[th(V'i-au,,)-}—thum

—Acosﬁﬁ[ ID)t”A‘F)\D ]+}‘“'"c°505%11))_;.f
N+ apg) cosh = 280 ’ai%}”)‘”'"%otq
M= (h Diﬁ'") 5"56}0}):'"
%_a5;+(V a\l/)cos()-aj‘,
%t=umcos0 ‘;+u,,,%+wwma—;

on the downstream scale is small (e € 1). However,
this does not preclude the Rossby number based on
the cross-stream scale (e/\) being order 1. In addition,
for the velocity decomposition to be useful we expect

TABLE 2A. Linearized quasi-geostrophic terms.
i _ 9 a a
A= — +-Wa—-+V—
ax (“ aX) ¥ ( at aX)Y’”‘
Ay: — (multiplied by ¢)
A,: — (multiplied by ¢)

Y
P=V—+

ax aY
P, = -\,

— (multiplied by ¢)

o
9z

I 3[ 6V+( 6+
=—1v,
mL "o ot

M=0

S =

P) 3 3\ o
el
X) Meat Vax) ax
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that . will also be small; its actual value will be de-
termined by making consistent balances in the various
governing equations. As yet, then, we assume that the
sizes of m/\ or wm/e are less than or of order 1. Under
these assumptions the terms involving M, P,, P,, A,
and A, can be dropped while the others are simplified
as in Table 3 to reduce Eq. (2) to the form
ad +gp+2p="¢ 3)
A €
Eq. (3) can also be rewritten in a form that shows
explicitly the dependence of various terms upon the
cross-stream and downstream coordinates

FO(X3 t) + V(ﬂ, Z)FI(X’ t) + VZ("’ Z)FZ(Xa t)

-em%+m_<9_[9;( +aw)

e 3z A0 Ha
D D,
=0 Zlgl=0, (4
+Dtum+aVAD9:| 4)

where the F; are somewhat complicated functionals of
the angle 6(X, f) defining the axis (Table 4).

At this point, we diverge from RLF in making
choices of the relationships among the various param-
eters. The forms of Egs. (3) and (4) suggest that the
proper scaling choices are w = ¢/mand m = \if a
and § are order 1. This choice of w is also consistent

- with the density equation. However, RLF made the
choice m ~ ¢ < A and w = ¢/m, so that integration
both across the stream and vertically gave an evolution
equation for the path

df2

0

df2

0
+ Fy(X, t)f dn f_l dzv?=0. (5

The width of the current is represented by d; it will
be assumed that the downstream flow V{(, z) vanishes

TABLE 3. Simplified vorticity terms.

cost 2— Doy

A = p, + kw(V — ap) cosdly — % D

DI
— 0
+ (V+ ap,) cosf — ax Dt

D D;
r —3[—(V+ auA)+ Lt + v D; 0]

oy
az

=

DI
E—aa—+(V aw)cosaax

’

D
_—#mcoso

+ vy — + wW,
D ax m m

on dz
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TABLE 4. Dependence of grouped terms upon X and 1.

Fo(X, 1) = xap,, + ka®v of cosby

—a’coseax(a—\[/cosﬂ )

a 3
+ a4 s —
Ha 0 aX( ~¥ Soax)”
+ aflp, sind — v, cosh)

a
Fy(X, t) = —xav, cosf8y ~ a cosfd —

P
ax (cos() — v,,)

ax

a [i]
+ + —_
apy cosf — (0080 ) a cosf 3

a 9 .
=— 0 + f'si
X(at \lzcosa ) A sing

i) a0
FxX, 1) = costt 5} (cose ‘—9/—‘,)

for || > 3d. This is exactly the flat-bottom form of
RLF’s Eq. (3.22). The simplicity of this equation for
the path stems from the neglect of the last term in (4).
However, this scale assumption is not consistent as we
now show by integrating (4) (with the last term ne-
glected) in the vertical only. In that case

Fy(X, 1) + Fi(X, t)f_ol dzV(n, 2)

0
+ Fy(X, 1) f dzVi(y, z) =
-1

(the flat bottom, A < 1 limit of RLF’s (3.20)) is ob-
tained. This must hold for all values of #; but that can
occur only if Fy, F; and F, are separately zero, which
leads to inconsistent specifications for 8(X, f). This
problem clearly still exists in RLF’s (3.20) where the
A < 1 approximation has not been made.

This inconsistency implies that the amplitude of the
meander field cannot be chosen to be much smaller
than A; rather the correct choice is 1 = A, In this case
Eq. (4) can still be integrated but boundary contri-
butions (at » = *4/2) will not disappear:

d/2 0
Fo(X, d + Fy(X, 1) f dn f dazv
-1

df2

0
dn f dzv?
-

n=d/2

+ Fy(X, 1) f

d a 0
= ——a[ — ¢ cosf 5/\—,] f dzu,,,

This equation is our main result. It allows us to relate
the discontinuities in tangential velocity of the exterior

6

n=—df2
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fields to the motions of the axis and the momentum
and mass flux within the current. It is valid for motions
with downstream length scales large compared to the
jet width (and the deformation radius), and Rossby
numbers based on the cross-stream width not larger
than 1. The amplitude of the meander can be large—
on the order of the downstream scale, but the path
clearly cannot cross upon itself without violating the
conditions implied in the coordinate transformation.
In principle, this equation, together with a condition
matching the normal flow to the motion of the axis,
could be combined with solutions to the exterior non-
linear Rossby wave fields to yield an evolution equation
for the axis position. The problem would be quite
similar to that for nonlinear Kelvin-Helmholtz insta-
bilities of a vortex sheet. This procedure has been for-
mulated for the f-plane case by Campbell (1980); here
we choose to explore the beta-induced effects.

Equation (6) also answers one of the puzzles in
RLF-~—why the integrated equation for the path (5)
seems to be sensitive to how far across one integrates.
In the correct form, (6), the d dependence of the first
term can be balanced with that of the right-hand side,
in the region where the solutions are matched from
the interior to the exterior regions. Eq. (6) shows the
necessity for solving the external wave field and
matching these waves to the interior fields, thereby
determining u,, at the edges of the jet.

Robinson and Niiler (1967) derived a path equation
for a steady meander of the Gulf Stream using essen-
tially the same scaling assumptions. In this special case,
we can see from Eq. (6) that the exterior field is not
important in determining the path. When the flow is
time-independent, F, = 0 since it depends only upon
a6/0t (or ¥, u4 and v, which all arise from 96/9¢ terms)
and the boundary term is likewise zero. The remaining
terms give

8 sind f dn f dzv

1e] a0
+ § — _— 2
COs 3 (cosﬂa )fdnfsz 0,

which is just Robinson and Niiler’s (1967) result. No-
tice that the exterior field enters in this theory in exactly
the same way it enters in Robinson and Niiler’s (1967)
work but that it is not required for finding the path.
The path equation can be solved not only for small
amplitude but also for finite amplitude standing Rossby
wave patterns, as sketched in Robinson and Niiler
(1967, Figs. 3, 4).

3. Linearized time-dependent form

The comparison above shows that the time-depen-
dent formulation (6) will reproduce the proper steady
flow patterns on the beta plane. Solving the fully non-
linear time-dependent theory appears to be quite dif-
ficult. It is of use, therefore, to explore the small-am-
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plitude case, not only for validation of the model by

-comparison to more standard methods but also to

make more explicit the matching process necessary to
predict the motion. A further benefit of this comparison
is a new insight upon the perturbation structures that
will be manifested as meandering modes.

When linearizing the thin jet model, we drop all
terms quadratic or higher order in 6, p,,, v,, and wy,.
For simplicity we will take the limit corresponding to
a quasi-geostrophic model by taking w = ¢/A <€ 1 so
that vertical advection becomes unimportant and the
meander fields become geostrophic to lowest order. In
this approximation, the various terms in the vorticity
Eq. (2) simplify as shown in Table 2A. The resulting
equation

0 7] & & d
v IS+ 2o - Vi e
[“ ot ax](anz 6X2)p max P
Y | e
+ BA? ;L—Ypm ~ % W + @ Yy + 2aV Yy

S 4 i)

+ VZYXxx+ﬁ[a5t'+ V'a_i]Y= 0 (7)
balances changes in meander vorticity, meander ad-
vection of stream vorticity, meander-induced advection
of planetary vorticity, vortex stretching, vorticity
changes due to turning of the axis, changes due to flow
along a curved axis, and finally planetary vorticity
changes from north or south flow of the Stream itself,

The equation analogous to (6) is formed by dropping
the A? terms from (7) and integrating with respect to
n and z:

aZdYX,, + 2a<V>YXXt + <V2>YXXX + B'<V>YX
n=df2

o 0
+ a’6dY, = —a — .F dzpm,
at J-i

s

n=—d/2

which we can rewrite taking
Y = Y, explik(X ~ ct)),

0
f_ dzpp = o) explik(X ~ c0)

as

—ikca[POn(g) N p""(; g)]

+ ikYo{—a’dk?*c + 2a{V Yk’c
— (VDK + KV — afdc} =0. (8)

In the exterior region, we need to calculate only the
barotropic component of the flow, since the matching
condition involves the depth-integrated tangential ve-
locity. (The linearity is also important in that it de-
couples the modes.) However, we cannot use Eq. (7)
in the exterior region because this is only valid for
n < 4d. Rather we can just take the linear equation of
motion for the barotropic total pressure
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d [ & & ;.
—f— + 2 _ + )\2 = o=
at (an2 N ox? Box?=0
which has solutions
p=Pho kX~ g—NBlacy k2112, )

Here we use the X and 5 coordinates basically as a
Cartesian system; this is consistent with the radius of
the curvature of the track being inversely proportional
to the wave amplitude. This scale is so much larger
than the other scales [O(1) jet width and O(1/\) wave

scales in the exterior] that the convergence of the co--

ordinates is not important. With this linear formalism,
we could also consider more complex exterior fields
such as those produced in a bounded basin; the study
of Harrison and Robinson (1979) indicates that in this
case, eastward propagating meanders can generate
waves that are not damped away from the jet but fill
the basin.

Notice that the exterior solution (9) has comparable
scales in both downstream and cross-stream directions.
Now we match the interior barotropic flow in the region
where V' — 0,

a (¥ 0
fo dzp—*-):f dX'Y{X', 1) + )\f dzp,,
~1 -1
_ac Yo e=e) 4 \poet-),

(the sum of axis velocity and meander field) to the
flow field of (9). Continuity of p and dp/dy at n = df
2 gives .
e = £ X ¥, (—ﬂ-+k2)1/2
Doglearz = =* X ° ac >
which can be substituted into (8) to give
a’*c? (ﬁ

2

12
—+ kz) + a?dk*c? — 2akch dn f dzv
A \ac

+szdnfszz—Efdnfsz+adc,§=0.

Clearly the boundary term is not negligible but will
dominate the equation completely if a is order 1 and,
when a is chosen properly, still contributes importantly.
This equation requires us to choose a such that the
first term is only order 1: @"%/X = 1 or a = \*. The
lowest order dispersion relation is then

3\ 1/2 ’
202(%3) + szdnfsz2

—,éfdnfsz=o. (10)

This dispersion relationship, valid for meanders much
smaller in amplitude than either the stream width,
downstream scale or deformation radius, will be dis-
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cussed further in Section 5. Notice, however, that it
does have the satisfying properties of being independent
of d and of the detailed structure of V.

4. Standard linear calculation

The long wave limit for the instability of a barotropic
jet has been studied by Howard and Drazin (1964)
who obtained a dispersion relation like (10) for waves
on a barotropic jet in the long wave limit (A < 1 but
8 ~ 1). They avoided the nonuniformity as n —
(arising from the large scale externally) by constructing
two solutions that are well behaved at +o0 or —oo.
Forcing the Wronskian of these to vanish gives a dis-
persion relation, which they approximated by a A ex-
pansion. Here we shall consider sinuous mode long
waves on a baroclinic jet and obtain a similar result
using quasi-geostrophic instability theory. The equation
for infinitesimal perturbations on a jet,

3 AV(* 81 9 &
—t VNSt t N
(a at 6x)(0n2 oz N2 oz T N a,_Y2)p :
. 1 9
HBN =V, ———=— =
(5)\ m dz N2 az V)pX 09

is written in an 5, X notation to ease the comparison;
however, this notation change should not obscure the
familiarity of this equation (e.g., Pedlosky, 1979). The
nondimensional function N*(z) arises from the density
equation and is of order the square of the deformation
radius divided by the square of the jet width. Ocean-
ically, this is an order-one function.

If we make the usual normal mode assumption p(n,
X, z, 1) = P(n, z) explik(X — ct)], we have

¥ a1 9
— —_—t———— 22)P
v ac)(anz dz N? 9z Nk
. a1 9
2 __ ' e —t — =
+(B)\ Vn azNzan)P 0, (an

with appropriate boundary conditions; at n = 0, we
take a symmetric profile for V' and apply symmetry
boundary conditions upon P (selecting the sinus mode,
since the varicose mode does not look like a wiggling
of the jet axis). The downstream flow will be taken to
be zero for n > § and to vanish quadratically V' ~ (n
— 1) in the neighborhood of 7 = 3. Because of the
vanishing mean flow in the far field, the perturbation
structure can be written explicitly for 7 > 1

)xz,é 1/2
P=3 A, F\2) exp[-?‘—c— + N2k + 'y,,zn] ,

where v, and F, are the eigenvalues and eigenfunctions
of the vertical normal mode problem. Using this so-
Iution, we can move the condition of boundedness at
oo onto 7 = 4
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: s (B4 )]
— Py = —| ¥» +>\2(—+k2)] P,
an P ['Y ac )

1
at 9=, (12)

2
where P, is the nth mode component of P.

In the domain 4 € [0, 4] we can distinguish two
regions: an inner one where V' » ac (since we now
expect a ~ A*?) and an outer one where V = ac. For
a = \*3 and V vanishing quadratically at 7 = 1, this
inner region becomes 0 < n < 1 — A3, We expand

c= c(O) + A2/3C(2/3) + A4/3c(4/3).
(The A terms do not seem to be necessary in the

matching process.) The sinuous mode solution to (11)
in the inner region is then

P=V—ac+NQ+ --- (13)

Substituting into (11) gives
& 1 0
V(an * ;z 1\112 :Z)Q Q( :z N? BZ)V
=KV - BV, (14)
where
Q,=0, n=0;
Ve.=V,Q, z=0,—1.

In the outer region 3 — A\ < < 1, we rewrite the
equation using 7 = (3 — g)A"* and V' = A3V as
our order 1 variables. We find

& &
[(V’—c) P— Pé—QV:I
a1 9 a1 9
= —A2/3[ Vr _ —_— - — I]
V-9 val Pana’

~ NBP + NPKHV' — )P
with boundary conditions

V'—oP,=V,P at z=0,-1
and
9 172 ¢ 1/2
— Py = AN — 1+ A2/3 —= 2) 1
o PWEA(O (c) ( i k barotropic,

a 173 473 7 ﬁ 21,2 vz
a,P(n)—)\ Yn +>\ +>\k P(n)
baroclinicn = 1

aty = 1. The solution to the outer region problem is
= NB[V' — ¢+ \Q1, (15)

[V = cOlQyy = Vi Q'

This last equation can be rewritten as

where
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¢ ]a - O

The boundary conditions are

d
_— V'_
611’[

~

ﬁ 1/2

from matching to the n > § region and
[V'—=cMQ.=V,Q0 at z=0,—1.

The baroclinic part of Q' must vanish as 7 — 0 in
order to satisfy the baroclinic part of the boundary
condition. We can solve for Q'

Q' = [V'(m, 2) — Ol (B/c )12
' dx
. J‘; m + GV (v, z) — ¢,

where G is not yet determined. The only way the upper
and lower boundary conditions can be satisfied without
involving additional boundary layers is to consider
V, =0, z=0 and —1. Apparently, the instabilities

“associated with surface or bottom density gradients

will not be manifested as meandering motions (defined
more precisely below). With the simplifying assump-
tion that V'(%, z) = #"2H(z) we can integrate this for-
mula explicitly

= (0 H = c©1c@(G/c© 1/2{___’7_
Q [71 4 ]C (B/C ) ZC(O)(C(O)_HnIZ)

€ + 7 VeOH |
+ G@I"H — ¢®.  (16)
As usual, some care must be taken in choosing the
proper branch of the logarithm for %' > (c@/H)"% for
a viscous critical layer Inz = Inlz| — ix (Lin, 1955),
while for a nonlinear critical layer Inz = In|z| (Benny
and Bergeron, 1969). For oceanic flows, the latter cri-
terion seems more appropriate.
We now match (15-16) to (13-14) using standard
asymptotic matching methods (e.g., Van Dyke, 1964).
The inner limit of the outer solution is

¥ (0)2 B 1/2
— N3¢ — )\2 _— ( )
302 —nH\c?) °

while the asymptotic form of the inner solution is

- ‘_1‘ OOy In

P—-V

P— NPV — ]+ )\5/3[ ) 4 Bz ) '2]
(using the asymptotic solutions of (14)) or

2
P V= e 4+ XAQ@)
: /)

2
+ xB(z)(l - n) .
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In order to connect these solutions, we must have

1 c(o)z >3
PR AT
3 H(z) \c
Finally, the coeflicients 4 and B can also be related
to the symmetry boundary condition at = 0 by in-
tegrating (14) with respect to z and % to find

[rrnaiz-o5]

" 0
= f dx f dz[k*V(x, z) — BV(x, 2)].
0 -1 .

1/2
) , B(z)=0. (17)

Evaluating this for 5 close to 1, we find

0
3 f dzA(z)H(z)
-1
1 i/2 .
== dx JO dAk*V¥x, z2) — BV(x, 2)].
2 Jap —1
Combining this with (17) gives a dispersion relation

[),‘ 172
c(t»l(_c_(o_))
1 o0 0 ~
-1 [ f kY, )~ BV D),

which is identical to the result (10) found by the thin
jet dispersion relation. _

If we examine the shapes of the perturbations in
this model, certain characteristic structures of mean-
dering motions show up readily. The dominant term
in the perturbation pressure in the interior is

P ~ constant[V — ac@)e* =<, (18)

The two terms listed here dominating the perturbation
pressure have simple intuitive interpretations: they
correspond respectively to zonal flow perturbations
due to shifts in the latitude of the axis and to meridional
flow perturbations due to the north-south translation
of the axis. If the jet axis is shifted northward a distance
Y(X, 1) = Y, exp(ik(X — ct)), the downstream velocity
is
pu~ WY+, 2)
or
r =~ WVn, 2) + YV,(n, 2),

giving a contribution to the perturbation geostrophic
pressure _
P~ V(n, 2)Yoe" ",

as in the first term in (18) (see also Howard and Drazin,
1964). The second contribution is from the pressure
associated with the displacement of a material surface
at latitude Y(X, ?): e.g., v = —aY¥, = —py, giving

X
p= aJ‘ dX,Y’(X', t) = —ac(o)Yoeik(X—ct)-
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In any jet perturbation problem, then, the meandering
perturbations can be identified as those with the dom-
inant contribution to the pressure within the jet being
P = V — ac. In two cases, the barotropic and baroclinic
top hat jets, where the eigenfunctions can be calculated
explicitly (cf. Flierl, 1975, or Talley, 1982), we find
that there is a long wave mode having meandering
form. [For more general linear motions, we can recover
the general linear thin-jet equation (7) by substituting
the analogue to ¥V — gc©@

i X ) .
p= Y [VY(X, f)— af dX'Y{X', t)] + N
@ = AW,
into the quasi-geostrophic perturbation vorticity equa-
tion.}"
5. Results

The simplest prediction of the thin-jet model is the
dispersion relation (10) for the linearized case (in di-
mensional form)

1 fw 1f°
32 = Z pli2 dn — dzVin,
c 25 Ly _HZ(nZ)

s P N L
E-érﬂf_wdnﬁf_Hsz(n,z)

shown in Fig. 2. Here we shall présent ¢ as a complex
function of real &, although representations of complex
wavenumber as a function of real frequency could also
be of interest. The necessary transport and momentum
transport values

30 v

\ Cr

(o]
k4

»
m
O

-]
.

100 200 ¢ 300 KM

w04

FIG. 2. The dimensional thin-jet dispersion relationship for the
parameter values given in the text. The real and imaginary parts of
the phase speed are plotted against the length scale .£L = \/27 of the
wave. '
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[ 0
f dn -l—f dzV(n, z) = 3.4 X 10* m? s7},
— H -H )
[150 Sv for H = 4.5 km]
el 0
f dn lf dzV¥n, z) = 1.3 X 10° m3s7!
o HJ-g

have been taken from Robinson, Luyten and Fuglister
(1974) and 8 = 1.8 X 107" m~! 57!, For wavelengths
shorter than the critical scale

fa’n f dzV? ”
B f dn f dzv

the meandering motion is unstable. One prediction of
this dispersion relationship which requires some dis-
cussion is that the phase speed for the unstable modes
is retrograde. From the theoretical point of view, this
result appears possibly to violate the semicircle theorem
(cf. Pedlosky, 1979); in the observations, systematic
retrograde motion is rarely seen in the Stream, although
such motion does occur during the formation of large
meanders as they pinch off into rings. We can also
check this result against that obtained from the dis-
persion relationship for the barotropic top hat jet (cf.
Howard and Drazin, 1964):

1
- = 150 km,
k< m

. ﬂ 1/2
(1 + B/ + (Vy — c)2(1 o C)

1 B" ]/2] B
X tanhl:2 )\(1 Vo = c) = 0.

Fig. 3 shows that the top hat jet’s dispersion relation
is quite similar to (10) in the limit that the width of
the jet / is small compared to both the wave scale .L
and the Rossby scale (Vy/8)"/? (recall that \ = [/ .£).
If, however, we choose the top hat velocity V, and
width / by matching the long wave limit of (19),

(19)

ﬁ” 172 . 1
CZ(Z) + (Vo2 — BV0) FA=0,

to the general expression (10), we find

V0=fdnfszz/fdnfsz=0.40ms_l

1
l=fdn17fsz/V0=84km

giving the dispersion relation shown in Fig. 4. Clearly
in this case the width is sufficiently near to the scale
(Vo/B)'? that the long wave approximation cannot
represent the phase speeds of the unstable modes prop-
erly. For a smooth profile, we do not know when the
long wave approximation breaks down; however we
suspect that the rapid retrograde motion predicted for
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FiG. 3. Comparison of the sinuous mode dispersion relationship
for the barotropic top hat to the thin-jet model (dashed). The width
of the top hat is / = 2 km and the current speed is Vo = 0.4 m s™'.

short scale meanders might be an artifact of the ap-
proximation technique.

In addition, we should comment that there may be
long wave modes of a baroclinic jet which are not of
meandering form. These show up in the two-layer jet
models of Flierl (1975) and Talley (1982) as waves
with phase speeds nearly independent of k for small
k. Basically, the A = 0 form of the stability equation
(11),

30T

201

el d

0
£

©w
m
a

)/ 2 =84«m

FIG. 4. As in Fig. 3 except with the correct parameter values
in the long wave sense: / = 84 km and ¥, = 0.4 m s,
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9* g1 9
a4 —Z)p
4 ac)(anz + dz N? 62)

# a1 a)
[r— — — — — V — = o
om* 0z N?9z ( ac). 0
not only has a meandering mode solution
P=V-ac,

but may have other solutions as well, with eigenvalues
which, in the two-layer models, appear to be much
more sensitive to the detailed structure of V(y, z). The
thin-jet approximation, therefore, filters out a number
of modes, including these dispersionless roots and the
varicose modes.

The energetics of the meandering instability indicate
that it is drawing upon both kinetic and available po-
tential energy. This follows from substituting P = V
— ac in the usual formulas for the energy conversion
terms

*p *
[KE — KE] =fdnfsz,,£P—"2i&

" =ac f dn f dzV,?,

V, P*P, — PP¥
N? 2i

V2
= ac,»fdnfdzN2 .

For a simple Gaussian Stream profile,

17
V = lap + a,F(2)] exp| — 2 2)

the ratio of energy input from available potential energy
to that from kinetic energy is about

V2
J‘dzfdnﬁ R}

fdvfszf TP a + a’

which is 2.4 for typical Gulf Stream widths and de-
formation radii. '

Figure 3 or 4 shows that the long wave dispersion
relation (10) cannot predict the scale of the most rapidly
growing mode since the shortest waves have the fastest
growth. Rather we expect this scale will be of the order
of R, or the width scale of the jet and therefore cannot
be resolved by the long wave approximation; however,
it is not always the case that the most rapidly growing
linear wave is the one seen at finite amplitude (e.g.,
Pedlosky, 1981). Perhaps the observed large-scale
meanders are stable or weakly growing meanders forced
by the inlet conditions and the smaller-scale, more
rapidly growing instabilities equilibrate or dissipate at
a rather small amplitude. In any event, observations
clearly indicate the relevance of thin-jet theory for the
large scale and large amplitude meandering,.

[APE — APE] = f dn f dz
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Comparison of the thin-jet dispersion relationship
to oceanic data is difficult: undoubtedly finite ampli-
tude effects are of great importance in the observations
and there are no studies covering synoptically a wide
enough range of temporal and spatial scales. The dis-
persion relationship presented by Watts (1983) or Watts
and Johns (1982) covers only the short scale mean-
dering; however, his ¢; values of 1 to 12 cm s™! for £
from 25 to 100 km are quite comparable to those we
calculate and the ¢, values also match well to those
shown for the top-hat model in Fig. 4. (Remember
that the thin-jet model may not be able to reproduce
the ¢, values in this regime.) Watt’s (1983) summary
of data from other investigators show length scales in
the range 20 to 160 km, phase speeds 5 to 20 cm s~
and growth rates corresponding to ¢; ~ 4 cm s™'. These
are not inconsistent with our model results showing
phase speeds of around 15 to 5 cm s™!; however, the
model growth rates tend to be too large.

If we wish to apply this model to large-amplitude
meandering, the appropriate equations to solve would
be the finite amplitude Rossby wave equations (without
mean flow) to the north and south of the line Y(X, ?);
there may be cases of interest where the external field
is approximately linear. Outgoing or damped wave
conditions must be applied far to the north and south
or boundary effects explicitly dealt with (Harrison and
Robinson, 1979). The two regions are matched together
using the fact that Y(X, t) is a material curve as viewed
from either side. Finally, Eq. (6) allows the jump in -
tangential velocity to be determined, giving the motion
of the stream, Y,. Campbell (1980) has shown in the
periodic barotropic f~plane case that this procedure
appears to be well defined and the problem can be
written as a single integro-differential equation for Y;
however, the S-plane case is more complex because
the exterior equations can no longer be solved so readily
in terms of the path position Y as the Laplace equation
which resuits for f~plane dynamics.

In conclusion, we would like to reiterate some major
points. First, considerable care must be taken in a
time-dependent thin-jet meandering model to choose
scales consistently. The practice of integrating the
equations may hide inconsistencies. It appears as if
the role of the exterior fields is critical in determining
the time-dependent motion of the Stream; there is a
strong feedback between the generated waves and the
motion of the axis. No model that neglects these fields
will be able to reproduce the dispersion relationship
(10). This dispersion relation does suggest the critical
wavelength below which waves become unstable but
does not distinguish the most rapidly growing linear
wave; however, the finite amplitude behavior of the
meanders is still unknown and must be explored. The
thin-jet formalism does offer one approach to this
problem. Although numerical solutions to these equa-
tions could be formidable since it involves matching
two solutions together at an unknown, moving bound-
ary, conventional numerical methods also have diffi-
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culties because of the large flow speeds and the wide
range of space and times scales which must be resolved.
Just as the infinitely thin discontinuity idealization for
Kelvin—-Helmholtz instabilities has proved useful even
at finite amplitude (cf. Grimshaw, 1981), the thin-jet
model may lead to new insights on the finite amplitude
baroclinic and barotropic instability driving the mean-
dering of the Gulf Stream. On the basis of this work,
we believe the time-dependent thin-jet theory to be
established as a credible approximation for the study
of relevant dynamical processes of meandering, ring
formation, and interaction between the Stream and
the surrounding flow. As a complement to eddy-re-
solving ocean current and general circulation models,
such process studies should play a useful and important
role in the interpretation of observations and the design
of experiments.
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