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ABSTRACT

A multiple-scale approach is used to develop the quasi-geostrophic dynamics for synoptic oceanic scales.
This new approach allows the buoyancy frequency N and the Coriolis parameter fto be slowly varying functions
of horizontal position. No series expansion of fabout some arbitrary central latitude is required. Nor is there
a limitation on the geographic extent of the synoptic-scale domain.

Simultaneously, the equation for large-scale geostrophic flow on gyre, or planetary, scales is derived as a
solvability or consistency condition on the synoptic-scale dynamics. Thus a single derivation suffices to develop
both sets of dynamical equations. In addition, the multiple-scale analysis explicitly describes the interaction
terms between the synoptic-scale and gyre-scale fields of motion.

1. Introduction

Since the work of Burger (1958) there has been a
general recognition of the existence of two types of
geostrophic motion. The first of these, which is now
usually termed synoptic-scale quasi-geostrophy, was
first systematically derived by Charney (1947) and ap-
plied to motions with relatively small scales, on the
order of the internal deformation radius. The second
class of motion has a truly planetary scale.

In dynamic oceanography the quasi-geostrophic dy-
namics of type | is applicable to the dynamics of
midocean eddies, and with some stretching of its
Rossby-number limitations, to more intense currents
like the Gulf Stream. On the other hand, the motion
of type 2 is relevant to thermocline-gyre-scale dynamics
whose broad, extensive geometry reaches scales far in
excess of the deformation radius.

The traditional derivations of the quasi-geostrophic
equations of motion (Phillips, 1963) resort to separate
scaling developments for each type of geostrophic mo-
tion with no formal hint of the connection between
the two types. This leads to a peculiar formal difficulty,
especially for the case of the synoptic-scale equations.

In the quasi-geostrophic theory of type 1 the buoy-
ancy frequency NV may be a function of height z but
formally must be independent of horizontal position
and time. This leads to a particularly vexing situation

in oceanography where N in fact changes significantly”

on the gyre scale. Each “patch” of synoptic-scale mo-
tion embedded within the gyre scale has a local N used
in the theory. The traditional scaling methods give no
clue as to how these patches can be stitched together
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over the gyre. A slavish limitation to formal scaling
restrictions leads to unrealistic limitations on the large-
scale variations of N. It is clearly unacceptable to be
forced to restrict our dynamics to the study of small-
scale motions in large-scale gyres whose ¥ is forced to
be constant on the gyre scale as well as on the synoptic
scale. The essence of the thermocline problem is, in
fact, the development of a theory to describe the large-
scale variations of density and hence of N,

Equally objectionable is the traditional method of
developing the S-plane approximation, In the tradi-
tional method, the Coriolis parameter and all spherical
metric terms that are functions of latitude are expanded
in a Taylor series about some central latitude. It is
immediately apparent that the “central” latitude used
in these series expansions is rather arbitrary and has
no particular physical significance. This troublesome
fact is not important on the synoptic scale since the
differences between one central latitude and another
have inconsequential effects on the final theory. Nev-
ertheless, the same difficulty arises as with the deter-
mination of the appropriate N to be used: it is not
made clear in the traditional theories how well sepa-
rated domains of synoptic-scale motion smoothly
merge on the gyre scale. These questions are of par-
ticular importance in oceanography where the scale
separation is great between the synoptic (or mesoscale
eddy) scale and the gyre scale and yet in which the
interaction between motions on these separate scales
may be important.

The purpose of the present paper is to present a
somewhat more unified approach to these scaling
problems. My basic approach is to use the method of
multiple space scales. That is, I let the mathematics
explicitly recognize the existence of two scales of mo-
tion and use the resulting mathematical formalism to
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reproduce what we all believe must be intuitively right,
i.e., that slow variations of N and f (the Coriolis pa-
rameter) are perfectly allowable. The virtue of the for-
malism is twofold. It first develops in a systematic way
the nature of the alterations of the traditional synoptic-
scale dynamics implied by variable N. These alterations
will be seen below to be rather obvious and physically
plausible. The synoptic-scale equations also contain a
variable f'which on the synoptic scale is constant, but
whose variation on the gyre or planetary scale has the
usual profound effect on the synoptic scale.

The second virtue of the formal development is that
in the process of deriving the dynamics of type-1 geo-
strophy, the equations on the gyre scale are also ob-
tained as a solvability (or consistency) condition on
the synoptic-scale dynamics. This provides a natural
link between the two types of dynamics. In the process,
interaction terms between the synoptic and gyre scale
motions are clearly exposed.

2. The basic dynamical equations and multiple scaling

Although the method outlined in this section is ca-
pable of being extended in an obvious way to more
complex situations, I prefer to describe the develop-
ment of the ideas in the simplest context for greatest
clarity. Therefore, I will take as my starting point the
hydrostatic and inviscid momentum equations in the
Boussinesq and tangent-plane approximations. The
reader will easily see how the argument may be im-
mediately generalized to include the full metric com-
plexities of the spherical equations and the meteoro-
logically important consequences of a finite scale height
for the density. Similarly, I will ignore the effects of
friction and thermal dissipation. I do not wish to imply
that any of these approximations is inconsequential,
only that the outline of the two-scale development is
seen most clearly in the simple system described below.
Thus the momentum equations are

ou ou

ou ou 1 dp
—tU—FV—FW——fo=—— .
o “ox ”ay > P po 0x’ (2.12)
av dv av av 1 dp
—FtUu—tv—+w—tfu=——-— :
at “ax ”ay waz Ju po 9y’ (2.1b)
i)
g=—-2, 2.10)
z

while mass conservation in the Boussinesq approxi-
mation is
du + av + w 0
ox Oy 0z ’
The thermodynamic equation, in the absence of
dissipation, is

(2.1d)

9
_2 ?_p_ @‘FW@:O.

+ .
a Yax Yay Vo (2.1¢)
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In the above equations all variables have their tra-
ditional meanings. The Coriolis parameter f’is a func-
tion of y on the planetary scale.

We will now imagine that there are two separate
horizontal scales. The larger one, L, is the gyre scale
which it is convenient to assume for present purposes
is inconsequentially different from the planetary scale.
That is, f varies by O(1) on the scale L. The density,
pressure and velocity also vary by O(1) on the scale
L. In physical oceanography, this is precisely the vari-
ation associated with the thermocline structure and
this should clearly lead to variations of N on the same

scale where
a 172
N= {- £ _ﬂ} i

T (2.2)

At the same time the existence of a synoptic, eddy
scale implies that the density, pressure and velocity
vary on the smaller, synoptic scale /. The central pre-
sumption is that

\ l
t=—<1. .
7 < (2.3)

Dimensionless independent variables are introduced
as follows. To measure variations on the synoptic scale,
I use

=, ¥ = y)/l} 2.4

t'= ot
while variations on the gyre scale are measured by
X, ) =(x, y)/L}
T = otl/L

In (2.4) and (2.5) a characteristic frequency for the
synoptic scale, o, has been introduced. For most pur-
poses g can be chosen to be the advective time on the
synoptic scale:

(2.5)

a l ’
where U is the characteristic magnitude of the synoptic
scale velocity field. I assume that the velocity scale for
the gyre-scale motion is no larger than U.

The vertical coordinate z is nondimensionalized with
the scale D, i.e.,

(2.6)

z' =

2.7

Uin

Then each dependent variable may be scaled as fol-
lows. For the horizontal velocity:

u=Uu(x,y,z,t,X, Y, T)

V= Uv'(x', y,’ Z', t,’/Ys )” T) (2 8)

D
w=U 7 wix',y,z,t', X, Y, T)

Thus each velocity component is explicitly written
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as a function of both the synoptic-scale independent
variables and the gyre-scale variables.

The Coriolis parameter f is a function only of Y.
Thus

S=R1(Y), (2.9)
where f; is simply twice the earth’s rotation rate (2Q)
and f” is the sine of latitude which may be written
entirely in terms of Y.

The density field is conveniently written as

!
o=+ 2%y 2.10)
gD
with a corresponding pressure field
P = —pegz + po fUlp'. (2.11)

Note that g is a constant. The basic vertical density
gradient for the synoptic scale motion must be included
in p'.

The second key parameter is the synoptic-scale
Rossby number, )

U
€=—, (2.12)
Jfol
and my basic presumption is that ¢ <€ 1.

The basic equations must now be rewritten in terms
of dimensionless variables. The key observation is that
each horizontal spatial derivative in (2.1) is transformed

as
2 12,2
ax I \ox' X,

(2.13a)
9_1 (_‘9_ 9 )
dy I\ Y,
while similarly
d Ufo 9

Noting this point the set (2.1) may be rewritten

() (o201
ar ot X y) €

ou  ou _ o op
+‘5(”ax+”ay) f==5 %
(200 2) o fult o) 2
o) T\ ox " Yay) T Moz
w o » . p
et y) tAi= o~ 62T, (21400
+ea(uaX DGY) fu ay » (2.14a,b)
3
p=2 2.14c)
a9z
dv  ow du
u, o 0w (%) 14
ox 8y+az+6(6X+6Y) 0, (2149
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dp 9 dp dp dp
(Bl 60T) (u6x+v v 02)

ap dp
+ eé(u 6X+ v aY) 0. (2.14¢)
For typographic simplicity, the primes have been
dropped from the dimensionless variables. Hence x, y
and ¢ correspond to the independent variables that
describe the flow on synoptic scale. The goal is now
to discuss approximations to (2.14) as e and § — O,

3. The asymptotic expansion of the equations of motion

If we denote dimensional variables by an asterisk,
then (2.10) becomes
2 12

0
= pg + po—— ¢€p, 3.1
Px = pot po D €p (3.1)
while the dimensional, vertical density gradient is given
by
190 229 '
19y LT O (.2)
po0zy gD* 0z

The synoptic scale is characterized by the fact that
its scale / is of the order of the Rossby internal defor-

mation radius, i.e.,
gD’ <9p,.=)‘/2

l~( oo 02y St 3.3)

This suggests that p in (3.1) should contain, to leading
order, a term like ¢!

Thus each variable will be expanded in the followmg
asymptotic series, e.g., for p:

p=¢ '+ eV + &P+ - . 0). (3.4)

Before proceeding, some relationship between e and
6 must be specified. The analysis is considerably sim-
plified if we assume that ¢ and & are both of the same
order. The final equations will then contain the ratio
/e, and it will be possible to vary this ratio to recover
interesting limiting orderings between 4§ and e.

If the asymptotic series (3.4) for each dependent
variable is inserted into (2.14) and like orders in ¢ are
equated, we obtain a sequence of approximate equa-
tions. At O(e™"), we obtain

(u«» a;‘j) + 3O Qgg_’) + W %:1 -0
e 6;);0) , (3.5a)
( © a;’)(:) + 0@ a_;’;?) + w® % + fu©®
= - 6;);0) , (3.5b)
P9 == a—g; ; (3.5¢)
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u® 3 Iw®
e = 3.5d
ax ay oz 0, @.5d)
3 ©) ap() ap(O)
2@ L @ L e _ g (3,
o T W5 =0 B35

where, recall, fis independent of x and y.

To preserve geostrophy at lowest order for the ve-
locity field, #©@ and v must be independent of x, y
and z, so that the nonlinear terms in (3.5a,b) vanish.
In fact, the more natural condition to apply is that
u@ and v'¥ themselves identically vanish. It then fol-
lows from (3.5d) that

w®
5 =0 (3.6)

Hence if w® vanishes at some z-level, it is zero for
all z. I will assume this is the case so that

w® =0, 3.7)
Thus,
1@ = @ = O = (3.8)
while .
O = XX, Y, 2, T :
p P )} . 3.9)
p(O) = p(O)( X,Y,z T)

Thus the lowest-order density and pressure fields
are functions only of X and Y and not x and y. The
density field p reflects the thermocline-gyre scale. It
is a function of z as well so that the buoyancy frequency,
to lowest order, is

2 O) 1/2
[* dp ) (3.10)

N (e L2

D? oz

and is a slow function of horizontal coordinates. I have
also anticipated a fairly obvious result of the theory
by allowing p@ and P© to depend only upon the slow
time, 7.

The next-order momentum balance yields

oV = " 49 p®
ox e X’ (3.11a,b)
fa = — opV _09p®?
ady e dY

The geostrophic velocities of this order have two
components. The relatively rapid variation of the pres-
sure, p", varying on the synoptic scale combines with
the slower variations of the thermocline-gyre scale
pressure, p@, to yield the O(1) velocity field.

The O(1) continuity equation,

u® o  gw®
o Ty T T OD
implies that »
ow
Py =0, (3.13)
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since p©@ is independent of x and y. The density equa-
tion implies that

©
w2 _ o, (3.14)
dz
so that (3.13) and (3.14) both imply that
wh = 0. (3.15)
The O(e) equations yield
ou'! du') du'
wu_ L m% L w e
o T e TV gy TR
p? 5 ap®
_—gx__Z ax > G162
v v ou'V
AT (LA (| L LY e)
ot “ ox v oy fu
p? 5 ap®
= ay 3y (3.16b)
wu®  w® ow® 5 (ou? av“))
—_—+ — -\ 0. (3.16
ax | ay | oz (ax 3y (3.16¢)

If (3.16a) is differentiated with respect to y and
(3.16Db) 1s differentiated with respect to x and the results
are subtracted we obtain

6_@ + 24 6_@ (1 M
at ax dy
60(2) u® P 02[)“) aZP(l)
=—fl—+t—)—-—-|—— - .
f( oy ox ) € (6Y6x é)an) > (317
where
g—(l) = (_32(2 —_ ,__au(l)
ox ay

is the synoptic-scale relative vorticity. If (3.16¢) is used
in (3.17), it follows that

i(l) + u(l) gf_g 9};“_). =
ot ox oy

s (3uV gV
T3 [(6X+ )f -

or, with (3.11a,b),

wm®

9z

a2p(1) 62 (1)

aYox aan]’ (3.18)

+ o®

QS:(B maf( + 5(1)
ot ax ady
_ 6w‘2> 1 dfrap® 66p‘°’
=%z [de][ P aX]' (3.19)
Note that
ddf IPfydf 6*12
edY ULdY U’ (3.20)
where

A

By = e
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is the usually defined dimensional 8, i.e., the northward
gradient of the Coriolis parameter. We see in (3.19)
the natural emergence of the important, synoptic-scale
parameter

Bal?
U b

which we note here is actually varying on the slow

space scale Y but is constant on the synoptic scale.

To complete the theory, the density equation must
be used to find w®. The O(e) density equation yields

8= (3.21)

F.] dp (1) ap (1) ap(O)
RPN 0 BN P I R ¢ ) Bk S TV ¢ Sl
ot P “ ox ay v 9z
8/ 9 i‘)p(O) ap(O))
Cm— - O g () (1)
(an u ax + v 37 (3.22)

It is now straightforward to use (3.22) to eliminate
w® in (3.19). However, it is first useful to introduce
the following notation. Let

1{a d

(w5, ugV) = ?(& , — 5;)1;“), (3.23a)
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(3.23b)

(07, u;M) = 1 (_a_ _9)o

f\x’ ay)y

~ so that from (3.11)

@Y, 4V = (v, ugV) + - (v M, uriY), (3.29)
where the T-subscripted velocities are associated with
variations only on the thermocline-gyre scale while S-
subscripted velocities vary on the synoptic scale. The
O(1) velocity is thus decomposed into motion of syn-
optic and gyre scale.

It is also useful to introduce

g = ¢ o 3.25

R 9z (apo/az) 3.23)
3p®

oW = o OV(X, Y, 2, T),  (3.26)

which effects a similar decomposition of potential vor-
ticity between the synoptic and gyre scale.

If (3.22) is now used to evaluate w' in (3.19), we
obtain, after a little algebra,

9 F) 9 5 309/8Y ERCYY ¢ g g
a0 L4, } M 4 (|)+._|: m 2 ( + a0 2 ( ).,_ mo (l)___]
{6t “Uax TS gy Pos 1% 5082 ) T4 a2 \a,962 ) YT oy T ox

I ap<°>/aT) 5 { w9 (
T [f az(ap<°>/az A e

390X ) (ap<°’/a Y)}
.02
30%0z) T VT 5z * e

8 df
edy

(1)
3,902 ] , (327

where us”, vs'", u7'”, and v;" are given in terms of 4. Solvability conditions and the final equations

p® and p“” by (3.23a,b) and where g‘V may be eval-
uated entirely in terms of p") as

g = [( 3 + 9 Y\ w_ PR (L‘)@f)]
fL\ax? * ay*/ 9z \8p"/3z
(3.28)
If (3.10) is used,

(& & 3 (op/oz
=[Gt gk s (7)) 62

where
N2D?

—fi—lz— (3.30)

SX,Y,z,T)=

in which N, given by (3.10), may be a slowly varying’

function of X and Y while f, (the dimensional Coriolis
parameter, f, /) is a slowly varying function of Y. The
reader will note the fact that ¢! is the usually defined
quasi-geostrophic potential vorticity except that tra-
ditionally S is taken as a function only of z. Eq. (3.27)
is the fundamental equation of our analysis. As it
stands, it may be thought of as a predictive equation
for 'V if the gyre-scale structure is completely known.
Of course, this is not the case and further consideration
is required as described in the following section.

The right-hand side of (3.27) is independent of x,
y and ¢ and acts as a uniform source term for the
individual rate of change of quasi-geostrophic potential
vorticity. Unless suitably restricted, this source term
will lead to secular growth in g on the synoptic scale.
We, therefore, expect that the right-hand side must
separately vanish. This notion can be made more pre-
cise if we note that (3.27) may be written

?_qm+?£+9§_c(x Y,z T),

4.1
ot dx Oy @1

where

m
A = usg® + 51_’_
S

[ P8 (apo/ay) N
f 3z \3po/dz

() 3 6p0/3X) ) (1)]
,(4.2b
S oz (Gpolaz vra |, (4:20)

and where C is the right-hand side of (3.27).

Now, imagine (4.1) to ‘'be integrated over an area
that is large compared to /?> (the area of a synoptic
domain) but small compared to L? (the gyre area). Let

ur"’q“)] . (4.2a)

B = vs0gM + 5[
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this area be /24 in size. 4, is therefore a large number.
Then since the second and third terms on the left-
hand side of (4.1) combine to form the divergence of
the vector (4, B) on the synoptic scale, the size of the
mtegral of these terms is of the order of the perimeter
of Ay, i.e., of O(4,'?). Thus to O(4,™'7?)

3 ff qWdxdy = ff C(X, Y, z, T)dxdy
Ao Ao

= ACX, Y, 2z, T). (4.3)

It is possible that the area average over Ao of g'V
vanishes. More likely it is finite and order 4o. In the
second case, in order that g remain finite, it is nec-
essary that C vanish. Of course, this must also occur
if the first case obtains. Hence in either case a necessary
condition for the existence of bounded solutions of
(3.27) is that the right-hand side of (3.27) vanish, i.e.,
that

i9_({’»0(0)/(97‘) +£[ap(0)i(ap(0)/ay)
3z \ 30 %/d ef L aX 3z \a3p9/0z

(0) (0) 1 39p®
_w” 9 (ap(o/a){)] 81 "4 _ 0, (4.4
Y 9z \8p'%éz ef X dY
where, recall
ap(O)
o _9%
p oz 4.5)

Equation (4.4) is the usual thermocline-gyre-scale
equation for a nondissipative fluid (Needler, 1967). In
the present case, for §/¢ = O(1), there are no coupling
feedback terms from the synoptic scale. I will return
to this point below.

To interpret (4.4) it is useful to reconsider (3.22).
If w® is split into a synoptic-scale contribution w¢®
plus a gyre-scale contribution w/? such that

f f WS(Z)dXdy = O,
Ao

then the condition that p‘*) remain finite implies that
ap(O)
T
With the aid of (4.7), (4.4) may be rewritten as

é i)

FIE 3
+ - (1) —_ - n 2) 2 m =
(6T ax Tevr gy ter )Q

(4.6)

© ©
+uV—+ v, ——+ wP——=0.

.7y

(4.8)

~where Q" is given by (3.26). That is, the governing
equation on the gyre scale is the equation for the con-
servation of gyre-scale potential vorticity, fdpy/dz,
supplemented by geostrophy. When (4.8) is written in
terms of p'®, (4.4) is obtained as the equation to be
used in calculations. It is a simple matter to show that
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(4.8) and (4.7) in turn imply the Sverdrup vorticity

balance: @
df6 ) — (*)wT
are’ e

Thus, the usual equations for an ideal-fluid model
of the thermocline, or gyre-scale flow, are completely
derived as solvability conditions in our attempt to de-
rive equations for the synoptic-scale flow.

For completeness, I note that in dimensional units
(4.7) and (4.8) are simply

(4.9)

0
(Gt +u- V)p =0 (4.10a)
(a + v) 72 (4.10b)
a " )

wherein each variable refers entirely to the gyre-scale
variables.

Now let us return to our consideration of the equa-
tion for the synoptic-scale motion. Since the right-
hand side of (3.27) vanishes, we now obtain directly
the equations for the synoptic scale namely, using
(3.23a), (3.23b) and (3.5¢),

(6 +13_Pﬁi_1‘91’_‘“i)
f dx dy f dx 9x
X[I/(a‘f i 2)"(”
+€(uT‘”ag

2% %)

lap(l) a ( (1) —1)]
+~ = 0. (4.11
f 3y az\ o9z S 0. (4.11)

In the limit /e — 0, (4.11) becomes identical to the
quasi-geostrophic potential-vorticity equation tradi-
tionally derived for synoptic-scale motions (e.g., Ped-
losky, 1979). For nonzero values of 4/¢ there are two
additional groups of terms in (4.11) but the presence
of these terms is easily understandable and represents
the natural extension of the theory. The first of these
terms, u{"(3¢V/8x) + v/(dgV/dy), merely represents
the advection of the small-scale, synoptic potential
vorticity by the large-scale velocity field of gyre scale.
The last grouping of terms in (4.11) reflects the ad-
vection by the synoptic-scale velocity field of potential
vorticity due to the large-scale gradient of the quasi-
geostrophic potential vorticity. Both these terms are
familiar from studies of quasi-geostrophic stability the-
ory in which these terms represent the contributions
to the eddy-potential-vorticity balance by the presence
of the basic flow. In the present case, the additional
terms arise from our embedding of the synoptic-scale

a (l)
( 0z

aq(l))

5)+o]
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motion in a larger-scale field that has a nonvanishing
potential-vorticity gradient. The identification of the
last set of terms in (4.11) with the potential-vorticity
gradient of the large-scale flow is discussed in detail
by Charney and Stern (1962).

Of greater significance is the presence in (4.11) of
the functions fand S. Each varies laterally on the gyre
scale, but as in the traditional scaling arguments they
are formally independent of the synoptic-scale hori-
zontal coordinates. However, it is now no longer nec-
essary to identify N2 and S (see 3.30) with a gyre-scale
average, but merely with an average over areas A, that
are large compared with /2 but still smali compared
with L2, That is, the deformation radius that appears
in S in (4.11) varies continuously from one synoptic
region to another. Similarly, the Coriolis parameter
actually appearing in (4.11) is constant. Its variation
with Y has already led to the beta term in (4.11) without
the artificial expansion of fabout an arbitrarily defined
“central” latitude.

5. Synoptic—écale feedback on the gyre-scale

If 6/ is O(1), the analysis given above shows that
equating like orders in ¢ ylelds no effect of the synoptic
scale on the gyre dynamics. In fact, some rectified
synoptic eddy effect can be anticipated at higher order.
That is, at higher order we can anticipate that not all
the nonlinear terms involving quadratic products of
synoptic-scale fields can be written in terms of a syn-
optic-scale divergence, It is generally rather complicated
to determine these higher-order effects. Their impor-
tance, however, may be significant out of proportion
to their size. As Rhines and Young (1981) have em-
phasized, the effect of residual rectified eddy activity
on a basically advective dynamics can sometimes be
crucial in resolving certain ambiguities in the ideal-
fluid model.

Consider equation (3.11b). Let us imagine the in-
teresting situation where the synoptic-scale motion is
larger in size than the gyre-scale velocity. That is, con-
sider the case where §/¢ is small. To keep things as
simple as possible, I w1ll suppose that although 6 < e,
it is also true that & > ¢°. In that case, the next-order
contribution to the vorticity and density balances be-
yond the terms we have so far considered would come
from the terms of O(ed) in (2.14a,b,e). It is then
straightforward to show that (3.27) would be modified
by the addition of the terms

R= [ + 2 ea)] 6

to the left-hand side. The areal average over Ao of R

will not vanish if there is a rectified flux of synoptic-’

scale potential vorticity. If this term is added to (4.4),
we obtain
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(ap“))/a [ap“’) a( ap /oy
3z \8p3z)  ef L ax a2\ 8090z
9?4 (ap“))/&X) $19p? df
dY 3z \8p9/az e f oX dY

- - ey + o s | 62

where angle brackets on the terms on the right-hand
side of (5.2) denote spatial averaging over the regional
scale 4. The resulting terms are then independent of
x and y, and I assume such regional averages will also
be independent of the fast time ¢. Since €%/8 is pre-
sumptively small, the additional terms in (5.2) are, in
principle, numerically small, but they may have a sig-
nificant role to play in the solution of (5.2) as noted
above.

6. Discussion

Through the use of multiple-space-scale analysis, we
have been able to derive, in a single, uniform way,
equations for both the large-scale and synoptic-scale
geostrophic dynamics. In the limit /¢ — 0, the equa-
tions (4.11) and (5.2) reduce to the traditional equations
first described by Charney (1947) and Burger (1958).
The advantage of the present treatment is its explicit
recognition that the large-scale, slowly varying fields
that enter into the synoptic-scale dynamics have a dy-
namical context of their own. This allows N? in the
synoptic-scale dynamics to vary slowly and continu-
ously on the gyre scale. The use of the multiple-scale
analysis restricts only the scale of variation of synoptic
fields but not the geographic extent of the synoptic
domain as do the traditional treatments. It is also un-
necessary to expand f about a central latitude which
in the traditional theory is unsatisfactorily arbitrary.

For finite /¢ the theory also describes the interaction
terms between the two scales of motion. This allows
us to consider problems in which both scales are si-
multaneously present. One such obvious problem in-
volves the instability of thermocline-scale motions.
Starting with a solution of (5.2) without the eddy terms,
the linear version of (4.11) and its finite-amplitude
extensions could be used to calculate the synoptic eddy
field and then this information can be used to calculate
the changes in thermocline structure found by the eddy-
flux terms. Note that the present formalism allows a
systematic method within the geostrophic theory of
calculating the slow temporal evolution of static sta-
bility which will affect the stability in the synoptic
scale.

At the present time numerical experiments that want
to describe accurately the order-one variations of
isopycnal depth and that at the same time are able to
resolve the synoptic scale have been forced to use the
relatively costly primitive equations. This has been so
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not because the motion is not geostrophic, but only
to account for isopycnal variations too large to be en-
compassed by the traditional quasi-geostrophic dy-
namics. It may be possible to implement the two-scale
dynamics developed in this paper to describe such sit-
uations while retaining the simplicity of geostrophy.
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