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ABSTRACT

A two-dimensional vertically averaged circulation model using boundary-fitted coordinates has been developed
for predicting sea level and currents in estuarine and shelf waters. The basic idea of the approach is to use a
set of coupled quasi-linear elliptic transformation equations to map the physical domain to a corresponding
transformed plane such that all boundaries are coincident with coordinate lines and the transformed mesh is
rectangular. The hydrodynamic equations are then solved by a multi-operation finite difference technique in
the rectangular mesh transformed grid. Comparisons of the circulation model predictions for tidally forced
flows in a wedge section with both flat and quadratic bottom topography, and in a flat channel with exponential
variation in width, were in excellent agreement with corresponding analytic solutions. Simulation of steady-
state wind-induced setup in a closed basin formed using elliptic cylindrical coordinates also was in excellent
agreement with the analytic solution. Finally, the model was applied to predict the M, tidal circulation in the
North Sea and accurately reproduced the well-known amphidromic systems present in this region.

1. Introduction

The last two decades have seen extensive develop-
ment and application of hydrodynamic models for
predicting circulation in coastal and shelf waters (Gor-
don and Spaulding, 1974; Hinwood and Wallis,
1975; ASCE, 1980), with the majority of these studies
employing well known finite difference techniques on
a rectangular grid. While this approach has proven
extremely useful in various applications, there are
many times when the computational costs for achieving
a useful prediction become excessive. This situation
typically arises when it is necessary to include large
variations in spatial scale within the study region in
order to represent features such as coastal boundary-
layer dynamics, flows in channels, embayments and
around islands, and flows near engineered structures
(offshore discharge/intake, towers, dredged channels,
disposal mounds, etc.). If the grid spacing is made
small enough to resolve the smallest spatial scales of
interest such that accurate predictions can be made,
the computational costs often become excessive. On
the other hand, if the number of mesh points is not
large enough the numerical predictions may be grossly
in error throughout the solution domain.

Because of the importance of this issue, numerous
investigators have attempted to use alternative solution
methodologies to allow increased user control of grid
placement. Examples include the following: finite ele-
ment techniques (with the triangular mesh being the
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most popular) (Pinder and Gray, 1977), and finite dif-
ference methods using conformal curvilinear grids
(Reid et al., 1977; Wanstrath, 1977); orthogonal cur-
vilinear grids (Waldrop and Tatom, 1976; Blumberg
and Herring, 1982); stretched rectangular grids (Wald-
rop and Farmer, 1974; Peffley and O’Brien, 1976; But-
ler, 1980); irregular (triangular) grids (Thacker, 1977)
and boundary-fitted coordinates (Johnson, 1980,
1982).

The goal of this paper is to present a circulation
maodel that allows extensive user flexibility in spacing
of the grid structure, but at the same time retains the
simplicity, elegance and well documented character-
istics of the rectangular finite difference techniques.
This goal is accomplished by using a set of coupled
quasi-linear elliptic transformation equations to map
an arbitrary multiconnected region from physical space
to a rectangular mesh structure in the transformed
plane. The hydrodynamic equations are then solved
on the transformed mesh. In the text that follows the
solution methodology, derivations of the governing
equations. for both mesh generation and the circulation
model are presented. This is followed by a discussion
of the computational approach for solving the equa-
tions, and the application of the system to some case
examples with known analytic solutions. Finally, a
preliminary application of the model to tidal circulation
in the North Sea is outlined to illustrate the model’s
usefulness for practical calculations.

2. Generation of boundary-fitted coordinate systems

The basic idea of the proposed boundary-fitted co-
ordinate system approach is to generate transformation
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functions such that all boundaries are coincident with
coordinate lines. Following the extensive work of
Thompson et al. (1974, 1976, 1977a,b) and Thames
et al. (1975, 1977), the natural coordinates £ and 75
are taken as solutions of an elliptic boundary value
problem with one of the coordinates constant on the
boundaries.

The curvilinear coordinates are determined by solv-
ing an elliptic system of the form

Exx + &y = P(§, ), (1a)

N + My = O, M), (1b)

with Dirichlet boundary conditions, the £ coordinate
being specified as constant on one boundary and equal
to another constant on the opposite boundary. The 5
coordinate then varies monotonically over the same
range on both the boundaries. Subscripts indicate dif-
ferentiation and will be used in the text to follow.

Since we desire to perform all numerical compu-
tations in a uniform rectangular transformed plane,
the dependent and independent variables in Eq. (1)
must be interchanged. This results in a coupled system
of quasi-linear elliptic equations for determining x(£,
n) and y(§, 7) in the transformed plane, and is given
by

axEE - 23x5n~+ ‘Y-xrm = —.72{)55})(2, 17) + x'lQ(E’ 7))],

(2a)
Yy = 28V + V= =T VePE 1) + ¥, QE, )],
(2b)
where
a=x2+yh v =x2+y? } o
B=XeXy+ ViVas J =XeVn— XyVe

While this set of equations is considerably more com-
plex than the original set, the boundary conditions are
now specified on straight lines and the coordinate
spacing is uniform in the transformed plane. It should
further be noted that the orthogonal and conformal
curvilinear grids, as well as the simple stretched rect-
angular grids, are special cases of the boundary-fitted
coordinate approach given here.

The functions P(¢, 7) and Q(§, ) may be used to
move the coordinate lines within the solution domain.
While the choice of these functional relationships is
arbitrary, Thompson et al. (1977a), after much com-
puter experimentation, have selected a sum of decaying
exponentials given by

P&, m) = — 2 a;sgn(¢ — &) exp[—ci(§ — &)]
i=1

— 2 bisgn(¢é — &)
k=1

X exp{—di[(£ — &) + (n — m)’'"?}, (3a)
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O, 1) = — 2 a;sgn(n — ;) exp[—c;i(n — ;)]
Jj=1

— 2 bisgn(n — mi)
k=1

X CXD{—dk[(E_— &) + (m—m)’1"*}, (3b)

where the positive amplitudes and decay factors are
not necessarily the same in the two equations, being
particularly useful for problems in engineering fluid
mechanics.

The first terms have the effect of attracting the &
= constant lines to the £ = §; lines (3a), and the 7
= constant lines to the n = »; lines (3b). The second
terms cause £ = constant lines to be attracted to the -
point (£, nx) in Eq. (3a) and a similar effect on 9
= constant lines in Eq. (3b).

The solution to the finite difference approximations
of Eqgs. (2a) and (2b) were obtained by point SOR
iteration (Roache, 1972). All derivatives were approx-
imated by second-order central difference operators.
The actual values of the curvilinear coordinates £ and
7 used to specify the boundary points are irrelevant
to later use of the coordinate system since Af and An
simply cancel out of all difference expressions for
transformed derivatives. The data for defining the
boundaries of the study domain can therefore be ob-
tained from any chart or map as long as the scaling
parameters are known.

As a practical illustration let us consider the appli-
cation of the methodology to define a grid system for
the North Sea (Fig. 1a). Figure 1b shows the proposed
boundaries of the body in the transformed plane, while
Fig. lc displays the results of the solution to Eq. (2)
in the physical plane. The ability to control the struc-
ture of the grid system by selecting the representation
in the transformed plane and the coordinates of the
boundary points is clearly evident. As a further illus-
tration of the flexibility of the method for controlling
grid spacing, Fig. 1d presents the same case as above,
but with point attraction, near a known amphidromic
point in the southern North Sea. Note that the total
number of grid cells has not changed; only their lo-
cation has been modified. While Fig. 1d shows only
the case of point attraction in one region, the meth-
odology allows any number of regions of attraction
and/or repulsion to either lines and/or points.

3. Derivation of the hydrodynamic equations in
boundary-fitted coordinates

Anticipating the use of this circulation model for
regions with substantial variations in latitude the two
dimensional vertically averaged equations of ‘motion
and continuity in spherical coordinates have been
adopted for the present investigation. ’
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" Following Mathisen and Johansen (1983), the ver-
tically averaged equations of motion in the latitudinal

(¢) and longitudinal (x) directions are given, respec-
tively, as

U,+%U¢ RZ¢U;(+1§tan¢+ $o
- 2V sing — p R B i O
'/'+%V" Rclc/>s¢V‘"'{"fi:—/m"’Jerowr
+ 2Uw sing + Rclos¢ Pm+72‘—72‘=0, %)

where U and V are the vertically averaged velocities,
d is the total depth, R the mean radius of the earth,
w the angular speed of the earth’s rotation, P, atmo-
sphere pressure, ¢ the sea-surface elevation, and 7; and
1, the surface and bottom stress vectors.

The bottom stress vector is expressed as

pg(U, VY(U? + V)2
‘rb¢.x = C2 >

where C is the Chezy coefficient, p the sea water density
and g is gravitational acceleration. The surface stress
is similarly given in quadratic form as

= paCD( W¢, W()(W¢2 + sz)llza (6b)

where W denotes wind speed, p, the density of air and
Cp the drag coefficient.

To complete the set of equations, the vertically in-
tegrated equation of water mass conservation is given
by

(6a)

T s

du
vd), — —
R cos¢ Va) R tang = 0.
Equations (4), (5) and (7) with the auxiliary relation-
ships given by Eqgs. (6a) and (6b) define the governing
equations. On the closed boundaries the normal ve-
locities are set to zero:

Va(s, 1) = 0 )

where V, is the normal component of velocity at po-
sition 5. At open boundaries either the vertically av-
eraged velocity or sea-surface elevation are specified
as a function of time.

Since it is desired to perform all computations in
the transformed plane, where the mesh system consists
of simple rectangles, Egs. (4), (5) and (7) must be trans-
formed such that £ and 7 are the independent variables.

Using the fully conservative form of the dlﬂ'erentlal
operators given by

S+ (Ud)¢ )

1
fe= } [(fyw)i - (fyf)ﬂ]! (9a)
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1
5= 7 [=(fen)e + (fxe),], (9b)
where‘ fdenotes some arbitrary function and J is the
Jacobian defined in Eq. (2¢), the governing equations
become

U
+ R—J[(Uyﬂ)e - (UyE)ﬂ]
% P2
m[ (Uxy); + (Uxg),] + R tan¢g
+ 2 [(6vn)e = (v = 2V sing
1 ‘ N
— 25 [Pavede = Payn] + 752 =22 =0, (10)
U
+ 27 [(V9a)e = (V)]
)+ (Vxe)) + —E—
R oosgys ke + (Pxehl + o2 oy
. 1
X [=(§x,)e + (§x¢),] + 2Uw sing + m
X [~ (P X,)e + (Paxe)y] + ”’“ - T;‘ =0, (11)
1
Shf + ITJ [(»,Ud), — (yUd),] + R oosd)]
X [—(x, V) + (xeVd),] - au tang = 0. (12)

R

Note that the addition of the horizontal dispersive

terms could readily be achieved even though the trans-
formation step is relatively cumbersome.

Transforming the boundary conditions, the no nor-

mal flux condition at closed boundaries is expressed

as
Vx; = Uy, along lines of constant 5

}. (13)

Vx, = Uy, along lines of constant &

In addition, the surface elevation gradient normal to
the closed boundary also must be specified such that
the conditions of Eq. (13) are met. The open boundary
conditions remain the same as previously described,
with either surface elevation or velocity prescribed as
a function of time.

4. Computational procedure

The first step in the computational procedure is to
solve the transformation equations (2) given a defi-
nition of the domain in terms of the x and y coordinates
of boundary points along lines of constant £ and n.
Once convergence of the SOR point iteration is
achieved (with convergence errors on the order of 107%),
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defining the x, y locations along lines of constant £
and #, the spatial derivatives x,, »,, X; and y;, and
Jacobian J at each grid point are computed using sec-
ond-order central differences for interior points and
backward second-order differences along the bound-
aries. These derivatives, scaled to the appropriate size,
are then available as input to the circulation model
and constitute a complete description of the mesh ge-
ometry.

Given this definition of the mesh system, the equa-
tions of motion (10) and (11) and the continuity equa-
tion (12) are solved using the multi-operational method
of Leendertse (1967) on a space-staggered grid system
(Method C grid of Arakawa and Lamb, 1977). This
solution technique consists of two operations advancing
the solution first from time level n to # + } and finally
to n + 1. In the first step, U and { are advanced from
n to n + by an implicit calculation in the ¢ direction
while an explicit calculation of V is completed in the
« direction. During the second step an implicit cal-
culation for ¥ and { in the « direction is made, followed
by an explicit sweep in the ¢ direction for U, advancing
the solution from n + j to n + 1. Subsequent steps
simply repeat the calculation sequence to advance the
solution in time. The interested reader is referred to
Leendertse (1967) for a more detailed presentation of
the method or to Mathisen (1980) for its implemen-
tation in spherical coordinates.

To assure geometrically consistent and accurate
mapping from the physical to the transformed plane,
the transformation derivatives x,, y,, x; and y,, and
the resulting Jacobian were defined at all variable lo-
cations of the hydrodynamic model grid. This requires
that the grid transformation calculations be performed
on a grid with twice the resolution of the circulation
model.

The use of this higher resolution grid for the trans-
formation calculations removes the need for averaging
the transformation derivatives in the circulation model
and assures a geometrically conservative mapping.

5. Model applications
a. Test cases

Model formulation and implementation, in com-
puter code, were tested using a series of illustrative
case examples in which analytic solutions were avail-
able for comparison and determination of model per-
formance.

In all test cases the nonlinear convective acceleration
terms were removed and the governing equations
solved on a Cartesian coordinate system.

Consider the case of a tidal wave entering a fric-
tionless channel of constant depth with exponential
variation of width. At the channel walls the normal
flow was set to zero and at either end of the channel
the surface elevation was specified using the analytic
solution (Ippen, 1966). Coriolis forces were assumed

MALCOLM L. SPAULDING
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to be zero. The coordinate geometry was computed
using the boundary-fitted coordinate generation pro-
cedure with the coordinates of the channel walls and
ends used as input. Figure 2 shows a comparison be-
tween the computed and analytic model results for
sea-surface elevation versus distance along the channel
at '/, increments of the forcing function period. The
agreement is excellent throughout the entire simula-
tion.

As an additional test of the model the propagation

. of waves into a wedged-shaped domain, as suggested

by Lynch and Gray (1978), was performed. The grid
configuration shown in Fig. 3 was used to describe the
study area. At the walls, r = ry, 6 = 0 and 6 = 45°,
no flow was allowed while the free surface elevation
was prescribed to vary sinusoidally with uniform am-
plitude and phase along r = r,. Neglecting bottom
friction and Coriolis forces the model was run until
steady state conditions were achieved. Figures 4 and
S show the surface elevation and velocity for the flat
bottom and quadratic sloping bottom cases, respec-
tively. In each case the agreement between analytic
and model solutions is excellent. The radial symmetry
exhibited by the analytic solution is also accurately
reproduced by the model results.

To test the model on a somewhat more unusual
geometry where significant variations in plan form and
grid spacing occur, while at the same time maintaining’
symmetry, consider the closed basin shown in Fig. 6.
The boundary conditions for the grid generation step
were specified using an elliptic cylindrical coordinate
system (Rottman, 1960). For the test cases shown here,
the basin was assumed to be 90 km in length, 17 km
in width at its narrowest point (66 km at its widest),
with a constant basin depth of 10 m. The grid spatial.
resolution varied from 1.4 to 12 km with all grids
having a constant aspect ratio of 1.85.

Following the prototype test case of Blumberg and
Herring (1982) for the steady state response to wind
forcing in this complex basin, the model was started
from rest and driven by a constant wind stress of 1
dyne cm ™2 The bottom friction factor, specified using
a quadratic formulation, was maintained constant with
a Chezy coefficient of 10. Cases studied included
northerly- and easterly-directed wind stresses.

After steady state conditions were achieved ~40 h
after the start of the simulation, the predicted sea-
surface slopes were in excellent agreement with the
simple analytic solution of Horikawa (1978). The re-
quired symmetry of the wind-induced setup is clearly
evident in the model-predicted values (Figs. 7a and
b), even given this complex geometry.

b. North Sea simulations

To provide an additional test of the proposed cir-

_ culation model, application was made to predict the

M, vertically averaged tidal circulation in the North
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FiG. 2. Comparison of circulation model predictions with the analytic solution for sea-surface elevation versus
distance along the channel, at '/, increments of the forcing period, for a channel with constant depth and exponential

variation of width.

Sea. The model region, shown in Fig. 1¢, with an overall
grid size of 20 X 38 is bounded in the north by a line
of constant latitude at 60°53'N (at the Shetland Islands)
and in the south by the Dover Straits. The average

" FiG. 3. Grid system employed to define the wedge-shaped section.

gridsize is 30’ in the east-west direction and 16’ in the
north-south direction, corresponding to approximately
29.6 km in both directions. The grid aspect ratio, de-
fined as the ratio of the mean physical length in the
n-direction to that in the {-direction, varied from 0.29
to 1.8 with an average value of approximately 0.5.

The sea elevations (in terms of the M, range and
phase) along the three open boundaries, 1) Shetland
Islands to Norwegian coast (along 60°35’'N), (2) Dover
Straits and (3) Fair Isle region (Shetland to Orkney
Islands), were approximated from linear interpolation
of data obtained from the Institute of Ocean Sciences,
Bidston, England, and the Norwegian Tidal Tables.
Depth data to describe the study region were obtained
from Norges Sjokartverk, North Sea Chart 560C (Scale
1:300 000) for the North Sea proper, and from Norges
Sjekartverk, Skagerrak Chart 305D (Scale 1:350 000)
for the Skagerrak region.

The model was run at a time step of 74.52 s, resulting
in 600 calculations steps per M, tidal cycle (12.42 h)
and a Courant number of 0.8. Simulations were run
for five tidal cycles to assure repeatability from cycle
to cycle, with typical execution times on a VAX 11/
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F1G. 4. Comparison of the circulation model predictions for sea-
surface elevation and radial velocity with the analytic solution for
a flat bottom wedge-shaped domain (Fig. 3). The time corresponds
to the maximum in forcing amplitude for the sea surface elevation
and to zero forcing amplitude for the radial velocity.

780 of 12 min per cycle. A constant Chezy coefficient
of 60 was employed to characterize the bottom fric-
tional losses.
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FIG. 5. As in Fig. 4, but for a quadratic sloping bottom wedge-
shaped domain (Fig. 3). The time corresponds to the maximum in
forcing amplitude for the sea surface elevation and to zero forcing
amplitude for the radial velocity.
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FIG. 6. Grid configuration for model test using an elliptic cylindrical
coordinate system. Basin length ~ 90 km, width 17-66 km.

Employing harmonic analysis on the last tidal cycle
simulated, the M, corange-cophase chart was con-
structed and is shown in Fig. 8. The predicted distri-
butions of amplitude and phase are in good agreement
with those obtained from observations by Proudman
and Doodson (1924) and the model results of Flather
(1976), Davis (1976), Mathisen and Johansen (1983),
Marchuk et al. (1973), Ronday (1976), Grotkop (1973)
and Brettschneider (1966). This can further be appre-
ciated by comparing the present model results with
the predictions of Mathisen and Johansen (1983)
shown in Fig. 9.

A closer comparison of Fig. 8 to the data and other
model predictions indicates that, while the present
model accurately predicts the location and character
of the amphidromic systems off the southern coast of
Norway and in the Dover Straits, the major amphi-

FIG. 7. Steady-state sea surface elevation (cm) in response to (a)
1 dyn cm™? eastward-directed wind stress and to (b) | dyn cm™2
northward-directed stress.



980

—— AMPLITUDE (CM)
— — PHASE (DEGREES)

JOURNAL OF PHYSICAL OCEANOGRAPHY

— TTI~33000°
50 °

NORWAY

00 7 25
3 \\)

0° ) DENMARK
< 3300
\ Q 3000

¥
//"’7 o/ \ 2700
O
\%0/ i
> 2400

5(

- /" NETHERLANDS
o f
2709 .900

BRITAIN -\

9% _Aoo

FIG. 8. Model-predicted M, corange and cophase chart.

dromic point off the Denmark coast, although within
the bounds of other modeling studies with similar spa-
tial resolution, is roughly 50 km too far north. The
northern displacement of this amphidromic point has
resulted in amplitudes larger than observed in the Ska-
gerrak and Kattegat areas. An additional series of sim-
ulations with a fourth open boundary prescribed across
the entrance to the Skagerrak showed no basic change
in the predicted location of this amphidrome. Other
simulations varying the horizontal geometry, bathym-
etry and Chezy factor also showed little impact on the
position of this amphidromic region. Based on this
series of model studies and other modeling investi-
gations, it is suggested that in order for more accurate
predictions to be made a better representation of the
study area and a more refined grid structure is nec-
essary.

6. Conclusions

A two-dimensional vertically averaged circulation
model using boundary-fitted coordinates has been de-
veloped for application to estuarine and shelf regions.
The use of the boundary-fitted coordinate approach
is seen to allow the user extensive control over the
design of the computational mesh in order to include
both local as well as global adjustments while main-
taining a fixed number of computational grids.

VOLUME 14

Application of the model to a series of simple test
cases for which analytic solutions are available for direct
comparison has shown the proposed approach to be
fully capable of resolving complex geometries while at
the same time accurately predicting flow patterns. Pre-
liminary results in applying the model to the North
Sea have been encouraging in that the major features
of the tidal circulation pattern are predicted.

These simulations have shown, however, that the
model predictions are sensitive to the design of the
computational mesh. Experience to date, although not
definitive in terms of absolute requirements, suggests:
1) that the derivatives of the coordinate points, along
lines of constant £ and 7, defining the model domain,
should vary smoothly; 2) that the aspect ratio of the
grids be maintained in a range 0.5 to 1.5; and 3) that
an attempt be made to have the grids resemble rect-
angles as closely as possible.

One of the anticipated benefits of the boundary-
fitted coordinate circulation model is its improved
computational performance (i.e., lower computer costs)
in comparison to a simple rectangular grid model for
studying circulation in a given area with a specified
accuracy. This improvement is achieved by balancing
the reduction in computational costs associated with
allowing the user to have a more active role in designing
a boundary-conforming computational grid, and the
increase in computational costs associated with the
additional terms introduced into the transformed
equations of motion.

Based on the simulations performed here the com-
putational time for the transformed equations is ap-
proximately double that for a simple rectangular grid
model. Hence if the boundary-fitted circulation model
is to be more efficient overall, the reduction in its
resolution must at least compensate for this additional
computational cost per cell. The overall improvement
in model computational performance will therefore be
highly problem-dependent.

While the present investigation has established the
basic approach, additional work in the following areas
is necessary before the proposed methodology can be
used for routine application:

1) Computational procedure: Although the mul-
tioperational method employed here has been widely
tested, allows time steps significantly larger than the
Courant limit (while maintaining accurate predictions),
and requires less computational resources than a fully
implicit method, its advantages are severely compro-
mised in the present application. This is the result of
the constantly changing orientation between the U and
V velocity vectors and the local grid geometry. In the
worst case the computational time step for the present
approach is no better than a purely explicit model,
but with larger computational costs per time step. It
is therefore recommended that the present multiop-
erational difference procedure be replaced by an im-
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F1G. 9. Mathisen and Johansen (1983) model-predicted M, corange and cophase chart.

plicit calculation algorithm. This approach should al-
low a more realistic treatment of the closed boundary
conditions (discussed below) and lower computational
costs per simulation.

2) Closed boundary treatment: In order to maintain
no flux through the closed boundaries under arbitrary
grid orientation, and at the same time for the tangential
flow to have a simple slip boundary, it was necessary
for the velocities at the boundary to vary according to
the relationships given by Eq. (13). Unfortunately the

" use of these specifications implies the need for infor-
mation at the advanced time level on the opposite
velocity field. This information is not available in a
standard explicit or multioperational scheme and
therefore the quality of the predicted solution decays
with time; this is particularly noticeable for long sim-
ulations (>5 days). The use of an implicit or even
semi-implicit computational procedure should readily
address this problem.

3) Dispersion and energy characteristics: The impact
of grid deformation on long-wave dispersion and energy
characteristics, although treated for simple grid
stretching by Lewis er al. (1982), has not been docu-
mented for the more general case studied here. This
is obviously a major deficiency, considering the po-

tential for the continual build up of energy in regions
with smaller grid spacing, and the change in phase and
group speeds as waves propagate into regions with
varying mesh size as noted by Lewis et al. A compre-
hensive test program to document the dispersion char-
acteristics of the numerical scheme is necessary to pro-
vide operational guidelines for the use of the boundary-
fitted coordinate circulation model.
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