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ABSTRACT

A two-dimensional, two-layered frontal system is used to examine the wind-driven motion near a shelf-
slope front. In the linear regime, the along-frontal current is characterized by barotropic perturbations. The
front is dynamically passive and displaced according to purely kinematic constraints. The nonlinear solution
shows that, even for a relatively small Rossby number, the frontal response to the oppositely directed along-
frontal winds is highly asymmetric. When the wind is such that it forces surface water offshore, the model
predicts ridging of the frontal interface, resembling some hydrographic observations. The model results suggest
that the topographic shoaling of the deep onshore flow causes the generation of a cyclonic shear which, in a
nonlinear regime, produces the observed ridging through geostrophic balance. It is reasoned that the increased
entrainment above the pycnocline ridge could cut off the offshore shelf water and result in its export to the
slope water regime. On the other hand, the apparent rigidity of the front as the surface water moves shoreward
suggests a relative ineffectiveness for the surface slope water to penetrate through the frontal zone and contribute

to mass or property balances on the shelf.

1. Introduction

During the winter season, shelf water is well mixed
in the Middle Atlantic Bight because of intensified
wind stirring and surface cooling. It is separated from
a slightly stratified slope water by a rather sharp tran-
sition region near the shelf break called the shelf-slope
front (Fig. 1). Although the shelf water is both colder
and fresher than the slope water, salinity variation
dominates the density field, making the shelf water the
less dense of the two water masses—the front thus
generally slopes upward offshore, with a mean slope
of the order of 2 X 1073,

The shelf-slope front is observed to exhibit large
spatial and temporal variations which have been at-
tributed to both external forcings and internal insta-
bilities. One external forcing mechanism that can be
clearly seen from satellite infrared images is the im-
pingement of warm core rings that greatly distort the
front and frequently entrain the shelf water, forming
streaks and filaments. Less obvious perhaps are the
frontal motions driven by wind. Nevertheless, Flagg
(1977) has documented one such example in which

the surface front is displaced offshore at the onset of

a strong southwesterly wind.

Direct current measurements show that wind causes
much of the current variability in the shallower shelf
water (Beardsley and Boicourt, 1981). The wind effect
diminishes offshore because of the increase of both
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water depth and interference of the offshore oceanic
forcing. But the current records obtained during the
NSFE79 experiment (Beardsley et al., 1983) show def-
inite wind-driven components even at the outer moor-
ings situated within the frontal zone.

Since surface wind contributes to the frontal vari-
ability, it is of practical importance to understand how
a front responds to such a forcing. This however has
been an area noticeably lacking in theoretical studies.
Some published works (e.g., Csanady, 1978; Hsuch
and Cushman-Roisin, 1982) deal with the wind effect
on the geostrophically adjusted state of an initially
vertical front and apply only at the formation stage of
the shelf-slope front. In this paper, I attempt instead
an examination of the response of an equilibrium front
to wind forcing, which might help to interpret some
observed frontal variability.

The model is formulated in Section 2, followed by
some discussions of the linear regime in Section 3.
The nonlinear problem is solved numerically in Section
4 for a suddenly imposed wind. A summary of the
model results and some of their implications are pre-
sented in Section 5.

2. The model

The model configuration is schematically shown in
Fig. 2 where the front is approximated by a two-di-
mensional (y, z) density interface that separates two
homogeneous layers, designated layer 1 and 2. The
front intersects the bottom at y = L near the shelf
break, and slopes upward offshore until it reaches the
base of the surface mixed layer at y = M at which
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FIG. 1. Temperature and density sections across the New England shelf-slope front (adapted from Marra et al.,
1982). The dashed line indicates the historical frontal position according to Wright (1976).
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FIG. 2. The model configuration.

point it becomes vertical. For both the mean state in
the linear model and the initial state in the nonlinear
model L equals zero. The vertical interface at y = M
will be referred to as the surface front and the region
between y = L and M is called the frontal zone. Al-
though the frontal zone is the region of primary interest
in this study, a wider region extending seaward of the
frontal zone (to y = R) will be needed in numerical
calculations of the nonlinear solution to facilitate a
more realistic implementation of the offshore boundary
condition, in which case a two-layer structure will be
assumed seaward of the frontal zone as indicated in
the figure. In our terminology, the x and y directions
will be called along- and cross-frontal respectively.
Since in a two-dimensional model with along-frontal
uniformity, the along-frontal wind is the dominant
component that drives the flow (Gill, 1982, p. 399), I
will limit the discussion to this component of the wind
forcing. Coupled with the observation that the along-
frontal current is generally much greater than the cross-
frontal current for the time scale that we are concerned
with (i.e., days), the along-frontal current is assumed
geostrophic. This implies that the along-frontal current
is vertically uniform within both layers and satisfies
the Margules equation across the frontal interface,

Suy — uy) = _5g'h1y, (2.1)

where the letter subscript, as will be used throughout
this paper, represents a partial derivative. In (2.1) f'is
the Coriolis parameter, g’ the reduced gravity based
on the density difference between layer 1 and 2, and
& has the value of 1 within the frontal zone but equals
(p2 — p3)/(p2 — p;) seaward of the frontal zone. Since
the sea surface has a vertical displacement much
smaller than that of the frontal interface, it is treated
as rigid. With the additional assumptions of an inviscid,
adiabatic and Boussinesq fluid, and an implicit pres-
ence of coast, the remaining governing equations are
given by
d

_ul_ﬁ)l=hla
1

7 (2.2)

d
E u, — fo, =0, (2.3)
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(h1v1)y + by = 0, 2.4)
hlvl + hzvz = 0, (2.5)
hl + h2 = H, (26)

where v; and v, are the vertically averaged cross-frontal
flows within the respective layer, 7 is the along-frontal
wind stress and H is the total water depth. The six
variables (u,, v, U, V2, h,, hy) are then determined
by the six equations (2.1) through (2.6).

Since the currents are predominantly wind-driven,
they are nondimensionalized by the scales

(%, %) = ;70 (T, }) :

where 7* is the characteristic scale of the wind stress
magnitude, H, is the water depth at y = 0 and T is
the time scale. With the further scalings that (z*, y*)
= (H,, g'Hy/fu*), the nondimensionalized variables
satisfy the following equations:

U — U= —6h1y, (27)
T
Uy, + fvluly - =, (2.8)
h
Uy, + eVrllpy — Uy = 0, (2.9)
G(hlvl)y + h“ = 0, (2.10)
h|v| + h21)2 = 0, (211)
hi+ hy = H, (2.12)

where € = u*/(fy*) = (u*)*/(g'H,) is the Rossby num-
ber, or the internal Froude number according to our
scaling. -

3. The linear regime

For ¢ <€ 1, Eq. (2.10) implies that the vertical dis-
placement of the front is small. This is expected since
the front is stiffer for a weaker forcing or stronger
stratification. This allows us to decompose the upper-
layer depth into its mean value (denoted by an overbar)
and a small perturbation (denoted by a prime),

hl = 7[1 + fhll. (3.1)
Similar decomposition can be done on the flow fields,
u; = u; + uj, etc., 3.2)

although the perturbation is not necessarily small
compared with the mean.
Substituting (3.1) and (3.2) into (2.7) yields

' '
Uy = Uy,

3.3)

i.e., as a consequence of the small frontal displacement,
the perturbation in the along-frontal current is baro-
tropic. The front thus plays no dynamical role in the
wind-driven flow field, and its vertical displacement
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is determined through the kinematic constraint (2.10).
Subject to (3.3), the perturbation fields can be easily
solved, and are presented in Appendix A.

In an adiabatic model with no mixing, the surface
front is simply advected by the cross-frontal flow, but
that leads to gravitational instability when the denser
surface slope water is advected shoreward over the less
dense shelf water. The linear solution thus breaks down
in this case near the surface front. To resolve this prob-
lem and also to examine the case when e is not small,
we have to solve the nonlinear problem.

4. The nonlinear solution

Numerical means are employed to solve the full set
of equations, (2.7) through (2.12), without dropping
the nonlinear terms. To reduce the set, we first derive,
from (2.9), (2.11) and (2.12), that

V.

Uy = — I _lhli(l - €u2y),
where V|, = hyv, is the cross-frontal transport in the
upper layer. Taking the time derivative of (2.7) and
using (2.10) and (4.1) yield

Vi

4.1)

W=~ o I (1 — eupy) + 6V 4.2)
while taking the y derivative of (2.7) leads to
Uy = Usy — 6h1yy.. (4.3)

Substituting (4.2) and (4.3) into (2.8), we arrive at

Vl H _ T
Viw =3, [h'yy e — i ! ‘”Zy)]  dehy
(4.4)

This is a diagnostic equation for V| in terms of 4; and
u, which can be calculated through the prognostic
equations (2.10) and (4.1). The remaining variables
can be easily calculated once V', 4, and u;, are obtained.

The numerical procedure involves solving the above
equations over a variable domain encompassing the
frontal zone, the boundaries of which have to be tracked
at each time step. The inshore boundary of the domain
is set at y = L where the front intersects the bottom,
and the offshore boundary is set at y = R such that
the width of the domain (R — L) is, for practical
reasons, a fixed multiple of the frontal zone width
(M — L).

The boundary condition at y = L can be rigorously
formulated. By definition, this is where A, = H(L),
and, from (2.11), we require that ¥, = 0. For the
boundary condition on u,, we integrate the momentum
equation (2.9) in time to give u; = L/e which has been
assumed to vanish initially for simplicity. The bound-
ary itself is moving according to the kinematic relation
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h2t + Lthzy = 0, (45)
or, using (2.10) and (2.12),
EVI
L=——%— 4.6
¢ H— ), (4.6)

To derive the boundary condition at y = R, we
assume that it is far enough away from the frontal
zone and into the open ocean that the asymptotic
boundary condition 2 = A, applies, where A, is some
nominal depth of the surface mixed layer. Eq. (2.10)
then implies that (¥ /A, ), = 0. For the boundary con-
dition on u,, we must distinguish between the case of
negative and positive wind stress. In the case of negative
wind stress, this boundary is advected offshore, en-
croaching upon a region previously lying outside the
domain of integration. Because of the great water depth
there, the stretching mechanism is negligible in gen-
erating relative vorticity, which is assumed to be zero
initially for the sake of simplicity; we therefore impose
the boundary condition that u,, = 0. For the case of
positive wind stress, this boundary is advected
shoreward, taking on points previously lying within
the domain of integration; u, therefore need not be
specified.

To facilitate the numerical calculation, we first
transform the (y, ¢) coordinate system to the (¢, #)
system, where { = (y — L)/(M — L), such that the
frontal zone occupies a fixed domain ¢ € (0, 1), and
we then finite-difference the resulting equations within
the domain of integration (0, {z) where {x is a fixed
number greater than 1. The direct method of Lindzen
and Kuo (1969) is used to solve the diagnostic equation
of V1, and the Lax-Wendroff scheme is used to calculate
h, and u, from their prognostic equations. Readers are
referred to Appendix B for the details of the numerical
algorithm. :

In the examples shown below, I use 4, = 0.2 and
¢ = 0.2. The values are chosen to correspond to ob-
served values (see Section 5). The bottom topography,
shown by the dashed line in Fig. 3a in greatly reduced
vertical scale, has the profile of a hyperbolic tangent
to simulate that near a continental margin. The initial
state is characterized by a straight front that spans a
unit distance and a motionless lower layer. The nu-
merical solution is calculated for a suddenly imposed
along-frontal wind stress of unit magnitude. A grid
spacing of 0.025 and a time step of 0.01 are used in
all the numerical runs. Increasing values of {z are used
in each case until the solution has sufficiently converged
within the frontal zone. It turns out that {z = 2 is
sufficient for the case of negative wind stress while {z
= 4 is needed for the case of positive wind stress. Since
the solution in the frontal zone is found to be insensitive
to the variation of 4, an arbitrary value of 0.5 is used
in the following presentations.

Figure 3a shows the front at four successive time
intervals ( = 0, I, 2 and 3) for the case of a negative
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FIG. 3. (a) The frontal shape for 7 = —1 at ¢t = 0, 1, 2 and 3. The bottom topography has the profile of
a hyperbolic tangent and is shown by the dashed line with greatly reduced vertical scale. Capital letters A
and B designate the primary and secondary ridge respectively. Vorticity input terms and their sum in (b)
the upper layer and (c) the lower layer at 1 = 0, 1 and 2. (d) Relative vorticities in the two layers at

t=20,1,2and 3.

wind stress. As expected, the surface front is advected
offshore, accompanied by a shoreward motion in the
lower layer. But in addition to the general flattening
of the front, the frontal interface exhibits some degree
of convolution. Of particular interest is the early ap-
pearance of a ridge just shoreward of the surface front

(indicated by the letter A), accompanied by minor
offshore undulations as time progresses, and the later
appearance of another ridge closer to shore (indicated
by the letter B). The two ridges will, for convenience,
be referred to as primary and secondary, respectively.
The designation only refers to their time sequence in
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occurrence and is not indicative of their relative am-
plitudes. These features can best be explained by the
vorticity balance derived from (2.8) through (2.10),

A _Odh (:)

e d \n); “7)
4% _ & dhy

at  hy dt’ “8)

where @, = 1| — eyyy and Q, = 1 — ey, are the total
vorticities in the two layers. The two terms on the right
hand side of (4.7) are referred to as the “stretching”
and “wind torque” term, respectively, with their ob-
vious physical connotations. Only the stretching term
contributes to the vorticity change in the lower layer.
Using the Margules equation (2.7), we derive that

hyy = (@ — Q2)/d, (4.9)
i.e., the curvature of the frontal interface is proportional
to the vorticity shear, a relation that will be invoked
in the following discussions.

I have plotted the vorticity input terms and the rel-
ative vorticities of the two layers in Fig. 3b through
3d. Initially, the front slopes upward monotonically,
hence a positive wind torque term; and the upward
motion at the frontal interface gives a negative stretch-
ing term. The wind torque term dominates near the
surface front and generates the positive relative vorticity
observed at ¢ = 1. In the lower layer, the relative vor-
ticity remains negligible near the surface front on ac-
count of the inefficiency of the stretching mechanism
(because of the great water depth). The resulting cy-
clonic shear, in accordance with (4.9), causes the pri-
mary ridge observed in Fig. 3a. Seaward of the ridge,
the pycnocline slopes downward, the wind torque term
becomes negative and again, because of its dominance
over the stretching term near the surface front, tends
to generate anticyclonic shear and hence a negative
curvature in the pycnocline. The process continues in
time and results in the observed undulations seaward
of the primary ridge. Since the magnitude of the wind
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torque term is proportional to the pycnocline slope,
which generally diminishes as the front is spreading
out, its effectiveness in generating vorticity diminishes
accordingly—the primary ridge and the frontal un-
dulations thus reach some finite amplitude and then
taper off in time.

This is in sharp contrast to the secondary ridge which
appears to be unlimited in its magnitude. In fact, the
secondary ridge reaches the surface before the next
time interval (t = 4) when the solution breaks down.
By comparing Figs. 3a and 34, it is seen that the sec-
ondary ridge is dominated by the negative relative vor-
ticity generated in the lower layer as the deeper fluid
is forced up the topographic slope. Since this vorticity-
generating mechanism is strongly tied to the topog-
raphy and is not overly dependent on the frontal shape,
the ridge occurs near the shelf break where the flow
has a maximum convergence and its amplitude grows
in time. To demonstrate this topographic effect further,
the solution for a flat bottom is plotted in Fig. 4, which
clearly shows the absence of the secondary ridge.

From the above discussion, it is seen that variation
of the initial frontal shape would affect considerably
the efficiency of the wind torque in generating the
primary ridge, but not so much the topographic effect
in generating the secondary ridge. In addition, presence
of nonzero relative vorticities within either layer at
t = 0 can enhance or diminish the ridging feature as
the vortex elements are advected by the cross-frontal
flow. The effect, however, is rather straightforward and
needs not be discussed here.

The solution for the positive wind is shown in Fig.
5. Again, as expected, the surface water is advected
shoreward while the deeper fluid is moving offshore.
The cross-frontal flow is increasingly constrained as
the frontal zone narrows and the front appears to be
rather rigid compared with the negative wind case when .
the lighter shelf water is spreading offshore above the
denser slope water. This asymmetric response in the
cross-frontal flow necessarily leads to the asymmetry
in the along-frontal flow. Since in the case of positive
wind stress, the cross-frontal flow is severely con-
strained, the bulk of the wind stress is used to accelerate
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FIG. 4. As in Fig. 3a, but for a flat bottom.
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FIG. 5. As in Fig,. 3a, but for = 1.

the along-frontal flow which then attains a much greater
amplitude (averaged within the frontal zone) than in
the negative wind case when much of the wind stress
is balanced by the Coriolis force associated with the
large offshore flow. Also notice that the surface front
deepens as it is advected shoreward, again in sharp
contrast to the negative wind case when the surface
front maintains more or less a constant depth.

5. Summary and discussion

We have examined the wind-driven motion near a
two-dimensional, two-layered frontal system. In the
linear regime when the vertical displacement of the
frontal interface is small in comparison with the upper-
layer depth, the perturbation in the along-frontal cur-
rent is barotropic—the front plays no dynamical role
in determining the wind-driven flow fields, and is dis-
placed according to purely kinematic constraints. The
nonlinear solution shows that even for a relative small
Rossby number, the frontal response to the oppositely
directed along-frontal wind is highly asymmetric. The
asymmetric behavior stems from the fact that the cross-
frontal flow is more constrained when the frontal zone
narrows, as in contrast to the opposite case when the
surface water is spread offshore above the denser fluid.
The reduced cross-frontal flow allows for a more ef-
ficient forcing by wind on the along-frontal current,
which generally attains a much greater amplitude
within the frontal zone.

Of particular interest in the numerical solution is
the ridging of the frontal interface as the surface water
is advected offshore, in resemblance to that observed
in Fig. 1c. Examination of the wind data (see Fig. 1
of Beardsley et al,, 1983) prior to the hydrographic
measurements shows that the wind was from the
southwest, as required by the model. The wind stress
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has a magnitude of approximately 2 dyn cm 2. With
the time scale set at 1 day, the scale of the along-frontal
current is 20 cm s~!. If we identify the front in Fig. 1
as the region sandwiched between the isopycnals 26.6
and 26.8 o7, the reduced gravity g’ is 0.2 cm s~2. With
H, = 100 m, the crossfrontal scale y* is 10 km, and
the Rossby number is 0.2 which is the value used in
our numerical calculations.

Although both the wind torque acting on the upper
layer and the topographic constraint acting on the lower
layer can generate the cyclonic shear needed for the
ridging of the frontal interface, the ridges produced by
the two mechanisms behave quite differently. In gen-
eral, the ridge produced by the topographic mechanism
is less sensitive to the frontal shape, is more strongly
tied to the shelf break, and attains a much greater
amplitude. The model results thus suggest that the
topographic mechanism is the likely one that causes
the observed ridging.

The numerical solution breaks down when the top
of the ridge reaches the surface, resulting in an infinite
cross-frontal flow there. It is reasoned, however, that
before the pycnocline reaches the surface, the increased
entrainment across the ridged interface would cut off
the offshore shelf water and result in its exportation
to the slope water regime. Surface temperature mea-
surements have frequently shown cold shelf water sep-
arated by warm bands near the shelf break (Houghton,
personal communication, 1983), in agreement with
this deduction concerning the model results. On the
other hand, the relative rigidity of the front when the
surface water is advected shoreward suggests a relative
ineffectiveness for the surface slope water to penetrate
through the frontal zone and contribute to mass or
property balances on the shelf.
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APPENDIX A
The Linear Solution

Let the perturbation in the along-frontal current be
denoted by u«'; then the perturbation fields satisfy, to
the lowest order, the following equations:

u, — vy = 7'/hy, (A1)

u,— =0, (A2)
(b)), + hh, =0, (A3)
vy + bt = 0. (A4)
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The solution is easily obtained,

= i
u fHdt, (A5)
T,
v =g (A6)
__h
v = A (A7)

1
, hz‘r '
-[()a
Although the vertically averaged flow v vanishes at
y = 0 where the lower layer ceases to exist, obseérvation
over the shelf shows that the cross-shelf flow is dom-
inated by oppositely directed flows in the upper and

lower portion of the water column (Beardsley and Boi- "

court, 1981, p. 219). To accomodate this observation,
a simple refinement is made to divide the upper layer
into a surface mixed layer and an interior region. Let
them be denoted by the subscripts “S” and “I,” re-
spectively, then

L=, (A9)

since they satisfy the same equation (A2), and vs can
be determined from the requirement of zero cross-
frontal mass flux,

hsvs + (H — hs)vh = 0, (A10)
or
H— hg
SR LI e All
Us Hhs (AlD)
APPENDIX B

The Numerical Algorithm

The following derivations are for the case of negative
wind stress when the surface water is advected offshore.
For the case of a positive wind stress, the derivations
are identical except for the treatment of the offshore
boundary condition on u, which will be presented at
the end. .

We first summarize the governing equations below:

Vi H
Vlyy hl [hlyy + 66(1‘1 _ hl) (l Euzy)]
T
= e’ (B1)
hy = —€Vyy, (B2)
V
Uy =~ (1= ), (B3)
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with the boundary conditions that
Vi=0, h=HL), u=Lle, at y=L, (B4)
Vi/h)y =0, hy=hy, u,=0, at y=R. (BS)

The frontal boundaries are moving according to

L, = —€[Vi,/(H — h)y)y-L, (B6)

M, = f[Vl/hI]y=M- (B7)

If we transform the coordinate system (y, ?) to
(¢, ©) where { = (y — L)/(M — L), then the frontal
zone occupies the fixed domain { € (0, 1). The domain
of integration is (0, {z) with {z a number greater than
1. The derivatives are transformed according to

1
3y =205 (B8)
32 = — 32 B9
V=R % (B9)
. = 8, + Edy, (B10)

where W = M — L is the width of the frontal zone
and

Em——[(1 = DL+ M)

Substituting (B8) through (B10) into (B1) through (B7),
we derive that

S PR A N |
T LT e H ~ )\ W
Wr
= 11
. dehy ’ (BL1)
€
hu = —Ehlg- - W Vlg', (Blz)
€
Uy, —Eu2; - H hl (1 hae V_VU2§-) . (Bl3)
with the boundary conditions that,
V,=0, hy=HQ), w=Lfe at {=0, (Bl4)
Vi/h)e =0, by = hs, up; =0, at {= k. (B15)

The frontal boundaries are moving according to
L, = —e[Vi;/(H — hi);)i-0, (B16)

M, = 6[I_/l/hl];'=1- (B17)
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The finite differenced equation of (B11) is solved by
the direct method of Lindzen and Kuo (1969), and
the Lax-Wendroff scheme is used to integrate (B12)
and (B13) in time from their initial values.

For the case of a positive wind stress, a backward
difference scheme is used for u,, at the end point {3
which eliminates the need for a boundary condition
there.
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