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ABSTRACT

A simple two-layer, step-shelf model is used to demonstrate that barotropic (surface) edge waves of
substantial amplitude can, in principle, be generated by deep-sea internal waves incident upon the coastal
topography. Some qualitative features of the results suggest that this mechanism could account for the edge-

wave “noise” observed by Munk and others.

1. Introduction

Barotropic edge waves are super-inertial surface
gravity- waves which are trapped at a coastline and
propagate freely along the coastline in either direction.
They are refractively trapped in the sense that the
trapping depends on the offshore depth increase and
not, for example, on the earth’s rotation. For any
monotonically increasing depth profile, there is, in
principle, an infinite set of possible discrete edge-
wave modes, each of which has a different number
of zero-crossings in its offshore structure. Further, the
edge-wave frequencies increase with mode number
(at constant alongshelf wavenumber) and with along-
shelf wavenumber for a particular mode (see Huth-
nance, 1975, for details).

Edge waves have been observed along a number
of coastlines over a wide range of frequencies. For
example, recent observations of surf beat (Huntley et
al., 1981) suggest that much of the energy is in the
form of progressive edge waves. At these frequencies
[15-60 cycles per hour (cph)], the edge waves are
trapped fairly close to shore (within about 200 m)
and may be important in many nearshore processes.
Evidence from both theoretical and laboratory studies
(e.g., Bowen and Guza, 1978) suggests that these edge
waves may be generated by the nonlinear transfer of
energy from incident surface waves to the edge waves.

At lower frequencies (3-10 cph), the offshore trap-
ping scale is larger (2-20 km), and edge waves can
apparently be generated by the passage of storm
systems over the continental shelf (e.g., Munk et al.,
1956; Beardsley et al, 1977). However, some edge-
wave energy at these frequencies has been observed
to persist considerably longer than storm time scales
(Munk et al., 1956, 1964). Such edge waves have
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relatively small amplitudes (~1 cm of sea-surface
elevation; dubbed edge-wave “noise” by Munk ef al.,
1956), but they show remarkable agreement with
theory in that the spectral peaks in frequency-along-
shelf wavenumber space occur very close to the
predicted dispersion curves (e.g., Munk et al., 1964,
Fig. 10). In this case, the lowest-mode edge wave was
most highly excited and the edge-wave energy de-
creased with increasing frequency. The generating
mechanism for the edge-wave “noise” is still unclear,
and a model of atmospherically forced edge waves
(Buchwald and de Szoeke, 1973) suggests that some
other mechanism must account, at least in part, for
these persistent edge waves.

The purpose of this paper is to suggest that edge-
wave “noise™ could be the result of deep-sea internal
waves impinging upon coastal topography. One ap-
pealing aspect of this idea is that deep-sea internal
waves, unlike the atmosphere, represent a relatively
constant energy source for the edge-wave “noise.”
Another favorable aspect is that the observed edge
waves were found to have nearly equal energy traveling
in both directions, and their phases appeared random
(Munk et al., 1964). These features would be expected
if the energy source were horizontally isotropic, e.g.,
the deep-sea internal-wave field. The intent is merely
to demonstrate the feasibility of the mechanism and
not to make quantitative comparisons with observa-
tions. Thus, only the simple two-layer model shown
in Fig. 1 will be considered (Section 2), the near-
resonant behavior of which is detailed in Section 3,
followed by a summary in Section 4.

The model also serves another purpose. In a linear,
two-layer, inviscid ocean with a flat bottom, baroclinic
and barotropic modes are uncoupled. In the presence
of bottom topography, order-one barotropic motions
can produce large baroclinic motions, as in the gen-
eration of internal tides (e.g., Rattray, 1960). The
reverse is not typical and has led to the development
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of approximate models which treat the baroclinic
mode of a two-layer ocean alone when the bottom is
not flat (e.g., Cushman-Roisin and O’Brien, 1983).
However, the present model shows that, in coastal
regions, order-one baroclinic motions can produce
large barotropic motions. Romea and Allen (1982),

using an exponential shelf-slope, found similar strong -

coupling between baroclinic and barotropic motions
at subinertial frequencies which produced large-am-
plitude barotropic shelf waves. Further, since virtually
any coastal topography can support edge waves and
shelf waves, these results should apply to other to-
pographies as well. Thus, an a priori assumption of
negligible barotropic response to baroclinic motions
over variable bottom relief should be made with great
caution.

2. A simple model

To demonstrate the generation of barotropic edge
waves by deep-ocean internal waves, I consider the
simple model depicted in Fig. 1. The deep ocean is
stably stratified with two immiscible fluids with slightly
different densities. The upper layer has mean thickness
H, and density p, while the lower layer has thickness
H, = H — H, and density p(1 + ¢), where ¢ € 1. The
deep ocean borders a step shelf having width L,
constant depth d and containing homogeneous fluid
of density p. Thus, the interface depth H,; is always
greater than the shelf depth 4. Rotation effects are
neglected and motions are assumed linear. The prob-
lem consists of determining the response of the free-
surface displacement 5 over the shelf to an internal
gravity wave (on the interface {) incident from the
deep ocean (x = oo). (Mysak, 1968, has considered
the effects of stratification on edge waves using a two-
layer model, but he viewed stratification as a dissi-
pative mechanism and did not consider any generation
mechanisms.)

The wavelengths of both surface and internal waves
are assumed long, compared to the water depth, so
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FI1G. 1. Step-shelf model with two-layer stratification
in the deep-sea region.
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that the shallow water (hydrostatic) approximation
may be made. This assumption has been shown to
have negligible effect on edge waves in a homogeneous
fluid over a step shelf (Miles, 1981), so it is expected
to have little effect in the two-layer case as well. The
appropriate equations of motion for a nonrotating,
two-layer fluid are

u' = —gnx, (1a)

v¥ = —gny, (1b)

(" +v))H, +n,— §, =0, (Lc)
ut = —gl(1 — ne + €8], (2a)

vl = —gl(1 — émy + €], (2b)

(wt+vHH, + =0, (2¢)

where (1%, v¥) and (u*, v*) are the cross-shelf (x) and
alongshelf () velocities in the upper and lower layers,
respectively, and g is gravitational acceleration. Sub-
scripts x, y, t denote partial differentiation.

For simplicity, variables are scaled as follows:

. x,y bylL,
d,H,H, byH,
u*, v4, ut, vt by U,
7, ¢ by UH/g)'?,
t by L/(gH)"?,

where U is a typical velocity. Motions are also
assumed monochromatic and propagating in the
alongshelf direction with frequency «w and wavenum-
ber /, i.e., ocexp(iwt * ily). The problem is solved
by first finding appropriate solutions for the shelf
region and for the deep ocean separately, and then
requiring continuity of surface displacement and nor-
mal mass transport at the shelf break (x = 1). Note
that, with the above scaling, the deep ocean has unit
depth.

Deep-ocean solutions are found by combining (1)
and (2) into a single equation for the deep-ocean
surface displacement (in scaled form),

&? &
(6_x2 - /3+2)(52' + 5—2)17’) = (3)
where
w? @2
sr=(r-%).02-(5-7),
A _
.2 =1+ 11 = der Hy)2.
2 2
An appropriate solution of (3) is
77D = Ieiﬁ-(x—l) + Be—iﬂ-(.x—l) + Ce—m(x—l)’ (4)

where the unknown (complex) coefficients (, B, C)
represent the contributions to the surface displacement
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due to the incident internal wave, the reflected internal
wave, and the exponentially decaying surface wave,
respectively. Note that (3) and (4) are written such
that lc. < w < lc, results in real 8., 8-; i.e., the

surface wave decays exponentially offshore as.in the

case of an edge wave, while the internal wave is

periodic (i.e., propagating) offshore. Note also that

for appropriate w and realistically small ¢, 8- > [
which means that the internal wave is almost normally
incident upon the shelf [the angle of incidence from
normal being given by tan™!(//8-)].

It is simplest to consider an internal wave of unit
interface displacement which contributes a surface
displacement of

H
1=,r'=(1~c—_;)

(Gill, 1982, p. 120). Using this value of 7 [an O(e)
quantity], the total surface displacement over the
shelf or deep ocean represents the response due to an
incident internal gravity wave with unit interface
dlsplacement

Motions in the homogeneous ﬂu1d over the shelf
are described by (1) with { = 0 and H, replaced by
d in (Ic). Combining this form of (1) into a single
equation for the surface displacement over the shelf
leads to (in scaled form)

2
(%+a) =0,

where o? = (w*/d) — I°. An appropriate solution of
(6) which satisfies the boundary condition of no flow
through the coast (u = 0 at x = 0) is

(6)

= A cos(ax) )

with unknown (complex) amplitude A.

The unknown amplitudes 4, B, C may be deter-
mined by requiring 1) continuity of surface displace-
ment, 2) continuity of upper-layer cross-shelf mass
transport, and 3) vanishing of the cross-shelf velocity
in the lower layer of the deep ocean (u* = 0), all at

x = 1. This leads to three matching conditions at x-
= 1, namely:
' 7° = 9P, (8a)
dﬂxs =H me, (8b)
D o? 2
Moex . T+ 7]‘1 nx =0. (80)

Substitution of (4), (5) and (7) into (8) produces three
linear equations with three unknowns 4, B, C:

Acosa —B -C =u”l, (9a)
A Hi sine —Bif- —CB, = —if-u~', (9b)
1
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1 1 1
mio-(- ) + 8.3 )

= tﬂ-(——z - :17,)" . (%)
Solutions of (9) may be found for any choice of the
five parameters (¢, H,, w, [, d), provided that «, 8,
B- are real.

Of primary interest here is the response over the
shelf, represented by A, which is expected to be largest
near the edge-wave resonances of the unstratified
case. These resonances are well known and occur
where the following dispersion relation is satisfied
(Buchwald and de Szoeke, 1973):

ﬂo = aod tanag, (10)
where Boz = [02 - w02 and a02 = (w02/d) - 102. A
typical dispersion diagram is shown in Fig. 2 for d
= Y. There is an infinite set of discrete edge-wave
modes which occur between the lines wy = /, and
wo = d'?l,. The mode numbers correspond to the
number of zero-crossings in the surface elevation
over the shelf. A mirror-image picture exists at neg-

" ative wavenumbers.

A typical example of the response over the shelf to
an incident internal wave is shown in Fig. 3 where
|A4| is plotted versus / for constant frequency w = 2.0
and ¢ = 0.002, H, = !5 and d = Y%. The two spikes
in the shelf response correspond very nearly to the
edge-wave resonances of (10) at /[, = 2.44 and [
= 4.66 (wo = 2.0). Of course, there can be no perfect
resonances in the two-layer model because energy is
constantly leaking away from the shelf in the form

FREQUENCY (w,)

T T

6 8 10
" WAVENUMBER (1,)

o
N <
ES

F1G. 2. Dispersion curves for perfectly trapped edge waves over
a step shelf, given by (10) with scaled shelf depth d = ;.
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FIG. 3. Surface displacement amplitude over the shelf |A|
versus alongshelf wavenumber / for fixed frequency w = 2.0 and
¢ = 0002, H, = ', d = %. Spikes occur near the edge-wave
resonances of Fig. 2.

of the reflected internal wave [the second term on
the right-hand side of (4)]. Nevertheless, the predicted
peak amplitudes are remarkably large, being O(1)
quantities. Thus, a unit-amplitude interface displace-
ment can generate (at the resonant peaks) a surface
displacement over the shelf of order one, in distinct
contrast to the standard O(e) effect on surface dis-
placement due to an O(1) interface displacement
(over a flat bottom). In terms of velocity, this means
that an incident upper-layer velocity of O(¢'/?) can
produce an O(1) velocity over the shelf.

3. Near-resonant response

The only appreciable shelf responses in the entire
(w, /) plane occur near the edge-wave resonances
given by (10), so it is appropriate to examine the
solutions of (9) near the edge-wave resonances in
more detail. To do this, B and C are first eliminated
from (9) to obtain an equation for 4. For simplicity,
O(e) terms are neglected when compared to O(1)
terms. The result is

A[cose — da sina(B,™" — iH,/H,8-)] = —2¢H,.
(11)

(The right-hand side is retained because it is the
largest term there.) Next, the frequency (or wavenum-
ber) is assumed to be resonant, w = wp (or / = ),
while the wavenumber (or frequency) is assumed
slightly off resonance / = [y + Al (or w = wg + Aw)
where [pAl <€ 1 (or wpAw < 1). Keeping only O(,hAl)
or O(wpAw) terms leads to

Alat + i(bE + )] = —e, (12)
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where if £ = Al, then

a= lo[(_‘?fg + L + -l—) sinag + f’_ cosao] s

4303 afo o Bo
H\Y(si
==l at, (6—2) (smao + cosao) ,
wy \ H; ag
H. 2 (GH 2)1/2 .
T e— d r— N
[ o (o 73} Hl Sinag
e = 2eH. 2,

and if £ = Aw, then

d d
a= —'wo{[ %0 + wio:? (6H1H2)|/2

B0
PRI ]sin + cosa°}
- L a Fot
dag  aofo o Bo
H 1/2/
b= Hz(u) (m + COSao) .
H 1 *o
Hz €H2)1/2 .
= =2 daol —2 ,
@ Oto( H1 Sinog
e= 2€H2.
The maximum free-surface amplitude over the shelf
occurs at £ = —bc/(a® + b?) which is always within

O(e) of the edge-wave resonance. Thus, the maximum
shelf amplitude is (to the same order)

2wo(eH /Hp)'?
dog sinag

(13)

e
lAlmax ~ - =
C

The dependence of |A|n.x on stratification ¢ and
upper-layer thickness H, is clear; increasing either
quantity increases |4|max. The dependence on wo, b
and d, however, is tied to the edge-wave dispersion
relation (10). A typical example is shown in Fig. 4
where |A|max from (13) is plotted versus wg following
along the dispersion curves of Fig. 2 with (eH,/H,)'*
= 0.026 and d = ‘. The amplitude is largest at the
beginning of each dispersion curve (wp =~ k) and
then decreases rapidly before beginning a gradual rise
as wo — o0. It can be shown that |A|m.x increases
linearly with wy as wy — oo. Note that even the
minimum values along each curve are much greater
than O(¢) and are nearly O(1).

An estimate of the dissipation rate for the edge
waves may be obtained by computing the Q of the
system, defined as the time-averaged energy stored in
the system divided by the energy loss per cycle (which
is equivalent to the resonant frequency divided by
the bandwidth of the resonant peak at the half-power
point). From (12), this results in frequency and
wavenumber Q-values given, respectively, by
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|ALyox 0 / 2
0.54
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F1G. 4. Maximum surface displacement amplitude over the shelf,
|Almax, given by (13), versus frequency wo following along the
dispersion curves of Fig. 2. Here / = [y and is not fixed, (¢H,/H,)'?
=0.026 and d = .

(14)

where the appropriate g-values are used. Since c is
O(e'/?) while a is O(1), the Q-values are typically
quite large (Fig. 5) suggesting that, once excited, the
-edge waves decay (due to radiation of the reflected
internal wave) extremely slowly in both time and
space.

From an observational standpoint, |4] may be
thought of as the gain of the transfer function between
internal waves and edge waves with a power-ampli-

fication factor of |A|> between internal- and edge- -

wave spectra. If a resonant peak is narrower than the
finest experimental resolution (probably a reasonable
assumption for such narrow peaks), then the observ-

1.51

1.0-
Qu

(x10%

0.5 1

0 . —
2
FREQUENCY (w,)

F1G. 5. Plot of Q,, given by (14), for the frequency-resonant
peaks versus wp following along the dispersion curves of Fig. 2.
Here ! = [, and is not fixed, ¢ = 0.002, H, = Y, and d = Y.
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able power-amplification factor is really the integral
of |4|? under the resonant peak (which is proportional
to the energy in the peak), given by

T, T~ [ laPdg =" (15)
with the appropriate a-value used. (The infinite limits
are used for simplicity because the peak is so narrow.)
Figure 6 shows an example of T for the wavenumber
resonant peak (¢ = Al) following along the dispersion
curves of Fig. 2 with e = 0.002, H, = Y, and d = Y%.
There is a rapid increase in T along each dispersion
curve to a local maximum and then a slow decrease
to a constant value as wp — oo. Since the maximum
peak amplitudes increase as wy — oo (Fig. 4), the
peaks themselves must become narrower as wy — o
in order for T to remain constant (Fig. 6). The peaks
also become very tall and narrow as wy — 0. The
implications of these results are discussed further in
the next section.

With other choices of shelf depth d, the variations
of |A|max, T and Q along the dispersion curves are
qualitatively identical to those in Figs. 4-6. Generally,
as the shelf depth decreases, |A|max and T tend to
increase while Q tends to decrease slightly. However,
direct comparisons can be misleading because the
dispersion curves change with shelf depth, so that the
quantities are not computed for the same (wo, k)
pairs.

4. Summary

The purpose of the model presented here is to
demonstrate qualitatively that deep-ocean internal
waves may represent a possible energy source for the

7
(x70-3/

(o] T T
2 3 4

FREQUENCY (w,)

FIG. 6. Integral of |4|> under the wavenumber-resonant spectral
peak T, given by (15) with £ = Al, versus w, following along the
dlspersmn curves of Fig. 2. Here / = ; and is not fixed, ¢ = 0.002,

= 1/4 and d = 1/6
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generation of surface edge-wave “noise” like that
observed by Munk et al. (1964). Several features of
the model results support this hypothesis, the most
obvious being that the internal waves can generate
edge waves with substantial surface displacements.
The present model suggests that the surface displace-
ments of the edge waves may be of the same order
of magnitude as the interface displacements (Fig. 4)
even with a realistically small density difference be-
tween layers (e = 0.002). This is a clear exception to
the idea that surface displacements due to interface
displacements are typically reduced by the factor e.

Of course, the large amplitudes at the resonant
peaks could not be resolved experimentally, so the
observable power-amplification factor 7 should be
used to estimate the rms edge-wave amplitude that
might be generated by deep-sea internal waves. How-
ever, because of the simplified nature of the model,
this is, at best, an order-of-magnitude estimate. For
example, T, for the lowest-mode, frequency-resonant
peak levels off at ~4 X 10™* (nondimensional) with
increasing frequency. In this range, a deep-sea, inter-
nal-wave, vertical-displacement spectral estimate of
about 10° cm? (cph)™' [not unreasonable at frequencies
of 2-8 cph (Briscoe, 1975)] leads to an edge-wave
spectral estimate of 0.4 cm? (cph)™' which is the same
order observed by Munk ez al. (1964). Thus, the
power-amplification factor of the model resonant
peaks is not inconsistent with the present edge-wave
generation mechanism.

Deep-sea internal waves would be expected to
represent a fairly constant energy source, but even if
the forcing were intermittent, the very high Q-values
of the edge waves (Fig. 5) suggest that the waves
would persist long after being excited. Either situation
is in agreement with the fairly constant edge-wave
“noise” observed by Munk et al. (1964). Further, the
model predicts that the lowest-mode edge wave is
most highly excited at low frequencies with mode
one becoming comparably (or slightly more) excited
at higher frequencies (Fig. 6). Munk et al. (1964) also
observed this quality; mode zero accounted for 80%
of the energy at 4 cph whereas modes zero and one
each accounted for 40% of the energy at 7 cph.

From a quantitative standpoint, a number of aspects
of the model make it oversimplified and preclude
any proper comparison with observations other than
order-of-magnitude arguments. For example, the step-
shelf topography is not intended to model accurately
the Southern California shelf, making direct compar-
ison with observations difficult because dispersion
curves for edge waves over more realistic topography
will be different from those in Fig. 2. It is for this
reason that dimensional frequencies and wavenumbers
have not been estimated. A further (and perhaps
more damaging) simplification is the simple two-
layer stratification for which there is no upper limit
to the internal-wave frequency (i.e., the buoyancy

DAVID C. CHAPMAN

1157

frequency is infinite and internal waves may occur at
all edge-wave frequencies). A more realistic model
with smooth stratification would thus allow the pro-
posed generation mechanism only at frequencies be-
low the buoyancy frequency. Along the Southern
California coast, the buoyancy frequency may be as
high as 10 cph (Winant and Bratkovich, 1981), which
would be high enough to include the edge-wave
“noise”” emphasized by Munk ef al. (1964). However,
they also observed edge waves at higher frequencies
(up to 60 cph but of lesser energy density), which
would require some generation mechanism other
than deep-sea internal waves. Perhaps there is a
transition between forcing by internal waves at low
frequencies and by incident surface waves at higher
frequencies. This remains to be studied.

The deep pycnocline of the present model (Fig. 1)
is also an unrealistic feature. The problem is easily
formulated with the interface shallower than the shelf
depth (H, < d). This has been done in the present
study (not included here), but the qualitative results
are basically unchanged. The problem is more com-
plex because of the internal wave over the shelf whose
amplitude is highly sensitive to the choice of param- .
eters, thus quantitatively altering the surface displace-
ment over the shelf. Little appears to be gained from
that approach. Another simplification is the neglect
of frictional effects (which are difficult to parameterize
in a realistic manner). Simple linear friction over the
shelf has been added to the model (see the Appendix)
with the (expected) result that the spectral peaks and
the corresponding Q-values may be substantially re-
duced by friction. However, this is difficult to put
into a realistic context considering the other simpli-
fications. Finally, rotation effects have been neglected,
but they were not really observable (Munk et al,
1964) and would only alter the details at very low
frequencies.

In conclusion, it appears possible that the surface
edge-wave “noise” observed by Munk er al. (1964)
could have been generated by deep-sea internal waves,
but more realistic models must be studied before
detailed comparisons with observations can be made.
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APPENDIX

Linear Friction Over the Shelf

The model in Section 2 is easily modified to
include linear bottom friction over the shelf. Following
Buchwald (1980), the terms —ru and —rv are added
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FIG. Al. The effect of linear bottom friction over the shelf on

- the resonant peak in surface displacement amplitude |4| over the

shelf at wy = 2.0 and [, = 4.66 (mode zero). Here ¢ = 0.002, H,
=Y%,d =Y and r = 0.0, 0.002, 0.004.

to the right-hand side of (1a) and (1b), respectively
(when applied to the shelf), where r is the bottom
friction coefficient. Using the same scaling as was
applied to (1) and (2), r is scaled by (gH)!?/L. The
only change in (3)-(8) is that d is replaced by d/F
where the friction factor F = 1 — jr/w and r/w is
assumed small. Thus, « is defined by

2
29F_p Al
a a (A1)
and the matching condition (8b) now becomes
d
7 = Hin. (a2)

The matrix equation (9) is unchanged except for the
first term in (9b) which becomes A(d/H, F) sina.
With friction over the shelf, there are no perfectly
trapped edge waves even in the unstratified case, so
that (10) does not apply. However, the maximum
response still occurs near the resonances given by
(10). Figure Al shows one such resonant peak (for
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mode zero) with and without frictional effects. The
values used here correspond roughly to depth-averaged
shelf friction in the range 0.01-0.2 cm s™' depending
on the choice of H, L and shelf depth for scaling.
Not surprisingly, the peak is substantially reduced by
friction. However, given the other uncertainties in
the model (e.g., topography and stratification) it is
unclear how to apply these frlctlonal results in a
quantitative way.
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