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ABSTRACT

A simple model of the oceanic mixed layer is coupled to a model of the ventilated thermocline. The
model allows a combination of advection and surface heating to determine the position of the outcrop lines

‘of the isopycnals. The resulting isopycnal outcrops determine the circulation in the ventilated thermocline as

in the 1983 study by Luyten, Pedlosky and Stommel (LPS). The isopycnal outcrop line is affected by both
Ekman wind drift and the surface geostrophic flow. Hence, the outcrop position and the thermocline
circulation are coupled.

The mixed layer and the thermocline models are extremely simple. Each is modeled by layers of constant
density. The mixed layer, in which the isopycnals are vertical, is distinguished by the ability of fluid to cross
the interfaces between adjacent layers under the influence of atmospheric heating. The heating is parameterized
in terms of the departure of the isopycnal line from the position it would have if the ocean were heated, but
at rest.

Although in most major respects the thermocline circulation is qualitatively similar to the model of LPS,
the effect of the variation of the outcrop latitude with longitude introduces the possibility of potential-
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vorticity minima along latitude circles.

The model also predicts cooling of the most southern portion of the subtropical gyre under the influence

of northward Ekman wind drift.

1. Introduction

Most analytic theories of the oceanic thermocline
take as a starting point a prescribed surface distribution
of temperature or density. The resulting density and
velocity fields below the surface are sought as conse-
quences of the internal dynamics of the modeled
ocean. The prescription of the surface density field is
mathematically self-consistent and logically accept-
able, but its chief virtue is the simplification it provides
for the remaining aspects of the problems of the
thermocline.

In fact, it is much more likely that surface heating
of the ocean combines with lateral advection of
temperature to determine the surface density field;
therefore, this determination of the surface density
field is coupled to the dynamics of the ocean. Several
budget calculations (e.g., Behringer and Stommel,
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1981) emphasize the important role of lateral advec-
tion on annual (or longer) time scales in the-heat
balance of the upper mixed layer.

A model of the oceanic thermocline that also
possesses the artificial character of a prescribed surface
distribution is the recently published, layered model
of the ventilated thermocline (Luyten, Pedlosky and
Stommel, 1983, hereafter LPS). The model, however,
is so simple mathematically that it clearly is a likely
candidate for marriage to a similarly simple model
of the upper mixed layer so that their joint influence
in determining the surface-density field can be assessed
and the resulting influence on the thermocline struc-
ture determined. -

The purpose of this paper is to present an analysis
of a simple coupled mixed layer-thermocline model.
The central physical simplification comes from car-
rying the layered representation of the oceanic ther-
mocline into the region of the upper mixed layer.
Fig. 1 shows a schematic of the basic idea. Beneath
a mixed layer of depth d, the ocean is represented by
a series of layers, each of constant density. The
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FIG. 1. A schematic of the combined thermocline-mixed layer model. The
thermocline consists of layers each of thickness /4, with uniform density p,. The
interface z, between the nth and the n + 1st layer hits the base of the mixed layer
at the outcrop line y,(x). The interface is vertical in the mixed layer.

thickness and depth of each layer represent the ther-
mocline structure resolved by the layered model. One
basic presumption of the model is that in the region
below the mixed layer no fluid crosses the interface
between isopycnal layers. The layers are stacked so
that heavy fluid underlies lighter fluid, i.e., p, < pp+;
in this region. On the other hand, the model mixed
layer is characterized by vertical isopycnals, i.e., the
absence of a vertical density gradient. The interface
between the nth and n + st layer at depth z, strikes
the base of the mixed layer at latitude y, and then
rises vertically to the sea surface. The mixed layer is
characterized as a surface zone of depth 4 in which
fluid may cross isopycnal surfaces laterally in response
to surface heating.

The goal of the present paper is to formulate a
model that can describe such cross-isopycnal flow,
determine the outcrop lines y, (which are generally
functions of longitude x) and simultaneously predict
the resulting thermocline structure. We leave to the
next section a detailed description of the model, but
it must be apparent already that progress on this
difficult problem will réquire several idealizations and
restrictions. Chief among the latter will be the restric-
tion of our attention to the subtropical gyre where
the Ekman pumping velocity is downward. In such
situations there will be “‘detrainment” of the fluid
from the mixed layer into the region below, and it is
sensible to prescribe continuity of density between
the mixed layer and the geostrophic region beneath
it; this situation is the one sketched in Fig. 1. For
steady states, to which the present theory is also
limited, the detrainment velocity is simply the Ekman
pumping (de Szoeke, 1980). Since the fluid enters the
geostrophic deep layers from the mixed layer in the
subtropical gyre, it is precisely in this region where
the coupling between the two domains is expected to
be strongest.

2. The model

First consider the region of the mixed layer. We

‘take as our starting point a slab model of the mixed

layer (see de Szoeke, 1980, for an excellent discussion
of the formulation of the basic mixed layer model)
so that the horizontal velocity is assumed to be
independent of depth within the mixed layer. The
present model is restricted entirely to steady state
conditions. That is, we will be formulating a coupled
model to describe only the time-averaged thermocline
flow and a basic presumption is that a steady state
model of the mixed layer is adequate for such a
purpose.

In that case, the mass balance for the mixed layer
may be written

ai () + 2 0,y = WP, (2.1)

X dy :

where x and y are local Cartesian coordinates directed
eastward and northward while u, and v, are the
respective velocity components in those directions;
WP represents the vertical entrainment velocity at
the base of the mixed layer. Labels » refer to the
region of the mixed layer between outcrop lines y,—;
and y, in which the mixed layer density is p, and the
mixed layer depth is d,. The depth of the mixéd layer
d, may be a function of position. A rigid-lid approx-
imation has been assumed to derive (2.1) so that
fluid enters or leaves the mixed layer only through
its base.

At this point it is useful to borrow an idea usually
applied to the derivation of the appropriate matching
conditions at the base of the mixed layer (e.g., see
Niiler, 1975). Although Figs. 1 and 2 show the
transition between layers as discontinuous, it is useful
to consider the interface as the limit of a narrow
zone, whose width 24 tends to zero in the limit 6 —
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FIG. 2. The slab model of the mixed layer. Between the interfaces
Yar(x) and y,(x), the mixed layer has depth d, and density p,. In
the subtropical gyre the detrainment velocity W, is simply the
Ekman pumping.

0, in which all the fields are continuous. Thus, Fig.
3 shows the zone, centered on y,(x), through which
the density of the mixed layer changes from p,
to Pn+1.

If (2.1) is integrated in y across this zone, we obtain

a Ynt+d

Aayn
ax et (urdpdy + d,.+1|:v,,+, — Upes EJ;)C—]

_ _ 1&]
a',,[v,, Uy, ™ +

where the label T refers to variables in the thin
transition zone. .

Assuming only that urdy; and Wg, are finite in the
transition zone, it follows from the limit § — O that

the quantity
d
V,= d,,[v,, — Uy %]

- deou 2]
n+1 n+1 n+1 dx

VYnt+d

Wedy =0, (2.2)

Yn—5

(2.3)

is continuous across the outcrop line. Here V), is the

lateral entrainment of volume per unit time per unit
length along the outcrop line. If ¥, were zero, fluid
in the mixed layer would flow entirely parallel to the
outcrop line. If V, is negative, fluid crosses the
interface between isopycnal regions such that fluid of
density p,.; becomes fluid of density p,. If p,
< pn+1, this implies the existence of external heating
in the transition zone to accomplish this transfor-
mation.

To examine this further, consider the equation for
thermal energy conservation applied to the mixed
layer. In a steady state where there is no entrainment
of colder fluid from beneath the mixed layer (recall,
in the present case there is only detrainment with,
consequently, no temperature jump at the base of
the mixed layer), the heat balance is simply

ar,
ox

oT,
dyty + dyv, —
dy

= Qn, 2.4
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where T, is the temperature of the mixed layer fluid
of density p,, and Q, is the surface heat flux into the
mixed layer from the atmosphere.

Now consider (2.4) integrated over the transition
zone shown in Fig. 3. It directly follows from (2.1),
(2.3) and (2.4) that

9 [yt ytd
‘a_ (duT)Tdy + V;;(T;H-l - Tn) = f QTdy,
X Jyn—d Yn—8
2.5)

where, again, the label T refers to variables continu-
ously defined in the transition zone. In the limit § —
0, the first term on the left-hand side of (2.5) vanishes
if, as before, we assume that duT is bounded in the
zone as 6 — 0. Thus (2.5) becomes

Ynt+d

Vil Tper = Tn) = Qn = lim Ordy. (2.6)
5—0

)

If we examine (2.4) and (2.5) together, an incon-
sistency superficially appears unavoidable. If the den-
sity and temperature are laterally uniform between
¥, and y,.,, then the left-hand side of (2.4) becomes
identically zero. At the same time, in order for fluid
to pass across the outcrop line y,(x), a nonzero value
of Q, is necessary. This inconsistency is only apparent,
rather than real, because the use of a horizontally
layered model of the mixed layer implies that the net
surface heat flux should be regarded as concentrated
and limited to an input entirely in the transition zone
whose strength Q, represents the heating required for
the finite density transformation of the layered model.
Thus, in this model the heating is imagined limited
to the transition zone and has a nonzero integral
across that zone and we must realize that this lumping
of the applied heating at the outcrop line is the
layered representation of what is, in fact, a continuous
process of incremental temperature transformations
as the fluid moves laterally through a continuous
horizontal density gradient.

The next important step is the specification of the
heating function Q,. Consider the situation that
would arise if the ocean was at rest and was being
heated by the atmosphere. In the steady state, the

Pnu
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FIG. 3. An enlargement of the lateral transition zone between
two constant density regions. We are interested in the limit § — 0.
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ocean surface temperature would match the atmo-
spheric sea-level temperature and the heat flux be-
tween the two would cease.? Suppose that in this
state the resulting surface temperature (or density)
isolines are given by the equilibrium value

Yn = Yu(x). 2.7

Now, in the case where the ocean is moving,
advection will impose a departure of the outcrop
lines y, from the equilibrium outcrop lines Y,(x). If
the resulting heat exchange with the atmosphere is
assumed to be a linear function of the air-sea tem-
perature difference, it suggests writing (2.6) as

ViTyr1 — Tp) = ’?n[Yn(x) — Ya(0)], (2.8)

where &, is a “relaxation” coefficient which measures
the rate at which the surface isotherms will tend to
their at rest ocean values. If T, < T, then, generally,
southward flux through the isotherm boundary be-
tween region n + 1 and region n requires an external
heating. From (2.8) this would require the surface
isotherm to be advected south of its equilibrium
position exposing relatively cooler surface water to
be heated by the atmosphere.
With (2.3), (2.8) may be written as

.2 W NS A
(v,, e dx) [ d,,(T,,—TM.)](Y" )

On — ty % = —kn(Yn = Vo), (2.9)
where :
Kp = ”en/dn(Tn - Tn+l)- (210)
Note that (2.9) (or at least its form) might be i)lausibly
derived in an alternative fashion directly from the
thermal equation for a continuously variable surface
temperature field. If Q, in (2.4) is proportional to the
air-sea temperature difference so that (2.4) can be
modeled as
T oT
—tv—=x(T,—-T),
U ay (T, )
where T, is the atmospheric surface temperature,
then division of (2.11) by 87/dy yields

o-i2) L=
ox/ aT/dy
Suppose T is “close” to T, and that the latter is
essentially only a function of latitude, then
T,— T 0T,/dy
aT/ay . oT/dy

T (2.11)

(2.12)

V- V) ==y (2.13)

2We are here making the sweeping simplification that the
complex process of heat exchange, including latent heat, is essentially
driven by the air-sea temperature difference.
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which would give (2.12) the same form as (2.9). This
argument is only suggested to make the form (2.9)
more intuitively acceptable. In the derivation of (2.9)
no restriction to small departures of y, from Y, is
required, nor is Y, restricted in its longitude depen-
dence.

The form (2.9) is the fundamental equation for the
determination of the outcrop isoline for the interface
between fluid of densities p, and p,.,. The parameter
k, is an inverse relaxation time for the outcrop to
attain its equilibrium position Y,(x) if the ocean
circulation were to be turned off.

In general, (2.9) is a nonlinear differential equation
since both u, and v, are functions of y and since
(2.9) is applied to the line y = y,(x), (2.9) is in fact

day, .
X, Vi) —dlx — 0,05 Vi) = —klYn — V) (2.14)

which exposes the nonlinearity explicitly.

The horizontal velocity components, u, and v,,
each consist of two parts, an Ekman velocity and a
geostrophic velocity. The former is simply given by

(Vn)exman = =7 po fd,,

(Un)exman = 7/ po fdy, (2.15)

where po is the mean density and 7 and ) are the
known eastward and northward components of the
applied wind stress. The second component of the
velocity field consists of the geostrophic surface ve-
locities. In the layer model these will be the geostrophic
velocities in the layer immediately below the outcrop
line. That is, to find y,(x) the geostrophic velocities
in the nth layer at the outcrop line must be known
or, using the continuity of V,,, the geostrophic veloc-
ities in the n + 1st layer would also suffice. Since the
geostrophic velocities in the thermocline region de-
pend sensitively on the position of the outcrop lines,
the joint problem of determining y,(x) and the asso-
ciated thermocline geostrophic velocities presents a
highly coupled nonlinear problem. Surprisingly, the
general method of solution presented in the next
section is quite straightforward.

3. Method of solution

The key to the solution of the coupled problem .
described in the previous section is the same as used
in LPS. Namely, we consider the zone south of the -
line y = y, where the Ekman pumping vanishes (the
northern boundary of the subtropical gyre), but north
of the first outcrop line y,(x). In this region there is
only one moving layer in which density is p; and its
thickness is /3. The layer beneath layer 3 is assumed
at rest®; thus, as shown in LPS,

3 Pedlosky and Young (1983) describe models in which the

deeper, unventilated layers may also be in motion. This only
complicates somewhat the method .of solution outlined here which
can easily be extended to consider such cases. -
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h3? = Do(x, y) + H3?, 3.1
where
2f2 Xk
Dyt = — = Wix', y)dx', (3.2)
Y38 Jx

where 8 is the planetary vorticity gradient, Wy the
Ekman pumping velocity (<0), X the position of the
eastern boundary and v; = (ps — p3/p0)g. The geo-
strophic zonal velocity is assumed to vanish on the
eastern boundary where the depth of the layer is the
constant, H;. With A; known, the geostrophic veloc-
ities in layer 3 are

s 9_’}3

U = — —

S oy
_Y30hs

3 = —=

f ax

and are therefore known as functions of x and y.

These geostrophic velocities with the Ekman veloc-
ities of (2.10) then allow for the integration of (2.14)
to determine the outcrop line. Of course, appropriate
initial data must be specified for (2.14), a point we
return to below. The more important point is that
after’ y»(x) has been found, the steady flow in the
region y(x) < y < y(x) can be found by the
potential-vorticity trajectory analysis used in LPS so
that the geostrophic flow in the domain north of
y1(x) can be determined. With the geostrophic flow
in this region now known, (2.14) can then be applied
to the determination of y;(x), after which the geo-
strophic flow south of y,(x) can be determined by the
method of LPS. It is clear by induction that, in
principle, the method can be applied to a model with
an arbitrary number of layers and outcrop lines as
long as the solutions for y,(x) do not possess any
pathologies such as curling back on themselves and
so not spanning the longitude range of the basin. In
this paper, largely to demonstrate the basic ideas, we
will restrict our attention to the simplest nontrivial
case. We will discuss a model with a single outcrop
line and determine the flow field both north and
south of the line and compare it with the results of a
model in which the outcrop line is specified as a
latitude circle.

There is one remaining assumption to be discussed
and it is an important one. It is clear from (2.15)
that the velocities in the upper mixed layer require a
knowledge of the mixed layer depth. In principle,
mixed layer depth should be treated as an additional
unknown. However, it is a little unclear to us precisely
how d, should be determined. According to the
argument of de Szoeke (1980), the mixed layer depth
is basically determined from a turbulent kinetic-
energy balance. If the action of shear-related mixing
at the mixed layer base is ignored, and attention is
limited to a subtropical detrainment gyre, the equation
fordis

, (3.3)
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agd,Q, = 2myu 3.4

where an overbar represents an average over each
lateral zone. In (3.4) u3 = |7|/po, « is the coefficient
of thermal expansion and my is an empirical, order-
one positive constant. In regions where the surface
layer is heated (Q, — 0) this fixes d, as

dn = 2mouy/agQn, (3.5)

which might be modeled in the layer representation
as

moui

dn=2—c——
kl(¥Yn — yn)

(yn+l - yn), (36)

which, of course, tends to complicate an already
difficult problem. A more fundamental difficulty arises
in that part of the subtropical gyre where the surface
waters are being cooled (Q, < 0) in which case (3.4)
yields no sensible, steady state prediction for d,. This
situation is likely to occur in the southern part of the
subtropical gyre where, under the influence of the
trade winds, the stress-driven Ekman transport tends
to be northward, driving warm fluid columns north-
ward to be cooled. This is; in fact, what Behringer
and Stommel (1981) deduced for their heat budget
in the eastern tropical North Atlantic. Quite frankly,
we are at a loss to understand how to deal with this
important question in a completely deductive fashion.
It may well be that a completely steady state model
is inadequate for the prediction of mixed layer depth.
We will sweep away the real difficulties associated
with this vexing question by arbitrarily assigning a
mixed layer depth in our model calculations. Although
we could assign a spatially variable depth on the basis
of observations (e.g., Levitus, 1982), we feel such
complexity would be inappropriate to the level of
our model. Hence in all our calculations to be
presented, the mixed layer depth is a constant.

4. An example

To illustrate the ideas described above, consider
the response of an ocean basin to the wind stress
directed parallel to latitude circles (i.e., steady zonal)
with magnitude

7= —pof 2 Wy cos =X . 4.1)
T Jo
The region under consideration is
O0<x<a,
0<y<y,. 4.2)
From (4.1) the Ekman pufnping velocity is
wg = —Wp sin -2, 4.3)
Yo
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and if W, is positive, the Ekman vertical velocity is
negative (downwelling) in the region 0 < y < y,
which we identify with the subtropical gyre.

We consider a model in which there are two
moving layers, layers 2 and 3 in Fig. 4 with the ocean
at rest beneath layer 3. In layer 3, for y, < y < y,
the application of the Sverdrup transport relation to
layer 3, which is the only moving layer in this region
yields

hi? = Hy? + Do*(x, ), (4.4)
where

D3 = ijﬁ Wyl — x/a) sinTy/yo

4.5
v38 (4:3)

so that the geostrophic components of velocity are,
from (3.3),

vy =— S o sinwy/yo,

hs B
_ _ mf(a/y) _ Ty
= —h3 g Wo(l — x/a) cos o 4.6)

while the contribution to the surface velocity field
from the Ekman wind-drift currents are given by
(2.15), i.e,

W, Ty
(v3)exmaN = =2 59 cos —,
™ da . Y

(u3)ekman = 0. 4.7)
It is important to note that in this example, the zonal
velocity in (2.14) is entirely the geostrophic compo-
nent. The meridional component is composed of
both the Ekman and geostrophic components. The
ratio of the former to the latter is

dexman _ _ Byohs Ty (4.8)

U3 wf ds Yo

If h; is O(H;), then the order of magnitude E of the
ratio in (4.8) is given by

H
=0 4.9)
1l’f d3
ﬂz\jo \,;‘i?— \!,_\‘\
P"h'
Hs P2y
k
Pa.ha

FiG. 4. The domain of the ventilated thermocline. See text for a
discussion of the method of solution for the coupled mixed layer-
thermocline problem.
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Generally, 8y, /f is less than unity for the subtropical
gyre while Hs/d; is typically on the order of 5 to 10.
If d; is 60 m (which would tend to overestimate E
since d; for winter seasons is larger), then for yo/x
equal 1000 km, 8 = 107" cm™' s™! and f= 107* s7!;

E = H;/6, (4.10)

if H; is measured in hundreds of meters. Thus, if H,
is, say, between 400 and 800 m, E is O(1). Of course,
as (4.8) shows, the relative importance of the geo-
strophic and Ekman meridional velocities will depend
on position in the gyre. Near the gyre center, y/y,
~ Y the Ekman component will vanish while the
dominance of the two components will reverse near
the northern and southern gyre boundaries. Thus, a
priori both components need to be included in our
analysis.

It is also worth noting that in the southern part of
the gyre the two meridional components to the -
velocity will be in opposition and will, in fact, vanish
on the line, ’

Ty _ wfds
hi(x, t—=—.
(%, y) co Yo Byo

Before using (4.4), (4.6) and (4.7) in (2.14), it is
useful to nondimensionalize the variables. Let

(4.11)

(x, ¥) = yo(x', ¥"),
Y =Y,
ha = Hah's,

then (2.14), with the aid of (4.4), (4.6) and (4.7)
becomes

(4.12)

(1 — x/b) cosmy %

= rhy(y — Y) + [sinwy — Eh; coswy]/bw, (4.13)

where, for simplicity of notation, the primes have
been dropped from the dimensionless variables and
the subscript 3 is understood to apply to the outcrop
line y(x). The dimensionless parameters that appear
in (4.13) are

b= a/y
Byo
= =2 \ 4.14
E de:; H3 > ( )
r = kH3Byo’ [(Wo fra)
while /5 in (4.13) is given by
hs = [1 + A(1 — x/b) sinmy]'?, (4.15)
where
2
4= (4.16)

viBHy*
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The function Y(x) can be arbitrarily specified. In
the examples that follow, we will always take Y to be
constant. Hence, any departure of y(x) from a latitude
circle is due entirely to the interplay between heating
and advection.

Before proceeding to the integration of (4.13), some
general comments are in order. We have found that
it is necessary to integrate (4.13) along the time-like
direction in x to achieve numerical stability. That is,
for outcrop lines in the northern portion of the gyre,
(4.13) will be integrated from west to east. Thus
initial data at x = O are required. This is equivalent
to specifying the starting latitude yu of a surface
isopycnal just east of the western boundary current
regime. In principle, any yw is possible, but it seems
natural to suppose that -a western-boundary current
(not included in our model) would tend to advect
the surface isopycnals beyond the equilibrium latitude
Y. The size of yw — Y is a measure of the effect of
the western-boundary current on the surface density
in the western part of the gyre and it is of interest to
examine several different values of this parameter.

At the same time, we point out the singularity of
(4.13) on the eastern boundary where u; vanishes. In
all cases that we have considered, we have found that
the solution to (4.13) tends, as x — b, to that value
of y = y. such that (1 — x/b)dy/dx — 0 as x — b.
That is, at x = b (where h; = 1), y, satisfies

(wbr)~[sinry, — E costy] + y. =Y. (4.17)

Rather than solve the transcendental equation
(4.17), we have reversed the process. We specify y,
and use (4.17) to calculate the equilibrium lati-
tude Y. ,

For outcrop latitudes in the southern half of the
subtropical gyre, the integration proceeds westward
from y = y, at x = b. We have not considered cases
where the outcrop line crosses from the northern to
the southern portion of the gyre.

For large r (i.e., short relaxation times compared
to a lateral advection time) (4.13) implies that almost
everywhere y = y,(x), where

¥, =Y — ril[sintY — Ehy(x, Y) cosx Y]/
[wbhy(x, V)] + O(r2) (4.18)

in the case when Y is constant. Note that for large r,
Y and y, are nearly identical. However, there is no
reason why yyy, the starting value for the outcrop line
near the western boundary, should satisfy (4.18). As
we previously noted, we anticipate yy # Y. This
implies that in some zone near x = 0, the singular
perturbation character of (4.13) for large r must be
considered. That is, we should anticipate a boundary
layer character for x = O("") in which the lowest-
order balance in (4.13) becomes

cosmwy @ _ rhs0, YNy — Y),

o (4.19)
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for which the solution, starting at x = 0 with y
= yy, will be asymptotic for x > O(r"") to the
“interior” solution given by (4.18). As will be seen
below, this behavior is also observed for O(1) values
of r, i.e., the fairly strong adjustment process in the
western side of the basin from the starting value
assigned at x = 0 to the value predicted by (4.18).
Note that for outcrop lines in the northern part of
the gyre, n<?,
i.e., the outcrop line is swept south of the equilibrium
line and this effect is strongest near the eastern
boundary where 4; is smallest, i.e., where the south-
ward geostrophic meridional velocity is greatest.

Implicit in our specification of the coefficients in
(4.13) is our use of the S-plane approximation. That
is, 8 and f are considered to be constants where they
appear. This slight approximation could be avoided
most easily by formulating the original problem in
terms of the variables x and finstead of x and y. It
seemed to us more desirable at this stage to use the
more familiar 8-plane formulation.

It is also important to note that (4.13) emphasizes
the role the structure of the thermocline has on the
form of the outcrop line. In the case where Y is
independent of x, then, given the fact that the merid-
ional Ekman velocity is x-independent, the x-variation
of the right-hand side of (4.13) depends entirely on
the longitudinal variation of the thermocline depth
hy. (Of course, this fact results from our assumption
that the mixed layer has a uniform depth.) If 43 were
independent of x, a possible solution of (4.13) would
be simply y = y, for all x. Of course, this would, in
general, not satisfy arbitrary initial data at x = 0, but
after an adjustment in the western-boundary region
described above, it would be anticipated that the
outcrop line would seek the constant latitude solution
¥ = y.. The fact that &, increases with distance from
the eastern boundary forces a longitudinal variation
in the outcrop line. From (4.15) and (4.16), we see
that the relative variation of 4; depends on the
parameter 4. Hence, increased Ekman pumping or a
decrease in the layer thickness at the eastern boundary
would accentuate the effect described above.

Figures 5 and 6 show the outcrop lines obtained
by numerically integrating (4.13) from the western
boundary. In these calculations, we have chosen a
= 6000 km, yo/7 = 1000 km, 8 = 107 cm s7', f
= 10~*s™! and d = 60 m. In Fig. 5, H; has been set
equal to 400 m. The outcrop lines for two different
relaxation times are shown. The (a) lines are for the
case k! = 250 days which yields a value of r = 0.970
with the above parameters, while the lines marked
(b) refer to the case where the relaxation time has
been doubled, i.e., x~' = 125 days. The former
corresponds to r = 0.970, the latter to r = 1.94. In
each case we have fixed y, = 0.75. Thus, the equilib-
rium line Y would be different in the two cases and
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FIG. 5. The outcrop lines calculated from (4.13). Line (a)

corresponds to a relaxation time x~' of 250 days while line (b) has

= 125 days, y. = 0.75. Y(a) and Y(b) are the latitudes the
outcrops would achieve in a resting ocean, H; = 400 m.

these are labeled Y(a) and Y(b) in the figure. We
have also chosen a larger starting value for y(x) in
the case of the longer relaxation time. Our reason
was twofold. First, we wanted simply to separate the
lines initially, but, in addition more substantially, our
presumption was that, if the thermal relaxation time
was longer, the western-boundary current would tend
to carry the isopycnals farther northward.

The boundary layer behavior remarked upon earlier
is notable, especially for the larger-r case (b). In
addition, the case with larger r displays a smaller
southward departure from the equilibrium line. Gen-
erally, over the eastern portion of the gyre the north-
south slope of the surface isopycnals is less pronounced
than in the western half of the gyre.

In Fig. 6 all parameters have been kept fixed except
for H, which has been doubled to 800 m. The same
trend with « is observed. However, the longitudinal
variation of the outcrop line is far less marked. This
is in accord with our earlier remarks, ie., as H;
increases, 4 decreases and the relative variation of h;
across the gyre is less and this, in turn, leads to a
weaker variation of the outcrop line with longitude.

Figure 7 shows the calculated outcrop line if y, lies
in the southern half of the subtropical gyre. In this
- case, (4.13) is integrated westward from x = b. This
is consistent with our physical intuition that now yy
is the western latitude of the isopycnal in the formation
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region of the western-boundary current. Therefore,
we expect that yu will be specified by the midocean
flow rather than the boundary-current flow. The
curve (a) in Fig. 7 corresponds to H; = 400 m and
= 500 days. The curve (b) corresponds to ™!
250 days but, more importantly, it shows what
happens if the outcrop line lies in the region where
the Ekman velocity is northward and where it domi-
nates the geostrophic meridional velocity which is
still southward. Note now that the outcrop line lies
northward of the equilibrium line (and more north-
ward to the west where the southward geostrophic
velocity is less). This implies a cooling of the ocean
by the atmosphere. These results are consistent with
the observational study of Behringer and Stommel
(1981) which also found evidence for cooling in the
tropical North Atlantic due to the northward advec-
tion of warm water by the Ekman wind drift.

5. The thermocline solution south of the outcrop line

Once the outcrop is determined, the circulation
south of the outcrop line can be found by the
combined use of potential vorticity conservation for
layer 3 and the Sverdrup transport relation. The basic
idea is described in detail in LPS and just a sketch
of the method is given here. The fact that the outcrop
line is no longer at constant y (or f ) is the only novel
feature of the analysis.

For the region. south of the outcrop line, potential
vorticity in layer 3 (f7h3) must be constant on geo-

1.0

.95 -+
90 4 Y(a)
85 4 \(a)

\ Y(b)

y .80-\\
75 4 (b)

70 4

65
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.55

50 L I I
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F1G. 6. As in Fig. 5 but for H; = 800 m.



JuLy 1984
.50
Y252 Y{a)
40 (a)
.35 -
y 301
25 4
20 _\(b)\
v ] Y(b)
10 4
.05
0.0 L . . : . :
1.8 1.5 1.2 0.9 0.6 0.3 [¢)
b-x

FIG. 7. The outcrop lines when (a) H; = 400 m, «~' = 500 days
and y, = 0.3, (b) H = 400 m, «~' = 250 days and y, = 0.15. Note
that (b) implies cooling of the ocean.

strophic streamlines which themselves coincide with
the isolines of total depth, 7 = h; + h;. Thus,

L

hs
But on the outcrop line, y, = y(x), h, vanishes so
that /5 and 4 are identical there. Also, on the outcrop
line fis a function of y = y,(x). However, since 4 is
a monotonically increasing function of distance from
the eastern boundary, f'may be considered a function

of h along the outcrop line. If we call that function
Jfa(h), then it follows that (5.1) implies

= G(h). (5.1

L _ Lk
A P (5.2)
or
L
h3 _ﬁ(h) h, (532)
hy = [1 ~ f1fx(M)A. (5.3b)

The Sverdrup transport condition may be written,
as in LPS,

"+ }Y’f hy? = D¥(x, y) + H, (5.4)

where Dy’ is given by (4.5) and v, = g(p3 — p2)/po.-
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The application of (5.3b) yields an equation for the
total thermocline depth A, viz.

hz[l + % (1 —f/fz(h)lz] = De(x, y) + Hy’. (5-V5)
3

If the outcrop line were a line of constant latitude,
JS2(h) would be a constant and (5.5) would be identical
to the expression given in LPS. In the present case
Jfo(h) is determined by the position of the outcrop line
which is determined numerically; hence, an analytic
expression for f5(h) is not available. However, the
desired information can be easily obtained as follows.
We know the variation of 4 along the outcrop line
from (4.15). That is, given a point (x, ) on the
outcrop line where 4 = h;, we can determine h. We
evaluate f; at this point by writing

4
= 2Q sin =,
f sin %

where R is the earth’s radius (scaled by yy). Then the
left-hand side of (5.5), which depends only on 4 and
fbecomes a function only of for y for the chosen A.
That A-contour may be then traced southward into
the subtropical gyre by the application of (5.5) which
yields the trajectory

x=x(f, h)

for each A.

Figure 8a shows the outcrop line and the contours
of constant 4 for the case x~' = 500 days, H; = 800
m, y. = 0.55, yw = 0.7 and v, = v3; = 0.5. All other
parameters are as given before. These correspond to
r=0.97, A = 3.75 and yield Y = 0.756. Contours of
selected values of /4 are shown in the first panel. The
contour corresponding to 4 = 2.03 is just tangent to
the outcrop line at » — x = 1.8. There are no
ventilated streamlines in layer 3 west of this critical
contour. This corresponds to the western-pool region
described in LPS. However, while the pool region in
LPS was completely girdled by an isoline of potential
vorticity, this is not the case here. Although the
trajectory emanating from the outcrop has a constant
value of f/h, the potential vorticity along the outcrop
west of the point of tangency is generally increasing
with distance along the outcrop. This is illustrated in
Fig. 8b which shows the variation of potential vorticity
along the outcrop. The point P is the tangent point,
west of which no streamlines enter to ventilate layer
3. It remains somewhat obscure to us how to fill in
this pool region. One possibility is to continue the
solution (5.5) into the region west of the outcrop
where fluid is flowing northeastward across the outcrop
(i.e., where layer 3 is exhausted rather than ventilated)
and reserve the zone within the westward extension
of the 4 = 2.03 contour for potential vorticity ho-
mogenization. We have not pursued such speculations
further in this paper.
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FIG. 8. (a) The outcrop line and streamline pattern (lines of constant /) in the ventilated layer for H; = 800 m,
«~' = 500 days; (b) the potential vorticity (a) along the outcrop line and (b) along the line y = Y; (c) as in (a) but
for a case where the outcrop line is at constant y; (d) the potential vorticity along the line y = 0.55.

Figure 8c shows the streamline pattern for the
ventilated layer for the case where the outcrop line
has been chosen to be a latitude circle at the median
between yy and y., in this case at y = 0.625. This is
similar to the method of latitude averaging used in
LPS, and it is of interest to compare the two calcu-

lations. It is evident that over much of the gyre the
patterns are very similar. There is simply not sufficient
distortion of the outcrop line from the median latitude
to affect significantly the ventilated flow. The eastern
shadow zone, i.e., the stagnant zone east of the A
= 1.0 contour is slightly reduced in the case of the
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variable outcrop line simply because the intersection
of the outcrop line is swept southward of the median
line. More significantly, it is clear that since the
outcrop line lies farther northward on the western
side of the gyre in the variable case, the unventilated
pool has become somewhat larger due to this shift.
Recall that the position of yy is arbitrary in this
model and simply reflects the unknown advective
effect of the western boundary current. It is immedi-
ately clear that one of the greatest influences the
western boundary current can have on the dynamics
of the ventilated thermocline is in setting the starting
position of the surface isopycnals on the western side
of the subtropical gyre. The more the boundary
current can sweep the isopycnal northward above the
median latitude (or the equilibrium latitude) the
larger will be the western pool of unventilated water
in the western part of the gyre.

It is of interest to return to the question of the
potential vorticity variation along the outcrop line.
The line (a) in Fig. 8b is the potential vorticity along
the calculated outcrop line. As noted above, it has a
minimum at about (b — x) = 1.7. The increase west
of the minimum is due to two factors. As the outcrop
line trends northwestward, fincreases and the increase
in Ay due to westward displacements (4.15) begins to
be offset by the tendency of 43 to decrease as y moves
toward the northern boundary of the gyre. These two
factors offset the tendency for the potential vorticity
simply to decrease along the outcrop line from east
to west, which is what would occur if the outcrop
line were a line of constant y. Line (b) in Fig. 8b
shows the potential vorticity variation along the line
y = Y, which, were it an outcrop line, would show a
monotonic decrease to the west. Since the potential
vorticity is conserved along streamlines, the minimum
observed in f/h; along the outcrop will be advected
into the ventilated region and will show up as a
minimum of f/A; in longitude along those latitude
circles that are crossed by streamlines emanating
from both sides of the point of minimum f/h; on the
outcrop line. This will not be true of all latitudes
south of the outcrop. A glance at Fig. 8a shows that
lines of constant y in the southern portion of the gyre
are ventilated entirely by streamlines emanating from
the eastern fraction of the outcrop line, along which
the potential vorticity is monotonically decreasing
westward. Fig. 8d shows the potential vorticity along
the line y = 0.55 which is far enough north to contain
streamlines from the full span of the outcrop line.
Note the minimum of potential vorticity at (b — x)
~ 1.6, i.e., displaced eastward of the position of the
minimum on the outcrop line. Note that the graph
terminates west of the bounding streamline of the
unventilated zone beyond which the potential vorticity
is undetermined in our solution.

Figure 9 shows another example in which «™!
= 250 days, H; = 400 m, y, = 0.55 while y, = 0.75.
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In Fig. 9a we have shown the outcrop line and the
ventilated streamlines. Fig. 9b shows the ventilated
streamlines if the outcrop latitude is chosen to be the
atmospheric equilibrium line Y = 0.738. Again, over
most of the gyre the streamline pattern is very similar.
There is, again, a slight reduction in the size of the
eastern shadow zone in the variable outcrop case.
Note, however, that the western unventilated pool is
slightly decreased in size in the case of the variable
outcrop even though its latitude at the western
boundary, yy, is greater than Y. This is simply due
to the tangent A contour, i.e., 3.57, emanating from
a more southerly point than the A contour that
emanates from the intersection of Y with the western
boundary in Fig. 9b. Generally, however, the larger
yw is, the larger the unventilated western pool. Figure
9c shows perhaps an extreme example where yy is
0.95, H; = 400 m and «~! = 500 days. A large part
of the gyre now cannot be ventilated from the outcrop
line.

Figure 9d shows the calculated potential vorticity
for the circulation shown in Fig. 9b. The (a) line is
the potential vorticity along the outcrop line. Again,
a minimum is observed towards the west. The (b)
line shows the potential vorticity along the line y
= (0.55. The minimum (which again lies eastward of
its image on the outcrop line) is barely achieved
before the unventilated zone is crossed. Line (c) is
the potential vorticity along a more southern latitude
line, y = 0.30, and no minimum is seen since all
streamlines crossing this line emanate east of the
potential vorticity minimum on the outcrop line.

6. Discussion

We have described a simple mixed layer model
coupled to a ventilated thermocline. We are well
aware of the inadequacies of our mixed layer model,
chief among them being our use of a spatially constant
mixed layer depth and our presumption that the
long-term averaged effect of the mixed layer can be
modeled by a steady state description of the mixed
layer. The removal of these inadequacies is clearly a
goal for future work, and it would not be helpful for
us to attempt to speculate what effects this would
have on the results of the present study.

The results we have found are rather striking and,
in retrospect, easily understood. The surface density
field is generally strongly affected by advection. This
effect is greater in the northern portion of the sub-
tropical gyre than in the southern part since in the
north, meridional geostrophic advection reinforces
the southward wind drift, while in the southern part,
they are in opposition.

The implicit role of the western-boundary current
is seen to be important in setting the entry conditions
for the surface isopycnals in the northwest part of the
gyre. Within a scale r'y,, the outcrop line tends
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FIG. 9. (a) The outcrop line and streamline pattern for H; = 400 m, ' = 250 days, y. = 0.55 and yp = 0.75; (b) as in (a)
but for the outcrop line at y = Y; (c) the outcrop line and streamline pattern for H; = 400 m, x~' = 500 days, y, = 0.55 and
yw = 0.95; (d) the potential vorticity for the flow in (a): (a) along the outcrop line, (b) along y = 0.55 and (c) along y = 0.3.

more or less to a constant latitude line. This line is
shifted south of the zero-heating line in the northern
part of the gyre. The reverse holds true in the
southern portion. Hence, in our model the northern
part tends to be heated by the atmosphere, while the
southern part is cooled.

The circulation patterns we have calculated in the
ventilated layer south of the outcrop line are quali-
tatively similar to the pattern in LPS which used
outcrop lines at constant latitudes. The major quali-
tative change is the role of the latitude of the outcrop
on the western boundary. We believe this parameter
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‘is set by the northward advection by the western-
boundary current beyond the latitude which would
be fixed by the atmospheric temperature. Roughly
speaking, the farther north the outcrop line is dragged
by the boundary current, the larger the unventilated
western pool will be.

Since the outcrop lines are no longer latitude
circles, the possibility now arises that the potential
vorticity need not monotonically decrease to the west
along outcrop lines. Instead, a minimum appears at
some longitude and this is swept into the ventilated
zone. Thus, at some latitudes south of the outcrop,
the potential vorticity will show a minimum as a
function of longitude. However, at great distances
from the outcrop in the southern portion of the gyre,
the fluid is ventilated primarily from the eastern end
of the outcrop and the potential vorticity again dis-
plays a monotone character as in LPS. This raises
the possibility that the nature of the potential vorticity
variation, as opposed to its magnitude, might provide
a useful diagnostic for the determination of the
sources of the ventilated layers.

We also believe it would be of interest to consider
models with more than one outcrop line in order to
determine the cumulative effect of advection on the
surface density field and the thermocline structure.
This problem is considerably more complicated tech-
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nically (although identical in principle) than the
problem we have described here. The primary diffi-
culty is that now, south of the first outcrop line, we
no longer have analytic representations for the geo-
strophic velocity, which renders the solution of (2.14)
more intricate. This problem is being considered.
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