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ABSTRACT

The effect of bottom friction on the subinertial frequency motion of stratified shelf flow fields is studied in
a two-layer fplane model with idealized shelf and slope bottom topography. Coastal-trapped free waves and
motion forced by the alongshore component of the wind stress at the coast are considered. Vertical turbulent-
diffusion effects are assumed to be present in thin surface and bottom-boundary layers, but not at the density
interface. Simplifications are achieved by assuming that typical alongshore scales are larger than the offshore
scales given by the internal Rossby radius of deformation 5, and the shelf-slope width, that the upper-layer
depth is small compared with the lower-layer depth, and that the topography of the continental margin may
be represented by a linear bottom slope of small magnitude. Some results are not dependent on the presence
of variable bottom topography; these are obtained first with a flat-bottom ocean adjacent to a vertical coast.
A characteristic feature of free and forced motion with alongshore gradients is a decrease of lower-layer
velocity and a resultant concentration of flow in the upper layer as the frequency approaches zero. For
internal Kelvin waves of frequency «, this change in velocity structure occurs for w/a <€ 1, where a™* is
barotropic spin-down time, and is accompanied by a decrease in frictional decay as w/ — 0. As a result,
coastal internal Kelvin waves may be able to participate with relatively small damping by bottom friction in
low-frequency phenomena such as El Nifio. For motion forced at frequency: o and alongshore wavenumber
], this change in structure occurs for o/a < 1 and o(/5z)™" < 1. Concurrently, the magnitude of the barotropic,
forced-shelf-wave component of the flow goes to zero as ¢ — 0. Thus, the “arrested topographic wave” is
absent and plays no role in the steady solutions. Qualitatively similar behavior is found on the Oregon shelf
in the summer where monthly mean alongshore currents at midshelf have substantial vertical shear, but
corresponding fluctuations on the several-day time scale are nearly depth-independent. Generalized first-order
wave equations are derived to describe the alongshore (y) and time (7) dependence of the lowest-order
baroclinic and barotropic components. The response to a wind stress with Heaviside-unit-function behavior
in both y and ¢ clearly illustrates how the effects of stratification liberate the “arrested topographic wave”
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and how a steady state is achieved where the currents are confined to the upper layer and to a region near

the coast with offshore scale of O(dz).

1. Introduction

A fairly complete set of models and illustrative
solutions exists for linear, barotropic shelf flow fields
under a variety of different conditions. These include
the effects of realistic cross-shelf topography, along-
shore variations in wind stress, alongshore variations
in bottom topography, and bottom friction (see, e.g.,
Allen, 1980). The set of existing models of stratified
shelf flow fields, however, is far less complete. For
example, the effect of bottom friction on stratified
shelf flow is not well understood. Because both strat-
ification and bottom friction undoubtedly play im-
portant roles on many shelves, it is desirable to
expand the set of simple models to include the
combined action of these two processes. This is
especially so because the fundamental characteristics
of the flow in that case are likely to differ considerably
from those of barotropic models.

In this paper, we formulate a simple two-layer
model for the effect of bottom friction on stratified
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shelf flow fields. The geometry is highly idealized; a
vertical coast is utilized and the continental margin
is represented by a linear bottom slope of small
amplitude. Free and wind-stress-forced coastal-trapped
motions are investigated. Several features of interest
are not dependent on bottom slope; these are inves-
tigated first with a flat-bottom ocean, adjacent to a
vertical coast. Further simplifications in the analysis
are achieved by the assumptions that the upper-layer
depth is small compared with the lower-layer depth
and that alongshore spatial scales are larger than
onshore-offshore scales. : .
Although the model is highly idealized, it retains
the basic effects of stratification, a coastal boundary
and sloping shelf topography, and it allows one to
obtain simple analytical solutions that are substantially
different from those found without friction and those
in the purely barotropic case. The results obtained,
in fact, provide explanations for the basic qualitative
behavior of currents on the Oregon shelf for which
previous dynamical rationalizations have been lacking.
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Those observations are discussed in Section 5, along
with the limitations of the model and the relationship
of this study to previous work.

2. Formulation

We consider a two-layer model on an f-plane.
Cartesian coordinates (x’, y/, z) are utilized with z’
positive vertically upward. Stratification is modeled
by two layers of homogencous fluids of different
density, with the heavier fluid on the bottom. The
top surface is bounded by a horizontal rigid lid. The
upper-layer fluid has density p; and a constant un-
disturbed depth H'|. The lower layer has density p,
and a variable undisturbed depth H%(x’). The total
depth is H' = H| + H. The difference in density Ap
= p, — p, is assumed to be small: Ap <€ p,.

The fluid is bounded by a straight coastline at x’
= 0. In the initial examples in Section 3, the coastal
boundary is a vertical wall and the interior is of
constant depth H' = Hy = H} + H. In later cases
in Section 4, idealized, y-independent continental
shelf and slope topography of width L lies along the
coast at x' = 0,so that H' = H(x)for0 < x' < L
and H' = Hj for x' = L. We concentrate on examining
the free and wind-stress-forced coastal-trapped mo-
tions.

The flow is assumed to be linear and hydrostatic.
Vertical turbulent diffusion is assumed to be active
in surface and bottom boundary layers, but not at
the density interface. The latter assumption is made
in order to model the frictional effects that are most
likely to be dominant.

Dimensionless variables are formed in the following

manner:
) =YL, L=t
(i, ;) = (ui, )/,
p = [p1 + p1g(z' — Ho)Y/(01 USL),
D2 = [p> + p28(z' — H%) — p18H1}/(p2UfL),
h = h'gAp/(p2USL),
(H\, Hz, H) = (H}, H3, H')/H,
™ = 1%/,
75" = 15"/(p2UfHY),

where subscripts i = 1, 2, denote variables in the
upper and lower layers, respectively. The variables
(u', V') are the depth-averaged velocity components
in the (x’, y') directions, p’ is the pressure, A’ the
height of the density interface above H%,, 7™ and
7% the surface wind-stress and bottom-stress com-
ponents, respectively, in the (x’, ) directions, ¢’ is
time, f the Coriolis parameter, g the gravitational
acceleration, L is a characteristic offshore scale, U a
characteristic velocity, and 7¢c = p,UfH', a charac-
teristic wind stress.
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The linear depth-averaged continuity and momen-
tum equations in dimensionless variables (e.g., Allen,
1975) are

(Hyuy)x + (Hy), = S7'h,, (2.1a)

Uy — V) = —Dix + 75, (2.1b)
Vy+uy=-py,t+7, (2.1¢)

(Hat)x + (H02)y = =S 'hy, (2.1d)

Uy — V3 = —pox — T5H3', 2.1e)

Uy + Uy = —poy — THH3', 2.1f)

where subscripts (x, y, f) denote partial differentiation,
h=p:—pi, (2.1g)

S = (NHo/fLY’, N*=gbp/(p2Hp). (2.2a,b)

We consider motions on a time scale §, which is
large compared with an inertial period, i.e., where

o> L (2.3)

The sum of (2.1a) and (2.1d) allows a streamfunc-
tion y to be defined such that

Yy=uw +al'uy, —Yy=v,+a'v,, (24ab)

where
a= H,/H,. 2.5)

In terms of ¥ and A, the velocity components are
[with assumption (2.3)]

u, = (H\/H)Yy + a”'F), (2.6a)
v, = (H\/H)(—¥x — a'G), (2.6b)
u, = (H/H)yy — F), (2.6¢)
vy = (H,/HX—yx + G), (2.6d)
where
F=h+hy+ H 'rg+7,. (2.6¢€)
G=he+ [~hy+ Hy 'rg" + 7] (2.6f)

The brackets in (2.6f) enclose terms that in Section
4 are small on the continental shelf and slope under
assumptions (2.3) and (2.11) (see Appendix A).

Equations (2.1) may be combined into two equa-
tions for the variables ¢ and A. With H = H(x) and
(2.3), these are

Wox + ¥y — 8570 + 857" Wy — By — 1)
— (H/H\)rg/H)x + H'Thy = 7,5 — 12, (2.7a)
(hex + hyy + adp~"hy — 8572h), — aby™' (Y, — by — )
+ a(H/H, Yrg|H)x — aH,™'t§, = 1,5 — 1.2, (2.Tb)

where 65~ = H,/H, 8g* = SH, H = H,H,/H and &z
is the internal Rossby radius of deformation.

The bottom-stress components 75 are assumed
to be linearly related to the inviscid horizontal velocity
components above the bottom boundary layer (a4,
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v,4) in a manner consistent with a linear, constant-
eddy-coefficient Ekman layer with thickness 6z small
compared to the lower-layer depth H:

75 = aUgq — V24), TH = altgq + v24), (2.8a,b)
Uy =y + (15°/H3), v = vy — (15/H>), (2.8¢,d)

where a = 1z/HY}, 8 = (24,/f)'?, A, is the vertical
eddy viscosity, and
a<kl. 2.9)

Utilizing (2.9) together with (2.8) and (2.6), we find
5% = O(a)(u2, v;). Thus, for use in (2.8a, b) we
obtain the approximations

-t = (H/H)y— by — by — ), (2.100)
Vo = (H\/HX—¥x + hx = [hy — 77]),  (2.10b)

with error O(a).

We will assume that a typical alongshore scale §,
is large compared with the O(1) offshore scales given
by the internal Rossby radius of deformation z and
the shelf-slope width, i.e., that

b<l, (2.11)

where /) = 2x/d, is a typical alongshore wavenumber.

We will also assume that the upper-layer depth H,

is small compared to the lower-layer depth H., i.e.,
that

a=H,/H,< 1. (2.12)

In addition, the continental shelf and slope topography
will be represented by a “weak slope” model with a
linear bottom slope of small magnitude (see Fig. 1).
In this case :

H=1+065'(x—1), He=68z"<1, (2.13a,b)

dp is a constant, and in (2.7) H, and H are regarded
as constants (where not differentiated). The assump-
tions (2.12) and (2.13) are made because they appear
to retain, respectively, the most essential features of
stratification and sloping bottom topography while at
the same time they allow very simple analytical
solutions to be obtained. In particular, assumption
(2.12) permits the effects in a two-layer model of

k- 1_ 3

HZ(X) ‘Pa
é&@
X x=1

FG. 1. Geometry of the “weak slope” model.
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variable bottom topography to be readily taken into
account by a perturbation procedure (Allen and
Romea, 1980). With (2.12), the baroclinic component
of the flow does not feel the effect of the bottom
topography at lowest order in a. The weak-slope
approximation (2.13) is made here primarily to allow
the barotropic component of the solution to be ob-
tained analytically for all ranges of the ratio of
frequency to bottom-friction coefficient w/a. In ad-
dition, it has the advantage of approximating all
otherwise x-dependent coefficients as constants, which
permits exact analytical solutions to be obtained.
Since the basic effects of stratification and bottom
slope are retained, it is hoped that qualitative results
from the model will apply even when the assumptions
are not strictly satisfied.

When the weak-slope model is utilized, we will
restrict our analysis to the midlatitude case where 6z
is smaller than the width of the shelf and slope, i.e.,
where

or < 1. (2.14)

In addition, for simplicity in the forced problems
and to focus on the motion forced by the Ekman
divergence at the coast, we will assume

7#0, =0, (2.15a,b)

and in most cases
(2.15¢)

3. Flat bottom

Some of the basic effects of bottom friction in a
stratified coastal region are illustrated in the case of
a flat-bottom ocean bounded by a vertical coast at x
= 0. With H = 1, assumptions (2.3), (2.9), (2.11), 7*
= 0 and 7¥ = 7, Egs. (2.7) become

Vi, +aV(y — h) = AT, — Ty, (3.1a)
(V*h — 8g7%h), — aaV¥(y — h) = —aar, — 7, (3.1b)

where V% = ¢, + ¢,,. Note that bottom friction
acts on both the barotropic Y- and baroclinic A-
components of the flow through the term V(Y — h)
representing lower-layer vorticity. At the coast, the
boundary conditions on y and 4 follow from the
requirement that ¥, = u; = 0 and are

¥, =0, (3.2a)

hy+ hy—aalyx— h)=—7 at x= 0 (3.2b)
In addition, we require

Vx> ¥ys Bx, b, boundedas x — oco. (3.3)

a. Free waves

We first consider 7 = 0 and look for free coastal-
trapped wave solutions of (3.1), (3.2) and (3.3) in the
form
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W, h) = [¢(x), g(x)] expliwt + ily),
with / ='0. We obtain

(34)

¢ = Cia(e™ — &™), (3.5a)

g=Ce", (3.5b)

w=r'l1 + iaaa)1 + ad)™", (3.6a)

=0 '(1 +ad)™"?, &=a(iw+a)!, (3.6b,c)

where small terms O(/235?) have been neglected.

For a < 1, i.e., with assumption (2.12), the expres-
sions in (3.6) simplify and may be readily solved for
a frictionally modified internal Kelvin wave. Neglect-
ing terms O(a?), we obtain

w = Wg + iw,, (3.78.)
‘wg = wo(l - % aazd) s (3.7b)
wy = woaad(-;- wo + az) , (3.7¢)

where .

wo=0rl <1, d=(w+a®)7,
and

r=rg+in, (3.83)
rR = 8{’(1 - % aazd) s (3.8b)
ri =3 b5 aewod. (3.8¢)

Note that an attractive feature of the a < 1 approxi-
mation is that the expansions (3.7) and (3.8) remain
uniformly valid for all values of wop/a.

For (wo/a)? » 1, (3.7b, c) give

WR ~ wo[l - -;- a(a/wo)z] , (3.9a)

w ~ ; ao. (3.9b)

The O(a) modification to wg corresponds to a decrease

in wave speed, whereas w; results in a constant

exponential decay in time with timescale Tr = w;™!

= 2(aa)™. For comparison, the barotropic spin-down

time is Tpr = o' so that with g € 1, Tr > T
For (wp/a)? < 1, (3.7, ¢) imply

).

wp ~ woa[% (wo/c) + a] .

(3.10a)

=

Wp ™~ wo(l -

(3.10b)

The wave speed is again reduced and the reduction
is greater than in the high-frequency limit (3.9a).
Also, in contrast to (3.9b), w; varies with wg such that
as wp — O frictional effects vanish, i.e., w; — 0. In
particular, for waves of period T = 27/wo, the decay
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timescale Tr ~ T(2waa)™! as wy — 0. Moreover, for
dwy > o2, w; decreases as the friction coefficient a
increases. The reason for this behavior may be seen
by examining the velocity components. Using the
notation

(uh U,‘) = (ai, 5i) exp(iwt + dy)s

we obtain for (wo/a)* < 1,

it ~ CiHila(e™ — ™), (3.11a)
by ~ C H\[(—iaa™ + wo)e™ — ae™™], (3.11b)
by ~ CiHyg 'e™[1 + O(@)].  (3.11¢)

Thus, as wg = 6zl — 0, the velocity components in
the lower layer #,, ¥, — 0, concentrating the velocity
fluctuations in the upper layer and reducing the effect
of bottom friction. This is caused by the requirement
from (3.1) that as w — 0 the lower-layer vorticity
must vanish.
" Examination of (3.8) shows that relative to the
case of no bottom friction the offshore decay scale
rg”! is increased. Also, since r;/wp > O an offshore
phase propagation is induced with nearshore fluctu-
ations leading those offshore. Results similar to these
have been found for the effect of bottom friction on
barotropic Kelvin waves (Mofjeld, 1980).

Vertical phase relations dependent on wp/a are
also generated. Looking at those parts ¥; of v; that
vary as ¢~ we obtain

Da/ad, = wod'? exp{ilr + tan~'(a/wp)]}.
For (wo/a)* » 1,

vy/av, ~ exp(in).

(3.12a)

(3.12b)
In this limit, v, and ¥, are 7 out of phase, as with
zero friction. For (wo/a)® < 1, ‘

Dy /av; ~ (wo/a) exp(—i% 1r) s (3.12¢)
and 9, lags 9, by i.

b. Forced response
Assuming a wind stress
7’ =1 =roexpliot + ily + ixx), (3.13)

(! = 0), and looking for solutions of (3.1) and (3.2)
of the form

W, h) = (¢, g) expliot + ily), (3.14a)
we obtain
¢ = Cia(e™ — ™) + Ky(e™ — ™), (3.14b)
g=Cie™ + Kie™*, (3.14¢c)
where
a = afic + a)™, (3.14d)
K, = 100g[ke™'(1 — a&) + iala], (3.14¢)
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K, = K; + aKj, (3.14f)
Ks = irga” ‘ol — al)(® + 137,  (3.14g)

irCy(—e + w) = =19 + (ox — 1)K,
+ aa(ix + DK; — ikK,]; (3.14h)

r and « remain defined by (3.6a, b), but (3.14d)
replaces (3.6¢).

The nature of the forced response may be seen
most easily by examining different limiting cases. For
simplicity, we are primarily interested in the -case
x = 0 so that 7% = 0. It is useful, however, to keep
k ¥ 0 in the initial formulation to allow the easy
derivation ‘of proper limiting solutions. Thus, the
correct two-dimensional (/ = 0) solution with x = 0
may be obtained by taking the limits / — 0, x — 0,
in that order. For convenience in the following dis-
cussion, we define

(i, v;) = (&;, ;) exp(ist + ily).

1) TWO-DIMENSIONAL FLOW, [/ = 0

Taking the limits / — 0, x — 0 in order, we find

& =~ —(ro/ic)ae ™1 + O(a)] — roa/a, (3.15a)
& =~ —(ro/ic)e™™[1 + O(a)], (3.15b)
and to O(1),
il ~ Hyro(l — &™), (3.162)
U, = Hy(1o/io)e™™, (3.16b)
il ~ —ail, (3.16¢)
U, ~ Hj[ro/(ic + a)J(1 — e™™). (3.16d)

As o/a — 0, u,, u; and v, reach a steady state, but
v, is unbounded. This reflects the fact that in two-
dimensional flow with bottom friction a steady forced
solution for A and v, does not exist within a frictionally
modified Rossby radius of the coast. A similar result
is obtained in continuously stratified two-dimensional
models when bottom friction is the only dissipative
mechanism (e.g., Allen, 1973).

Far from the coast (x > r') we find, without
approximation in g, that ¢, ~ —1o@/a, g, ~ 0. Thus,
#,, #, may be readily evaluated there to O(a) by
including the bottom-stress terms. We obtain 75”
~ H,rea and

az ~ "'Hﬂ’o(l + a&), ﬁ; ~ —aﬁz.
In the limit o/ — O, this gives
th ~ —ary = —18/H,;, U ~ 7,

which corresponds to offshore (onshore) transport in
the surface Ekman layer balanced by an onshore
(offshore) transport in a bottom Ekman layer. Within
r! of the coast, upwelling (downwelling) occurs,

involving a necessarily time-dependent motion of the
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density interface and of the upper-layer alongshore
velocity. )

Note that for fixed ¢, an increase in the friction
coefficient decreases |D,|, but does not affect 194 to
O(1) so that the vertical shear is increased.

In the purely two-dimensional case with 7¥ = 74
X exp(iat), as above, an approximate solution for
a < 1 may be readily obtained for fairly general shelf
and slope topography H(x). That solution is given in
Appendix B.

In the following examples, we consider the limit
x — 0 with / # 0, in which case

K| = a6R212K3,
Kz = K3 + &K:, K3 = "'iTo&/l.

(3.17a)
(3.17b,¢)

2) FRICTIONLESS, « = 0,/ # 0

For a = 0, [ # 0, we obtain
K=K, =K;=0, C=(iro/l)1— o/wo),

so that '
i = Horoll = (1 — o/wo)™'e™™],

¥y = Hy(iro/IX1 — o/wo)'re™™,

ﬁg = "aﬁh

(3.18a)
(3.18b)
(3.18c,d)

52 = '-af)l .
Far from the coast,

1

x>r', @ ~ Harg, us~ —H7o,

so that the y-dependent offshore (onshore) surface
Ekman-layer transport is balanced locally by an on-
shore (offshore) barotropic flow. The circulation is
completed by baroclinic motion within a Rossby
radius of the coast. Note that for the forcing frequency
g—0,

ﬁ[ = HzTo[l - e""], ) (3.193)
f)] = Hz(i-ro/I)re"’x, (3.19b)
i, = —at,, v, = —ab,, (3.19¢,d)

so that for / # 0 a steady, frictionless solution exists.
In this case, a barotropic onshore (offshore) flow still
balances the Ekman transport far from the coast, but
because alongshore pressure gradients are set up in
response to alongshore variations in 7 the circulation
in each layer may be closed independently by a steady
geostrophic flow, with no time-dependent motion of
the density interface required.

3) FRICTIONAL STEADY STATE a # 0, [ # 0,
=0 .

For ¢ = 0,/ # 0, x = 0 we obtain to O(a), but
with terms O(adz%/?) neglected,

6 = —i(ro/IX1 ~ &™),
g = i(ro/De™,

(3.20a)
(3.20b)
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and it follows that
i =71l —e™),

ﬁ2=f)2=0.

(3.21a,b)
(3.21¢)

Consequently, for a # 0, [ # 0, a steady state exists
that differs considerably from the frictionless steady
solution (3.19). Here, to O(a) the lower-layer velocities
Uy, v = 0. All of the motion outside of the surface
Ekman layer is confined to the upper layer within a
frictionally modified Rossby radius r~! of the coast.

Dy = i(ro/l)re™",

4) RESONANCE, ¢ = wg a # 0.
For ¢ = wg, a # 0, we obtain

To (0)02 + a2

C = 5 [1 + O(a)].

= 3.22

laa § wo + (3-22)
Bottom friction thus limits the magnitude of the
response of A for [ # 0. For (o/a)* < 1 and

o> o? {o = wll + Oa)}},

|Cy| actually increases in magnitude as the friction
coefficient « increases, in a manner related to the
behavior of w; in (3.10b) and the accompanying
decrease in magnitude of lower-layer velocities.

The limiting solutions found here for ¢ — 0 would,
of course, be modified at low enough frequencies by
the S-effect (Anderson and Gill, 1975). At midlati-
tudes, however, these frequencies are relatively low.
For example, in this model on an eastern ocean
boundary, the baroclinic component remains trapped
on a scale O(6r) for dimensional periods

T < T'r = 2Q2w)(B'0k)™"

(Allen and Romea, 1980). With ' =2 X 1073 cm™!
s~! and 0k =~ 25 km, T% =~ 300 days.

4. Weak slope

Here we model the continental shelf and slope
topography with the weak-slope geometry (2.13) that
supports shelf-wave solutions. With the weak slope,
the frictional modifications to free and forced internal
Kelvin waves are essentially the same as in the flat-
bottom case discussed in Section 3. Therefore, we do
not pursue that aspect of the problem here, but rather
we concentrate on the modifications of the forced-
shelf-wave response at midlatitudes due to the com-
bined effects of stratification and bottom friction.

In addition to (2.13), we make assumptions (2.9),
(2.11), (2.12), (2.14) and (2.15), i.e., that a, ly, a, or
< 1, and that 7 = 0, 7 = 7(y, ?). The derivation of
approximate equations and boundary conditions for
shelf variables under these assumptions is discussed
in Appendix A; they are

\I/xxt + 6B—l(¢y - hy - T) + a(‘pxx - hxx) =0, (4.1a)
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(hex — 8r72h) — adp™ 'Yy — b, — 7)
—aa(Yxx — hx) =0, (4.1b)
¥,=0atx=0, (4.2a)
ha+ hy,+ aolh, —yY)=—7 at x=0, (4.2b)
V=0, hy=-0"'h at x=1. (4.2c,d)

For a < 1, we obtain solutions to (4.1) and (4.2) by
expanding in powers of g, i.e.,

h=ho+ah + -+, Y=Yo+tap+---. (43

As mentioned above, we concentrate on the results
for hy and . The resulting problem for these variables
is

(hoxx = 887 2ho); = 0, (4.42)
VYoxx + 05~ 'Woy + aoxx
| = 857\ + hoy) + athioye, (4.4D)
Yoy =0, hou+hoy=—-7 at x=0, (4.53Db)
Vox =0, hox=—8"hy at x=1. (4.5¢,d)
a. Sinusoidal forcing
With
T = 19 €xpliat + ily) (4.6)
(Yo, ho) = (¢, &) expliot + ily), 4.7)
we obtain
g=Ce", (4.8a)
= —(iro/1)(1 — coshpx + tanhp sinhpx)
+ CD(e™™ — coshpx + tanhp sinhpx), (4.8b)
where
C = (iro/D[1 — a(lér)™')", (4.8¢)
D= (—p* + &g )/(-p* + 6z,  (4.8d)
r=0g", p*=—illdg(ic +a)]”'. (4.8¢)

In particular, the contribution of ¢ to the alongshore
velocity is

¢, = Ep[—sinhpx + tanhp coshpx]

— CDég"'e™, (4.9a)

where
E = —(iro/l) + CD. (4.9b)

For the case of a barotropic fluid with no stratifi-
cation (C = 0), the remaining nonzero parts of ¢ and
¢, represent the forced-shelf-wave response. In that
case, with no friction (a = 0)

p = pi = [-1/(350)]'?, (4.10)

and resonance with long barotropic-shelf-wave modes
exists for values of / and ¢ such that //¢ > 0 and
cosp, = 0. Fora # 0 and ¢ = 0,
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p=p= exp(i% 1r)5p", o = (@bs/D)',  (4.11)

and the resultant barotropic steady state solution for
¢ and ¢, corresponds to the “arrested topographic
wave” (Csanady, 1978) for this geometry (see Appen-
dix C).

In the stratified case (C # 0) the behavior of ¢, in
the steady state limit ¢ — 0 will be of interest. We
will refer to that part of ¢, multiplied by E on the
right-hand side of (4.9a) as the forced-shelf-wave
response. For x » r!, the velocity field below the
surface Ekman layer is due solely to this component
and is barotropic.

First, with no friction (a = 0) we find

C ~ (iro/D[1 + o(log)™ + -+ -], (4.12a)

CD ~ (iro/D[1 — o(log) ™' (0s0r™ — D) + - - -],
, (4.12b)
E ~ —(ito/Do(log) (50" — 1). (4.12¢)

As ¢ — 0, (4.4b) requires that Yo, — Aoy — 7 ~ O,
i.e., that the lower-layer cross-shelf velocity vanish,
and (4.12) shows that the magnitude of the forced-
shelf-wave solution £ ~ 0 and that CD ~ C ~iry/
l. As a consequence, both lower-layer velocities u,,
v, ~ 0 and the motion is confined to the upper layer
within §; of the coast in agreement with the results
of Romea and Allen (1982).

With friction (¢ # 0) in the limit ¢ — 0, C is
again given by (4.12a), while

CD ~ (ito/D[1 + o(l5g)™!

— i(o/a)l — ig%F 2 + + -], (4.13a)
E ~ (iro/Do(lor)'[1 — idpdpdr >
X (1 —ig%)™" + -] (4.13b)

Thus, as ¢ — 0, again E ~ 0, CD ~ C ~ (ito/l),
and u,, v ~ 0. If 6/a < 1, the approach as ¢ — 0
of the lower-layer velocities to zero is faster with
friction, however. This comes about because, with
the assumptions that 6z65 = O(1) and ér = O(1),
CD and E approach their asymptotic values as
o(l6g)"! — 0 (and o/a — 0), whereas without friction
the asymptotic values are approached as the larger
quantity (8z/8r)[0(/6r)™'] — 0. It is worthy of note
here that since E, the coefficient of the forced-shelf-
wave response, goes to zero as ¢ — 0, the “arrested
topographic wave” which forms the steady solution
in the barotropic case has zero magnitude and plays
no role in the steady stratified solution.

b. First-order wave equations

The way.in which the qualitative features of the
forced response, found with sinusoidal forcing in
Section 4a, develop in more general problems can be

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 14

shown most easily by deriving and solving equations
for the alongshore and time-dependent behavior of
cross-shelf modes.

We again consider equations (4.4), with boundary
conditions (4.5), and write A and vy, as

hO = YO(y’ t)’ e—rx’ (4-14)
Yo =Vo(x, », ) + Y (3, e™ — 1), (4.15)

where r = 8z~ and

_ =0~ Yo + You = —7(3, 1), (4.16)
Y=oa(Yy— Y,), 4.17)
Yoxx + 85 Vo, + GIPOxx
' =81+ Y,) + 85 '(Yo, — Ypy)e™, (4.18)
and where A
voy=0 at x=0, (4.192)
Yox=0 at x=1. (4.19b)

The variable Y, may be found from (4.16) and then
Y, may be obtained from (4.17). These terms then
act, along with 7, as forcing functions in (4.18), which
has the same form as a forced-shelf-wave problem.
Accordingly, it is convenient to expand ¥, in terms
of inviscid cross-shelf modes, as done by Gill and
Schumann (1974): ~

Vo= 2 Yu(y, pn(x),

(4.20)
n=1
which gives
= Yo+ Yoy — ac,”'Y,
= (1 + Y, )by + (Yo, — Y, )d,,  (4.21)
where
Onxx + Kn2¢n =0, ¢n(0) = ¢nx(l) =0, (4.22a,b)
&, = V2 sink,x, (4.22¢)
Ky = (21 — l)%w, n=1,23,..., (422d)
1= 2 bnd’na e = E dn¢m (423a’b)
n=| n=1
b= V2/Kn, dn=2a/(r* + k7, (4.23c,d)
cn = (8px,2)"". (4.24)

To illustrate the nature of the response, we choose
a simple three-dimensional, initial-value problem with

7 = o H(-p)H), (4.25)

where H is the Heaviside unit function and where
h =y = 0 for t < 0. We therefore seek the solutions
10 (4.16), (4.17) and (4.21) with 7 given by (4.25) and .
with

t<0.

Yo=Y,=Y,=0, (4.26)
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Before proceeding with the stratified problem, it is
useful to consider the response to (4.25) in the purely
barotropic case governed by (4.21) with Y, = ¥,
= (. We obtain:

In region A, t < —y/c,:

Y, = —Ciburoa” (1 — ). (4.27a)
In region B, t = —y/c,:
Y, = —Ciburoa”'[1 — explay/c,)]. (4.27b)

For at » 1, Y, ~ —cub,moa”! in A, so that Y, is
steady for all y. It has the y-structure plotted in Fig.
2 and it forms the contribution of the nth mode to
the “arrested topographic wave” steady solution (Ap-
pendix C).

For the stratified problem, we find:

In region 1, t < —y/éx:

Yo = 700zt, (4.28a)
Y,=1o0r[t —a7'(1 —€e™)].  (4.28b)
BAROTROPIC
]
: 'Yn
A : B
l .
-y y=-Cpt 0
STRATIFIED
I
| | cp >3y
: : '%1
1A : 1B \ 2
1 1
-y y=-cCpt y=-8pt o)
I
cn<8g
| |
§
1 i -Yn
! ! 2A ! 2B
- 13 1
-y y=-3gt y=-Cpt 0
1
\ Yo-Yp
1 I 2
!
1
-y y=-3gt 0

FIG. 2. Schematic of Y, for at » 1 for (from the top) the
barotropic case (4.27), stratified Case I (¢, > 8z) Case II (¢, < dg)
(4.29) and a schematic of Yy, — Y, for af > 1 (4.28).
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8R ="y 1
2
Cal =7y 1B
1A
-y 0
I Cn<:8R
Spt=-y Cnt=-y .
2A 28
1
-y 0

F1G. 3. Diagrams of y~ for the solutions (4.28) and (4.29) in
stratified Case I (¢, > 6z) and Case II (¢, < 8g).

In region 2, t = —y/éx:
YO = =70}, (4.280)
Yo = —ro[y + o 'dp(e ) — )] (4.28d)

The resulting solution for Y, differs depending on
whether (Case I) ¢, > 6z or (Case II) ¢, < g (see
Figs. 2 and 3):

CaSEL ¢, > 6z
In 1A, =y/c, =zt = 0:

w = —Toa 'c b (1 — 7).
In 1B, —y/ér =t = —y/cy:
Y, = —7oa”'(cabn{1 — expla(y + drt)cs — 8)7'1}

+ 0r(bn — dy){expla(y + drl)

X (cp — 6r)7']1 — exp(—at)}). (4.29b)
In 2, t = —y/br:
Y, = =700 0r(bn — dy)

X {exp[—a(t + yor~")] — exp(—ar)}. (4.29¢)

(4.29a)
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CASE 11, ¢, < 6z

In 1, —y/or = t = 0: (4.29a).

In 2A, —y/c, > t = —y/br:

Y, = —1oa” ' {8r(bn — d,) exp[—a(t + yir™"))]
+ [bnCn — Or(bn — dn)] expla(y + Ort)

X (€n = 06r)™'1 — bucq exp(—at)}. (4.29d)
In 2B, = —y/c,: (4.29¢).
In the limit of no friction, « = 0, ¥, = 0 and
(4.29) gives
Casgel, ¢, > 0z
In 1A: Y, = —1obucat. (4.30a)
In 1B: Y, = 7oby — Todrdn(y + Cal¥dr — €n) ™.
(4.30b)
m2 Y, = 1o(by — dn)y. (4.30c)
Case1l, ¢, < 6z
In 1: (4.30a). _
In 2A:° Y, = —7obuCat + TodnCaly + Srt)(0r — Ca) .
(4.30d)
In 2B: (4.30c).

For fixed negative y and large time, i.e., in region 2
(Case 1, ¢, > 8z) and region 2B (Case II, ¢, < dg), ¥,
is steady. When all the modes have achieved this
steady state,

\00 = \?/0 = To) Z (bn - dn)d’n = Toy(l - e~n\')

which together with 7 = —7oye™"™ implies
u; = 1o(l — &™), (4.31a)
vy = —(roy/0r)e™™, (4.31b)
U, =0,=0. (4.31¢)

The resulting currents outside the surface Ekman
layer are confined to the upper layer within ég of the
coast, similar to the results for «a = 0, ¢ — 0 in
Section 4a and as found by Romea and Allen (1982)
for the inviscid case. The steady currents in the upper
layer provide (receive) the offshore (onshore) Ekman
transport. Thus, for y < 0, u; is independent of y
while v, varies linearly with y. Since d, is a maximum
for k,2 = 6g~2, which implies ¢, = g%/, the adjust-
ment to the steady limit necessarily involves the
modes for which ¢, < 6z.

The frictionless steady limit with bottom slope
may be contrasted to the frictionless steady limit with
a flat bottom where the solution is given by ¥, alone
and where for t = —y/dg, '

U = Hz‘ro(l - e""), (4.328)
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vy = —Hy(7oy/0r)e™, (4.32b)
W =—au, U;=-—av;. (4.32c,d)

The alongshore current system is confined to y < 0
and a region of O(dz) from the coast, but it involves
oppositely directed velocities in the upper and lower
layers, with the lower-layer alongshore velocity form-
ing an undercurrent.

With friction (a # 0) the limiting values of Y, and
Y, for at > 1 are obtained from (4.28) and (4.29) by
neglecting the exp(—at) terms. Plots of Y, and of (Y,
— Y,) as a function of y for atz > 1 are also shown
in Fig. 2.

For at » 1, in region 1 Yy — Y, ~ 7oa '8g. In
regions 1A (Case I) and 1 (Case II), Y, ~ —7ot” ‘b,
representing the solution of ayg. = 65 'r. The cor-
responding velocity components are

v, = Hyrote ™1 + O(a)), (4.33a)
v, = —Hjrea '[67™ — 657 '(1 — X)]. (4.33b)

Thus, v, increases linearly with ¢t whereas v, is steady.
Within 6z of the coast, v; and v, are opposite in
direction so that an undercurrent is present.

Also, for at > 1, Y, reaches a state that is steady
with respect to the coordinate n = y + dzt. A “modi-
fied arrested topographic wave” solution exists in
region 1, —y = §gt, with an exponential decay on
scale 8, = 6g/a into region 2, —y < §zxt. Outside of
this exponential tail in region 2, i.e., for —y < &,
+ dgt, Y, ~ 0. Thus, in contrast to the purely
barotropic case shown in Fig. 2, for af > 1 the
modified ‘“arrested topographic wave” here essentially
only exists for —y = 8zt + &, and it propagates
steadily alongshore in the negative y-direction at the
internal Kelvin wave speed 6z. In a sense, the effects
of stratification liberate the “arrested topographic
wave,” allowing it to propagate steadily toward neg-
ative y. In terms of the coordinate n = y + dgt, the
liberated or “modified arrested topographic wave”
satisfies

Srboxe + 05 Woy + adoxx = R,  (4.342)

where
R {a,;'fo ‘ for n<0, (4.34b)
g lro(l —e™e™™ for 9>0. (4.34c)

In the part of region 2 where ¥, ~ O, i.'e., for —y
< 0, + 8gt, we also find Y, — Yo ~ 0. The resulting
velocity components are given by (4.31) and again
the steady currents outside the surface Ekman layer
are confined to the upper layer within 65 of the coast.

The effects of both bottom friction and bottom
slope individually lead to the same current system
with lower-layer velocities equal to zero and no
undercurrent present. The development with friction
is more rapid in the sense that for az > 1, the limiting
steady state at a given y is reached after a time
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t > 8 (—y + &), whereas in the frictionless case
with bottom slope the time would be t > —c¢, "'y, where
¢, € O0g. Assuming that this process occurs at an
eastern ocean boundary, the 8-effect would allow, on
a longer time scale, the steady current found here to
propagate into the interior as baroclinic Rossby waves
(Anderson and Gill, 1975).

5. Discussion

The main qualitative result of interest found in the
preceding analysis is the decrease of velocities in the
lower layer and the resultant concentration of currents
in the upper layer within a Rossby radius of the coast
as the frequency of motion with alongshore gradients
approaches zero.

This is found for the free internal Kelvin waves in
Section 3a, where, for wp/a — 0, the magnitude of
the velocity components in the lower layer that vary
in x on the Rossby-radius scale approach zero.
In addition, the imaginary component of the fre-
quency in (3.10b) asymptotes for (wo/a)* < 1 to w;
~ woal3(wo/a) + a], so that the decay time scale T
of the free-wave amplitude due to bottom friction is
a function of frequency and it decreases and vanishes
as wy — 0. Specifically, for waves of period T, as
wo— 0, Tr ~ T(2mac)™'. Consequently, coastal
internal Kelvin waves may be able to participate with
relatively small damping by bottom friction in low-
frequency phenomena such as El Nifio. It is also
worth noting that bottom friction decreases the free-
wave speed, with the largest decrease found at low
frequencies.

In the analysis by Brink (1982), on the effect of
bottom friction on free coastal-trapped waves in a
stratified ocean, the range of the free-wave frequency
is limited in order to preserve the validity of the
perturbation method employed. In the present model,
that range of validity corresponds to «/wy < 1. Thus,
the effective w; found in that paper corresponds to
the constant value w; ~ 1aa in (3.9b). Although that
model is more realistic in other respects, the analysis
procedure utilized does not apply for (wo/a)* < 1 and
consequently does not reveal the upper-layer concen-
tration of velocity and decrease in frictional decay
found in (3.10) and (3.11).

The effect of friction on free internal Kelvin waves,
with continuous and two-layer stratification, has also
been investigated by Martinsen and Weber (1981).
In the continuously stratified case, internal friction
was included, but the bottom stress was taken equal
to zero. This represents a situation different from
that studied here. In the two-layer model, both inter-
face and bottom friction were included, but the
contribution from bottom friction was eventually
neglected. Additionally, in the formulation it was
assumed that the baroclinic mode was uncoupled
from the barotropic mode. As shown clearly by Egs.
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(3.1), with bottom friction that assumption is incorrect
in general. In any case, their results do not correspond
to those found here.

In the forced problems, where 77 has alongshore
variability, e.g., with / # 0 in Sections 3b and 4a or
with 7 = 7oH(—y)H(?) in Section 4b, a result similar
to the free-wave case is obtained. As the forcing
frequency ¢ — 0 or as a steady state is approached
for fixed y (—y < 8gt + 68,) in Section 4b, the lower-
layer velocities u,, v, ~ 0 and the currents are con-
fined to the upper layer within a region O(dz) from
the coast. In the weak-slope model, as the steady
limit is approached the magnitude of the forced-shelf-
wave component of the solution asymptotes to zero.
As a result, the barotropic “arrested topographic
wave” plays no role in these stratified steady state
solutions.

Pedlosky (1974a) examined the effect of bottom
friction on the coastal response to wind stress of a
continuously stratified fluid in a weak-slope, channel
model. The forcing utilized was similar to that in
Section 4b. The analysis was completed under the
assumption that the baroclinic component of the
response (in the hydrostatic layer there) remained in
a two-dimensional unsteady balance. The forced
barotropic component (in the topographic layer) was
unaffected by the time development of the baroclinic
component. In the problem in Section 4b, corre-
sponding assumptions and results would be valid for
t < —y/ég and t < —y/c,, i.e., for Case I in region
1A and Case II in region 1. Although the present
two-layer model is more idealized than that of Ped-
losky (1974a), the simplifications here allow approx-
imate solutions to be easily obtained for all regions
of the y-¢ plane. That is not readily done with the
continuously stratified model. In particular, the re-
sponse in region 2, t = —y/dx or its analog, where we
found that the magnitude of the barotropic ‘“‘arrested
topographic wave” component approaches zero for
—y <€ O6xt + 8,, was not investigated by Pedlosky
(1974a).

It should be pointed out that the steady forced
solutions obtained with this two-layer model do not
have a direct correspondence in the linear continu-
ously stratified case. The equation for the density in
linear, nondiffusive, continuously stratified models is
approximated by p, + wp, = 0, where p, = p,(2) is
the mean vertical density gradient. With bottom
friction, the same equation holds so that an absolute
steady state would require w = 0. A steady state with
w # 0, needed in any finite-depth current to match
the Ekman-suction condition at the coastal corner,
cannot exist without other processes such as dissipa-
tion or nonlinearities playing a role. These processes
would most likely involve small vertical scales and
affect the higher vertical modes. Questions about the
behavior on these scales are not addressed in the two-
layer approximation.
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The fact that the “arrested topographic wave”
component of the flow vanishes in the steady state
solutions found here is of interest. Because of the
idealized nature of the present model, we do not
want to emphasize this point unduly. Nonetheless,
the vanishing of the forced-shelf-wave component
accompanies the upper-layer concentration of veloc-
ities; this general feature may well be important for
stratified shelf flow fields, especially on long time
scales of several weeks to several months. Enfield and
Allen (1980) made an attempt to investigate the
possible quasi-steady balance at the coast of

V2
fy. *dy = pi(32) — p(y1)

on a several-month time scale using coastal sea-level
and wind-stress data. Whether such a basic balance,
representing, in terms of alongshore averages, a geo-
strophic onshore (offshore) velocity providing trans-
port equal to the offshore (onshore) Ekman transport,
should be expected is not known based on existing.
coastal models. That balance is achieved as ¢ — 0 in
(3.21) and (4.12a). However, results for a barotropic
fluid (Csanady, 1978), with bottom friction and a
more realistic wedge geometry at the coast, imply a
different balance, 7 = ap,, at the coast. Clearly, a
frictional, stratified model with realistic cross-shelf
topography and realistic stratification is needed to
answer that question. The resujts found here, however,
give an indication of general flow-field characteristics
to expect, and they cast doubt on the ability of
barotropic models to explain low-frequency behavior
in stratified coastal regions. In fact, several qualitative
features exhibited by existing current measurements
agree with those predicted here, as discussed below.
Some of the behavior found for the alongshore
velocity field in the forced examples in Sections 3b
and 4 is similar to qualitative features of observed
currents on the Oregon shelf. In Fig. 4, we show the
vertical structure of the mean and the fluctuating
components of the alongshore  currents at midshelf
in a water depth of about 100 m for a summer period
and a winter period of approximately two months
each (redrawn from Huyer et al, 1978). In the
summer, the fluctuating component is nearly depth-
independent whereas the two-month mean has con-
siderable vertical shear evidently associated with an
inviscid thermal-wind balance. The fluctuations ap-
pear to be barotropic at this midshelf location but
exhibit larger vertical shear at an inshore mooring.
In contrast, the reason why the mean-flow component
is so highly baroclinic has never really been explained.
This behavior is consistent with the results in Sections
3b and 4a, where, as the forcing frequency decreases,
i.e., as o/a and o/(l6g) decrease, the barotropic forced-
shelf-wave component decreases in magnitude and
the offshore scale r~! of the baroclinic component
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FIG. 4. Mean values of the alongshore velocity and scaled
alongshore components of the first empirical orthogonal function
(EOF) from midshelf locations (water depth ~ 100 m) on the
Oregon shelf for summer (2 July-26 August 1973) and winter (1
February-24 March 1975) (redrawn from Huyer ez al., 1978). The
EOFs have been calculated from the low-passed (40 h half-power
point) observations of horizontal velocity vectors for the set of
depths shown, The first EOF accounts for 85% of the variance in
the summer and 93% in winter. The normalized components of
the EOF have been scaled by the standard deviation of the modal
amplitude.

(3.6b) increases. The magnitude of the baroclinic
shear within ! depends in (4.12a) on (7¢//), and it
is reasonable that representative values for this coef-
ficient increase as ¢ decreases.

In the winter, the fluctuations are larger in mag-
nitude and have a great deal more vertical shear than
those in the summer. The vertical shear in the
fluctuations is reported to be inviscidly balanced by
cross-shelf gradients of density, consistent with the
thermal wind relation (Huyer et al, 1978). The
reason for this change in structure of the fluctuations
between summer and winter also has not been ex-
plained. If the effective value of « is determined by
a nonlinear drag law, then the increased magnitude
of the fluctuations in the winter could lead to larger
values for a. In addition, an increase in amplitude of
the surface-wave field in the winter may lead to larger
values of bottom stress (Grant and Madsen, 1979)
and thus contribute to increasing the effective value
of a. An increase in vertical shear of the wind-stress-
forced, fluctuating alongshore velocity components
with an increase in « is found here in two different
examples. In the results from the purely two-dimen-
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sional cases (3.16) and (B9), as the friction coefficient
« is increased with fixed values of the forcing fre-
quency, the magnitude of the lower-layer alongshore
velocity decreases while the magnitude of the upper-
layer alongshore velocity is unaffected, thus increasing
the vertical shear. In the resonant response of forced
internal Kelvin waves (3.22), the magnitude of the
baroclinic component |C;| increases as « increases if
the forcing frequency « is in the range (o/a)? < 1
and {0 > o?. The magnitude of the vertical shear, of
course, increases with |C)|.

Figure 4 also shows that the mean velocities in the
winter have less vertical shear than those in the
summer, as well as having opposite sign. The differ-
ence in the shear is presumably not related to the
present model results, but is associated with a change
in vertical position of the seasonal mean pycnocline
(Huyer et al., 1978).

The weak-slope, two-layer model is admittedly
highly idealized. The representation at midlatitudes
of a coastal boundary by a vertical wall may lead to
misleading results. The importance for real shelf flow
fields of the physics found within the internal Rossby
radius in weak-slope, vertical-coast models is not
clear, as we have discussed elsewhere (Allen, 1980).

" In addition, the representation of the effects of strat-
ification by two layers leaves out features of interest
associated with continuous stratification. Nevertheless,
in spite of the model shortcomings, the primary result
found here, that for three-dimensional stratified coastal
flow the current field tends to weaken in the bottom
layer and to concentrate in the upper layer as the
frequency of the motion decreases, seems to represent
basic behavior that is evidently present in observations
and is likely to appear in more complex models.
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APPENDIX A
Approximate Equations for the Shelf and Slope

The derivation of approximate equations governing
the motion on the continental shelf and slope under
assumptions (2.3), (2.9), (2.11) and (2.13) is discussed
below. The procedure is similar to that of Romea
and Allen (1982) (see also Allen, 1976) for the
frictionless case. Since the addition of bottom-friction
effects is straightforward, the derivation is simply
outlined.

The governing equations are (2.7), which were
derived from (2.1) with the assumption 8, > 1 (2.3),
and with H = H(x). The bottom stresses in (2.7) are
given by (2.8a, b) and (2.10) with assumption (2.9).
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The basic assumption for the coastal region is 27/
8, = lp < 1 (2.11), i.e., that onshore-offshore scales,
set either by the shelf-slope width or the Rossby
radius of deformation 6z, are much smaller than
alongshore scales §,. The motion in the interior, off
the shelf and slope, is assumed to vary on large x-
and y-scales of O(3,), although adjacent to the slope
there may be a component that varies on an x-scale
of O(6g). A systematic derivation of approximate
equations under (2.13) is facilitated by rescaling the
coordinates to reflect the above assumptions (e.g.,
Romea and Allen, 1982). For simplicity in notation
here, however, we will record all equations in terms
of the original dimensionless variables defined in
Section 2.

As a result of assumption (2.11), the approximate
equations governing the variables on the shelf are

Wxx = 85 ') + 857 (W — By — )
— aH[(—y¥x + h)H ), = 0,
(hex + adp™'h — 8z72h), — adp™' (Y, — hy — i)
+ aaH[(—yx + h)H . = 0, (Alb)

where we use the notation 7f = 7¥ (x = 0). The
boundary conditions at the coast follow from the
requirement that #, = u, = 0 and are

(Ala)

¢v,=0 at x=0, (A2a)
hy + hy + a(a/H)(—¢x + hx) = _‘"f)o)
at x=0. (A2b)

The alongshore velocity components v;, v, on the
shelf are given by (2.6b, d) with the terms in square
brackets in (2.6f) neglected. As a result, the alongshore
velocity is assumed to be in geostrophic balance.

The variables in the interior, off the shelf and
slope, are conveniently written as the sum of two
terms:

¢ = ‘pl + ¢B: h = hl + hB; (A3a5b)

where ¥, h; vary on large x- and y-scales of O(é,),
while ¥z, hg vary on an x-scale of O(6z) = O(1). The
approximate equations governing these variables are

VA + aVYs — ) = alr + 1) = 7 -,

(Ada)
—0g hy — aaVi (Y, — hp) + aa(ry + 7.5)
=717 —17, (Adb)
T ¥Bea + W — hpxx) = 0, (Adc)
(hpxx = 88 hg): — ac¥pex — hpex) = 0,  (A4d)

where V2¢ = ¢, + ¢y,
For simplicity here we assume that in the interior,
(2.12) holds, i.e.,
a<l.
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It follows from (A4c, d) that
(¥, hg) = (Yy, Yo) exp(—x/dr)[1 + O(a)l, (AS5a)
Y+ aY, = aY,. (ASb)

The matching conditions between the lowest-order
sheif and interior variables, derived as a consequence
of (2.11) (Allen, 1976; Romea and Allen, 1982), are

Yi(x=0)=0 (A6a)

Y (X =1)=Ypa (x=1)+ Ypu (x =0), (A6b)
hix=1)=hg(x=1+h(x=0), (A6c)
he(x = 1) = hg, (x = 1), (A6d)

where, because of the present notation, it is helpful
to recall that y;, 4; vary on a larger x-scale than y, A
or yp, hp.

To solve the shelf problem, it is useful to define
new variables

¥ =9+ ¥ fo " H(e, (A7a)
, h=h+ hy, (A7b)
such that .
Wxx — 857 W) + 0570y — ) -
= aH[(~¥x + h)H ), = 857'F), (A8a)
(hux + adp~'hy — 8272h), — adp~'(Yy — b))
+ aaH[(—yx + hy)H ™), = —adp~'F;, (A8b)

where
Fy, = 1{o) + hyoyy — !hx(O)yf H(§)dE + ayixo). (A8C)

The boundary conditions on ¢ and  are

¥,=0 at x=0, (A9a)

hy + hy + ala/HY~x + hy) = —F,
at x=0, (A9b)
Ve=vVp at x=1, (A9c)
bphy=—h=—hp at x=1, (A9d)

where, with assumption (2.12), ¥ and A, are obtained
from (AS) and

Fy = 10 + hyoy — aoyixo). (A%¢)

For 0g < | [assumption (2 14)], ¥ (x = 1) =
in (A9c).

Under the “weak-slope” approximation (2.13), i.e.,
d5~! < 1, Egs. (A8) become

‘i’xxt + 5B—l(‘2’y - ,v) + a('i‘xx - i’xx) = 6B_IF1,
(A10a)

aa(‘Zxx - ilxx)

= —adz 'F;, (A10b)

(h —0r” 2h)t - aaB-l(d’y - hy)
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where a, dp, 6z and H are regarded as constants (H
= 1) and where an additional, implicit assumption is
that 6z > adz. The boundary conditions are given by
(A9) where H = 1 in (A9D).

The above formulation, with interior variables
incorporated in the forcing functions F, and F,, is
especially useful to have when the weak-slope ap-
proximation is utilized. That can be demonstrated in
the simplified case where the motion is barotropic,
frictionless and two-dimensional (3/dy = 0), with
= 0 and 77 = 72(¢). The exact solution, without the
weak-slope approximation, is

VY = —T. (Al1)

This result is also obtained from (A7) and (A8) where,
with

Vixoy = — 7, (A12)

we find
Y = —7(1 ~ H), (Al3a)
Y = 1;th + Hyoy = (A13b)

Note that for H < 1, lsz is a good approximation to
wxb 1.€. (2]

Wl > | Hy 1xcoxl»

so that the contribution to ¢, from the interior
variable may be neglected near the coast.

With the weak-slope approximation, on the other
hand, (A11) and (A12) still hold, but from (A10) we
obtain

¥ = —7857'(1 — X), (A14)
which gives

¢=

In this case,

—rd5 (1 — X) — (A15) -

Hr = —1,

‘@xt‘ < IH‘plx(O)ll

everywhere on the shelf so that the contribution of
the interior variable to ¥, is not negligible. We can
see, therefore, that for the weak-slope geometry in
the two-dimensional limit, approximate equations for
the shelf in which the contribution of the interior
variables is neglected would lead to erroneous results
and the possibly puzzhng inability to recover a familiar
limit.

To make the weak-slope problem in Section 4
more similar to that with a full slope, we choose a
wind stress of the form (2.15), i.e.,

™ #0, 7 #0,

which minimjzes the importance of the interior vari-
ables.

Estimates of the resulting magnitudes of Y, and
hioy may be obtained from (3.14b) and (3.17) in
Section 3 and are

Vs = O(70a),

™ =0, 7 =0, (A16)

h; = O(a5kzlo'//1x(0))- (Al7a,b)
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It follows that
Fy = 11 + O(h) + O(a)], (A18a)
F, = 1 + O(aa)). (A18b)

Making assumptions (2.12), (2.13) and (2.14), utilizing
F, = F, = 1}, = 7 in (A9) and (A10), and dropping
the carets on ¢ and A, we obtain (4.1) and (4.2) in
Section 4.

APPENDIX B

Two-Dimensional Flow

For wind-stress-forced motion which is purely two-
dimensional (/dy = 0) on a shelf with a vertical wall
at the coast such that Hy > H;, an approximate
solution may be easily obtained for otherwise arbitrary
H(x) if

Q) = H]/Hz(o) <1 and H(X) = H(o).
In this case, (A10) with 77 = 7(f) may be written
as
(Wx/H)x + of(x — h)/H?]x = —(1/H), (BI)
which may be integrated with respect to x to give
Vo + sl = (B2)

where ay = afH.
For g < 1, ¥ and h are expanded in powers of

A0y ‘
v=vo+taop + - }
h=ho+a(o)h]+"' ’

which when substituted in (A1b) and (A2b) give

-7 + ayh,,

(B3)

(hoxx — 8% %ho), = 0, (B4)

how=—7 at x=0, (B5)

where .
61{2 = SH; = 5%(0)(1 + a(o)).
For
T = 10 exp(ict), (B6)

¥, h) = (¢, g) exp(iot), B7)

we obtain, with 7 = 85,
éx = —1olic + ay]"'[1 + (an/ic)e™], (BSa)
g = —(ro/ic)e™ ™. (B8b)

Based on the exact solution (3.15) of the two-
dimensional flat-bottom example in Section 3, we
anticipate that the O(aa) frictional terms in (A2b)
will not alter the balance in (B5) as ¢ — 0 and thus
not affect the (io)™! dependence of g, in (B8b).

The velocity components, to lowest order in a, are

= (Hy/H)ro(1 ~ &™), (B9a)
By = (Hy/HX(ro/ia)e ™, (B9b)
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ﬁz = —-aﬁl, (B9c)
b, = (H\/H)[ro/lio + ap)l(1 — €™), (B9d)

In the flat-bottom limit H = 1, (B9) reduces to (3.16).
Note that, as in (3.16), for a fixed value of ¢ an
increase in « decreases | D,|, but leaves | ¥;|unaffected.

APPENDIX C
Arrested Topographic Wave

The term “arrested topographic wave” has been
coined by Csanady (1978) to describe the steady or
quasi-steady solution for linear, wind-stress-forced
motion of a barotropic fluid over sloping continental
shelf and slope topography with bottom friction and
with the assumption /; < 1 (2.11). Similar physics
arose in earlier studies of Birchfield (1972, 1973) and
Pedlosky (1974b). For reference, it is useful to examine
briefly the corresponding “arrested topographic wave”
solution in the present weak-slope geometry with the

Heaviside-function wind stress of Section 4b:
7 =1 = o H(-Y). (C1)

The governing equation, obtained from (4.1a), is

05 Yy — 7) + ar = 0, (C2)
with boundary conditions
Yy (x=0=0, ¢yx(x=1)=0. (C3a,b)

We recognize (C2) as a forced diffusion equation with
diffusion coefficient xk = adp. The time-like direction
is represented by —y. With boundary conditions (C3a,
b), the solution may be conveniently found by ex-
panding ¥ and 7 in terms of cross-shelf modes as in
(4.20), (4.22) and (4.23). For 7 given by (Cl) and ¢
= 3 Y, (»)¢.(y), we find that Y, is given by (4.27b).
It is more illuminating, however, to consider the
solution in the region 0 < —y < (adp)”!, where the
boundary condition (C3b) at x = 1 does not appre-
ciably influence . An approximate solution in that
case may be obtained by changing condition (C3b)

to
¥p—17—0 as x— co.

\Zy = ¢y —-T= G‘(y’ x)a (CS)

so that ¥ represents a streamfunction for the flow
beneath the surface Ekman layer. It follows that

-G, = &Gy, (C6a)
G(x=0)=—10H(-y), G— 0 as x — o, (C6b,c)

which is the same form as the classical Rayleigh
problem, and thus that

G = ¢, = —1, erfe[x/(—4xy)'3]. (C6d)

Consequently, the flow beneath the surface Ekman
layer is confined to a boundary layer in x originating

(C4)
We define
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at y = 0 and growing in width in the negative y-
direction as &, ~ (—«y)"%

We note that the solution in the present weak-
slope model with a vertical coast differs from that in
the wedge-slope region, H = 8z 'x, considered by
Csanady (1978). The diffusion equation (Cé6a) is
obtained in both cases, but the identification of
variables and the boundary condition at the coast are
different. In the wedge geometry, (C6) applies with
G = v. The resulting flow field is different in detail,
‘but both geometries have the motion beneath the
surface Ekman layer confined to the parabolic region

x = (“KY)”Z-
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