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ABSTRACT

The method of characteristics is used to provide radiation-type boundary conditions appropriate to a
portion of a two-layer inlet subject to tidal effects governed by one-dimensional shallow-water theory. Internal

waves are considered, with Knight Inlet as an example.

1. Introduction

Tidal motion in stratified inlets is of considerable
interest to oceanographers and water quality engineers;
papers by Crean (1978), Freeland and Farmer (1980),
Hamilton (1974), Jamart and Winter (1980), and
Baines (1982) are representative of many investigations
describing field observations and various experimental
or analytical models. If a numerical approach is used
to investigate tidal motion, it may be computationally
efficient to analyze only that region R of the inlet
which is of primary interest (the part containing a
sill, for example). The question then arises concerning
the choice of appropriate boundary conditions for
the two ends of R, and this matter receives particular
attention here. We restrict ourselves to one-dimen-
sional situations in which velocities can be averaged
laterally and over each density layer, and in which
the pressure can be considered hydrostatic, so that
shallow water theory is applicable, as described by
Stoker (1957), for example. Although this kind of
approximation is often invoked, it may be inadequate
in regions of rapid change in depth or width, or in
the reproduction of short-wavelength phenomena.
Moreover, turbulent mixing is not modeled explicitly.
Some of these defects can be corrected by subsequent
ad hoc analyses, in which the shallow water solution
provides the environment; in any event, these and
other difficulties are common to many analytical
approaches. Our main objective here is the fairly
modest one of discussing the choice of boundary
conditions for the region of interest and, in order to
concentrate on this matter, we simplify the model by
neglecting wind stress, interfacial shear stress, bottom
friction, interlayer mixing, and flow separation at
ridges. Some of these effects can readily be incorpo-
rated into the model (although it may not be easy to
assign realistic numerical values to the various coef-
ficients which arise); e.g., see Hodgins (1979).

First we consider the seaward end of the region R.
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A natural approach (frequently used in the literature)
is to specify the tidal height variation as a function
of time—perhaps in terms of the amplitudes and
phases of the first few periodic components. Unfor-
tunately, a height specification has the consequence
that any disturbance generated within the region and
propagating seaward will be reflected back into the
region by this boundary condition, thus artificially
complicating the subsequent motion. A second diffi-
culty is that the mathematical problem associated
with a prescribed-height boundary condition may not
be “well posed.” Any measured tidal height variation
is a consequence of two effects—an imposed forcing
function (the incoming tide) and the response of the
local geometry (e.g., reflection) to that forcing func-
tion. Situations such as this in which one imposes a
boundary condition that includes part of the system
response can be very sensitive to small changes in
the input condition; in fact the apparent necessity of
including high-order harmonics in some estuarine
tidal models may be attributable to this effect. A
further discussion is given by Pearson and Winter
(1977) and Jamart (1980). Finally, it is not always
clear how the height variation of each of (say) two
layers should be specified, unless one takes the seaward
boundary sufficiently far seaward that the thickness
of the upper layer may be taken as zero there. A
related question concerns the effect of initial condi-
tions (frequently corresponding to zero velocity) on
water elevation and velocity variation when the forcing
function at the seaward end is essentially periodic. In
practice, it is often assumed that computed height
variations produced by a given distribution of tidal
harmonics can be compared directly with measured
heights after one or two tidal cycles. However, in
low-friction channels, transients persist for longer
periods and remain within the modeled section as a
result of reflections from the ends. This effect may
be illustrated by considering the simple case of tidal
motion in a straight inlet of uniform mean depth D.
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Suppose that, at x = L, there is imposed a sinusoidal
variation in surface height with amplitude 24 cos(2wL/
cT), where T is the period and c = (gD)"% the
velocity at the landward end is zero. If the motion
were periodic, the surface elevation would be given
by

(x, 0 —Al:sinz—w(t—)—c)+sin—21(t+)—c)]
st T c T cJl’

However, if the motion is started from rest with zero
velocity, the solution can be expressed as the sum of
ns(x, t) and a component 7;(x, ) associated with the
starting conditions:

e B,,[sin @nt l)me (, + )_‘)

e 2 L c
. 2n+1) wc( x)]
+sin——=—r-=])|,
sin > 3 -
where
cos(2wL/cT)

44L
B, =——(-1) > 5.

wcT [2L/(cT)) — [(2n + 1)/2]
The function 7;(x, f) represents the discrepancy be-
tween the periodic solution and the initial value
solution, and can be regarded as a superposition of
harmonics traveling landward and seaward, under-
going reflections at each end. When ¢T > L, the
main contribution is from the first term so that the
amplitude of the “transient” relative to the amplitude
of the periodic wave is

| Bol _ 16L

~

A wcT’

Thus, for example, in a channel of 40 km length and
150 m depth, at the end of one cycle of an M, tide,
approximately 12% of the calculated height variation
is associated with the starting conditions. The initial
transients clearly persist and the tidal response within
the segment is comprised of the primary wave as well
as an unwanted contribution from the wave reflected
from the seaward end.

What is required is a boundary condition that
permits seaward propagating disturbances to pass
without hindrance, yet one that imposes, in some
way, the desired tidal input. It is necessary to adapt
to the present situation the “radiation condition™
concept of wave-equation theory in which coupled
equations in several unknowns appear; e.g., see Carrier
and Pearson (1976) and Wurtele et al. (1971). If the
seaward boundary can be placed in water of sufficient
(and locally uniform) depth locally that linearization
is feasible then the method of characteristics can be
adapted to provide the desired tools. Two of the
characteristic curves at this boundary carry informa-
tion landward, the other two seaward, and these
information packages can be combined so as to
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provide the desired boundary data. We emphasize
that the full nonlinear equations are solved numeri-
cally in the sill region of interest, and that disturbances
emanating from the sill will generally possess contri-
butions arising from nonlinear effects. Although our
fjord geometry is such as to make equation lineariza-
tion valid in the boundary region, it might be re-
marked that the only crucial consideration is that the
boundary be transparent both to the incoming tide
and to any reflected disturbances (linear or nonlinear);
these criteria are met by the present treatment.

At the landward end of R, similar considerations
apply. Thus the boundary condition must be trans-
parent to disturbances propagating landward, yet
must take into account whatever basin volume is
contained in-the remainder of the inlet. Again, the
method of characteristics is appropriate; a simple way
in which to model the basin volume is to permit
disturbances emanating from R to reflect back into
R with a time delay corresponding to a suitable
geometrically equivalent uniform closed channel. It
should be noted that while the boundary conditions
are applied in regions where local linearization is
feasible, the full nonlinear equations are used
throughout the inlet segment of main interest.

2. Numerical time-stepping

The region R to be considered is that lying between
x = 0 (the seaward boundary) and x = L (the landward
boundary) in Fig. (1). A layer of brackish water
overlies a saline layer, each of constant density (the
density ratio of the former to the latter is 7). At time
t = 0, the lower layer is at rest and the upper layer
has a constant velocity U, landward (we take Uj
< 0). Also at ¢t = 0, the lower layer has depth H(x)
and the upper layer has constant depth Hy. Let H(x)
= H,, constant, for x < 0, and H(x) = H,, constant,
for x > L; the points x = 0 and x = L are taken to
lie within these constant depth regions. The situation
at ¢ = 0 as described above corresponds approximately
to the end of the ebb tide. Starting at ¢ = 0, the tide
is “turned on.” At time ¢ > 0, denote the increases
in height at each of the upper surface and the

landward direction

FIG. 1. Geometry of two-layer flow over a sill.
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interface by #/(x, £) and n(x, ¢) respectively, and denote
the corresponding changes in velocities by #'(x, )
and u(x, f), respectively. Thus the instantaneous
velocity in the upper layer is #'(x, t) + Up, taken as
positive in the direction of increasing x. We use g to
denote the acceleration of gravity, and a subscript to
denote a partial derivative. Then the equations of
motion are (as by Houghton and Isaacson, 1968;
Stoker, 1957)

1 ,
u = —|5u*+gm +g(1—r)n:|

X

n = —[(H + nuls,

wy = —{ 3 ) + Uss' + g,,']

29

m =~ = n + Ho)u' + Ug) + (H + mul, |
or in column vector form,

Vi = FLV). (2)
Various explicit and implicit methods are_ available
for the numerical solution of Egs. (2) in the region
R. We choose here the explicit Lax-Wendroff-Richt-
myer method (as described by Richtmyer and Morton,
1957) which has some capability of modeling rapid
transitions for conservation-type equations [Eqgs. (1)
are not in strict momentum- and mass-conservation
form. In fact, such a form is awkward to obtain for
layered flow (see Houghton and Isaacson, 1968; Yih
and Guha, 1955)]; an example of an implicit method
is given by Hodgins (1979).

Divide the region 0 < x < L into N equal parts,
with éx = L/N; denote the numerical approximation
to V[ j(ox), n(ét)] by V7 [see Fig. (2)]. Then each &z
time step is carried out in two halves. For j = 0, 1,
+ +« (N — 1), we first compute

1 ot
VISR =3 (V] + Vi) + 30 (V) — VDL )
so as to provide V values at the intermediate points
marked 4;, A, -+ - in Fig. (2). The second half step
uses

C))

ot
Vit =vi+ (3;)[1'"( Vi) — FVE)

FIG. 2. Computational mesh illustrating the matching of the
characteristic solution in the seaward basin with the finite difference
solution in the sill segment.
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forj=1,2,..., (N — 1). This process has second-
order accuracy and is stable if VgH,,.(8f) < (6x); it
does not however provide the end-point values V3*!
and V3!,

3. Characteristics

As already discussed in Section (1), Eqgs. (1) are
linearized in the two regions outside R. Thus near
x = 0 (and also near x = L, with H, replaced by H,)
we have

u+g(l —rmx+gmy=0

o+ Hu,=0

, . A )

u;+gmx=0
n;+H1ux+H0u;=0

where H, is the constant depth of the region x < 0.
Note that we assume Uj, the surface-layer drift
velocity, to be of the same order as the tidal velocities
uand u'.

If we try to find solutions of wave form depending
only on (x — cf) for some choice of ¢, then substitution
shows that there are four possible values of ¢, satisfying

¢t = ed + (co)’] + (1 — Nee(co)* =0, (6)

where
(cb)* = gHo. (7

Denote the four roots of Eq. (6) by *c,, c_, where
¢y > ¢ > 0. These are of course the four characteristic
slopes. Along each characteristic direction, a particular
linear combination of the four dependent variables
u, u', 9, v is constant (e.g., see Eq. (4.5) of Houghton
and Isaacson, 1968); these are the Riemann invariants.
After some algebra, it follows that an equivalent
statement is that any solution of Eqgs. (5) must have
the form

17=F++F_+G++G_

¢’ = gH,,

u= 71!_] [C+(F+ - G+) + c_(F._. - G_)]

2
rf = (—i%+ r— 1)(F+ + Gy
0 .

v

C_2
+ (__2_ +r- 1)(F_ +G)r, 8
Co

where F,, F_, G, G- are single-variable functions
of the form
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F, = F.(x— c.f)
F_=F (x—ct)
Gy =G (x+cd)
G_=G(x+ci)

The first two of the functions of Eq. (9) represent
disturbances traveling to the right, the second two,
disturbances traveling to the left.

Egs. (8) can be rewritten as

®

A — A + Asu — A’ = 2(c, — ¢ AF, )

A — A — Asu + A’ = 2(ci® — ¢-G,
By — By’ + Bsu' — Byu = 2(c.2 — ¢ AF-
By — Byy — Bau' + B = 2(c,* — C_Z)G_J
where
Ay = rcg? | Bi=c2+(r— e

Ay=c?+c(r—=1) B, =rc

7, (10)

Ascs reslc.

U gr—1) Pgr—1)

e B

4 = T - 4 = T o~
gr—1 gr—1 J

We interpret the functions of Eq. (9) as depicting
disturbances which enter a region initially at rest,
except for the constant drift velocity Uj in the upper
layer. Thus, still considering the region x < 0, the
functions F, and F_ represent a landward propagating
tidal motion, and G, and G_ represent seaward
propagating disturbances generated by tidal effects in
the region x > 0.

There is some arbitrariness in depicting the incom-
ing tide; for definiteness and for simplicity, here we
set F_ = 0 (still for the region x < 0), and choose,
for example,

F., = A sin?[n(x — c.8)/Lo}, (12)

where L, is the tidal wavelength. (Because of reflection
from the inlet head the resultant tidal amplitude will
approximate 24.) At ¢t = 0, the disturbance defined
by Eq. (12) is just entering the previously undisturbed
region R at the point x = 0. Higher harmonics could
of course be included. With the choice F_ = 0 (and
with G, = G_ = 0 for t < 0), Egs. (8) show that
7 =~ n and ¥’ ~ u, insofar as incoming tidal effects
are concerned.

For ¢t > 0, we now know F, [from Eq. (12)] and
- F_ = 0, so that the left-hand sides of the first and
third of Eqgs. (10) are known at x = 0. We do not
know G, or G_-. However, G, is a function of x
+ ¢,1, and so must be constant along any line x
+ ¢, = constant. In the time-step discussion of
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Section 2, all values of V' were obtained except for
V§t! and V', From the mesh point corresponding
tox =0, = (n+ 1)é in Fig. (2), draw the line B8
satisfying the condition x + ¢, = constant, and let
it cut the line joining the two points [x = 0, ¢ =
n(é)] and [x = 36x, t = (n + 1)t] at the point B.
Since the left-hand side of the second of Egs. (10) is
known at the end points of the latter line, it is
obtainable at B by interpolation. The left-hand side
of the second of Eqgs. (10) must then have this same
value at the point [x = 0, ¢ = (n + 1)6t]. Similarly,
we can evaluate the left-hand side of the fourth of
Eqgs. (10) by use of a line satisfying x + c_t = constant,
so that in toto the left-hand sides of each of Egs. (10)
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FIG. 3. (a) Knight Inlet, B.C., and the depth profile along the
axis of the fjord. (b) Approximate representation of axial depth -
profile used in the computation.
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FIG. 4. Schematic diagram illustrating tidally induced flow features
in the vicinity of the Knight Inlet sill. The sketch represents a
composite of the observed response using density and velocity
profilers together with high-frequency echo sounders. The arrows
to the left indicate different flow intensities from left to right,
starting near the onset of flood tide. The wavy line indicates the
possible location of a shear zone in the deep layer. (Reproduced
with permission of Plenum Press; see Farmer and Smith, 1980).

are known at the point x = 0, t = (n + 1)6¢ and, by
solving the linear equation set, V%*! can be deter-
mined.

At x = L, the situation is analogous, except that
H, must be replaced by the new depth H, in the
calculation of c¢,, ¢-, ¢o. Disturbances emanating
from the region R will propagate towards the head

PEARSON AND DONALD F. WINTER
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of the inlet, and after reflection, will eventually reenter
R. There may be a decay in amplitude, and an added
time delay, because of bottom friction. In principle,
both of the exiting F. and F_ waves could be
included in the reflection calculation, but since we
intend to model the effect of the basin volume only
approximately in any event, we will content ourselves
with including the predominant F, wave only. (Note
that the existence of the F_ wave is a result of the
presence of the thin upper layer.) Thus one of the
conditions resulting from Egs. (10), to be applied at
x=1L,is

3
3 [ATg — A%y — A%u + AXu’),

0
= %% [AT7 — A%n + A%u — Afu')i—@r4re, (13)

where subscripts denote evaluation time, L, is the
equivalent basin length and an asterisk denotes a
coefficient value involving H, rather than H,. Note
that the signs of the # and ' terms differ in the two
sides of this equation. Since we neglect the reflection
of the F_ wave, a second condition, corresponding to
the choice G_ = 0, is

BYn — BYn' — Bfu’' + Bfu = 0.

The other two conditions are obtained by drawing
two lines into the region R, from the point [x = L,
t = (n + 1)(6t)], with slopes ¢’ and ¢, and by
carrying out interpolation calculations of the kind
used at x = 0. The resulting four linear equations are

solved to give V%' and the time step is now complete.

4. Numerical results

In addition to the usual kinds of numerical checks,
several examples of single- and double-layer problems,

FIG. 5. Portion of an acoustic record showing the development of a lee wave downstream
(to the right) of the Knight Inlet sill. (Courtesy of D. M. Farmer.)
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with known exact solutions, have been solved by the
present method. For example, exact solutions are
available for the case in which the depth is everywhere
constant, and in which the linearized equations are
postulated to be exact. The agreement in these cases
has been very satisfactory, and no spurious reflections
have occurred. A

A more interesting problem is that in which an M,
tide of the type described in Eq. (12) is incident on
a region containing a sill. By way of example, the
numerical procedure presented here was applied to
tidal flow in the vicinity of the inner sill of Knight
Inlet. Knight Inlet is a narrow (3 km in width) highly
stratified fjord on the British Columbia coastline (see
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Fig. 3). It is over 100 km long and its bathymetry is -
characterized by two thresholds, the inner sill being
about 8 km long and of approximately 63 m depth
at the shallowest point. The sill separates a deep (550
m) inner basin from a shallower (200 m) basin in the
seaward reach of the fjord. The bathymetry and the
large tidal amplitude (3 to 5 m) produce tidal
currents in the vicinity of the inner sill in excess of
80 cm s~!. Moreover, because of seasonally high
freshwater runoff into the head of the channel, the
surface water in Knight Inlet is often highly stratified.
A variety of wave phenomena associated with tidal
motion over the inner sill was observed during a
series of cruises in the Inlet begun in 1977. Acoustic
records and velocity and CTD profiles revealed several
tidally induced flow features including internal waves,
hydraulic jumps, vortex generation, and boundary
separation (see Farmer and Smith, 1980). Figure 4 is
a schematic composite of the development and evo-
lution of tidally induced flow features in the vicinity
of the Knight Inlet sill and is based upon a large
number of acoustic records and CTD profiles acquired
in the inlet.

One of the most prominent features seen both in
the field experiments and in laboratory simulations
is a lee wave which forms on the downstream side of
the sill. As the flow diminishes in strength, the wave
moves back over the sill and eventually reforms on
the other side as the current reverses direction. Figure
5 shows a portion of an acoustic record where the
development of a lee wave can be seen as a pro-
nounced - thickening of the upper brackish layer,

- appearing as the dark-colored near-surface zone in

the acoustic record.

The numerical procedure described here was used
to study the formation and evolution of lee waves in
the vicinity of a sill configuration similar to that of
Knight Inlet (see Fig. 3b). The total length of the sill
was taken to be 8 km. The inner basin on the
landward side of the sill was represented as an 80 km
channel of 550 m depth, with a wall at the head. The
outer basin depth was taken to be 200 m. An M,
tide with an amplitude of 2 m was imposed at the
seaward end of the outer basin. Stratification was
simulated by a two-layer flow in which the upper
layer was assigned a reference thickness of 20 m and
a depth-averaged density of 1022 kg m™>. The density
of the deep layer was taken to be 1024 kg m™>. The
effect of river discharge was modeled by a persistent
seaward current of 2 cm s™! in the upper layer. The
computation was started from rest and continued
through two tidal cycles to allow transients to prop-
agate out of the system. '

Figure 6 shows a sequence of computed layer
interface configurations in the segment embracing the
sill throughout a tidal cycle. At the onset of flood,
the flow over the sill induces a lee wave in the
downstream direction. As the current intensifies to-
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FiG. 7. Sequence of photographs taken at intervals during a laboratory tank study of harmonically forced flow
over an obstacle. The obstacle is moved to the left and then to the right relative to the tank and the photographs
are positioned so that their frame of reference is fixed with respect to the obstacle. (Laboratory experiment by D.
Farmer and J. Zelt. Reproduced with permission of Pergamon Press.)
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ward maximum flood, the wave crest broadens con-
siderably and a second minor crest forms in the

downstream direction (to the right of the picture). As -

the flow slackens, the principal lee wave and the
minor crest begin to move back over the sill and at
the onset of ebb tide a lee wave forms on the seaward
side. During ebb flow the crest continues to propagate
downstream (to the left of the segment) and a trough
and a new crest develop over the sill. These features
are very similar to those seen in the field, as repre-
sented schematically in Fig. 4.

The same features bear a remarkable similarity to
those appearing in a laboratory tank study of har-
monically forced stratified flow over an obstacle, as
described by Farmer and Freeland (1983). A com-
posite of the results of those experiments is displayed
in Fig. 7 for comparison purposes.

Several additional numerical experiments were car-
ried out using the Knight Inlet bathymetry and a
fixed lower layer density of 1024 gm cm™>. It was
found that the internal wave structure, location, and
amplitude are generally sensitive to tidal amplitude
A and density ratio r, particularly in the parameter
ranges A 2 2.0 m and r 2 0.999. For values of A
and r just within the domain of sensitivity, small-
amplitude oscillations appeared on the interface
waveform, some with wavelength several times greater
than the grid spacing. We interpret these as incipient
instabilities and note that they are suggestive of the
small-scale “billows” observed on the waveform in
Knight Inlet. There is certainly a possibility that any
wave pattern, particularly if correlated with the mesh
spacing, can be a numerical oscillation. However,
one can also anticipate that any shear flow can
generate turbulent instabilities. The simplest case is
the Kelvin-Helmholtz analysis of an inviscid, irrota-
tional two-layer flow in which each layer is deep
compared to the wavelengths. For example, let p’ and
#' denote the mass density and horizontal velocity of
the upper layer; the corresponding quantities in the
lower layer are p and u. An interface perturbation
for the form exp(i2wx/\) will be unstable if and only
if
27

A

Moreover, if p' = rp (with r =~ 1) we have, approxi-
mately,

g(* — 0% <= pp(u—uy. .

2w (u—uy _m(u— u')?
g 1-r gl—n "

Thus for u — ' = 0.50 m s™! and r = 0.998, it is
found that A < 40 m for instability, which would
begin to evidence itself with the mesh spacing used
in our computation. Smaller wavelengths, while more
unstable, would involve more dissipation. Of course,
these results are appropriate to a discontinuous ve-
locity field; more elaborate calculations for shear-
gradient flows are available in the literature.

A<
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5. Conclusion

It appears that the method of characteristics pro-
vides one approach to the problem of choosing
boundary conditions applicable to a portion of an
inlet subject to tidal flow as governed by one-dimen-
sional stratified shallow-water theory. Extension to
multiple layers is feasible, as well as to situations in
which it would be desirable to include bottom friction,
interfacial stress, and wind stress. However, shallow-
water theory requires modification in regions of rapid
depth change or where waves of short wavelength are
of interest.
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