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ABSTRACT

In recent years there has been renewed interest in the Gulf Stream system and its interaction with the
mesoscale oceanic eddy field. An important question, not yet adequately addressed, concerns the possible
generation mechanisms of the mesoscale eddy field and, in general, the problem of radiation of mesoscale
energy from a meandering current, This problem has been investigated ini a variety of studies, the basic result
of which is that, in the quiescent ocean, the far field can transmit energy radiated by a meandering northern
current only if the latter has 8 westward phase speed. All the proposed models are, however, linear. Nonlinear
effects may be expected to modify the above results, as indicated by numerical experiments carried out with
fully nonlinear models.

In the present study, the question is addressed in the context of a fully nonlinear but simple model, the
quasi-geostrophic equivalent barotropic potential vorticity equation in a zonal channel over variable relief.
The meandering current is idealized as a moving northern boundary. First, the case of free nonlinear Rossby
wave radiation is studied. Solutions are found in both the weak and high-amplitude limit. The latter solutions
are symmetric monopoles with closed recirculation regions, strongly similar to the ring shapes observed to be
shed by the Gulf Stream. )

In the boundary-forced case, the weakly nonlinear problem is thoroughly analyzed and boundary-forced,
equilibrium nonlinear solutions are found. The basic effects of nonlinearity can be summarized as follows:

1) Nonlinearity allows for the production of nonlinear radiation in the interior field through a resonance
mechanism. The resonant, equilibrium-forced solutions obey a forced Korteweg~de Vries (KdV) equation and
admit, for a specific choice of the forcing, two equilibrium amplitudes.

2) Allowing for a slow time modulation of the northern boundary wave, the resonant interior response
obeys the time-dependent KAV equation. Numerical experiments show that an initial condition corresponding
to the steady equilibrium solution previously found evolves with soliton production in the region affected by
the forcing. Thus, the interior response undergoes, on a long time scale, a nonlinear deterministic cascade
process leading to nonlinear radiation of shorter wavelength.

3) In the limit of high nonlinearity, and for long-wave radiation, it can be shown analytically that the cross-
channel structure of the interior field is very different from the structure allowed by the corresponding linear
model. In the linear case, over an essentially northward-sloping relief, an eastward-moving boundary excites
a response which, at best, has an oscillatory nature only in some interior, limited region, while exponentially
decaying near the northern boundary. Conversely, in the highly nonlinear case the resonant response is oscillatory,
i.e., radiating near the northern boundary. For sufficiently high nonlinearity, the excited eddy will have closed
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recirculation regions which may detach and propagate away from the boundary like Gulf Stream rings.

1. Introduction

In recent years there has been renewed interest in
the Gulf Stream system and its interaction with the
mesoscale oceanic eddy field. From the experimental
evidence accumulated in experiments like MODE and
POLYMODE, important questions emerge which have
not yet been adequately treated even in the context of
simple theoretical models. One of these questions con-
cerns the possible generation mechanism of the me-
soscale eddy field and, in the limit of high-amplitude
radiation, the formation of ring-like structures from
an eastward-meandering jet, like those observed to
emerge from the Gulf Stream.

This question is related to the general problem of
the radiation of mesoscale energy from a meandering
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current, which has been studied by several authors.
Flierl et al. (1975) examined the behavior of semi-
infinite domains driven by boundary forcing, using the
linear barotropic vorticity equation on the S-plane.
Pedlosky (1977) treated the same problem with a two-
layer quasi-geostrophic model including a mean cur-
rent. Harrison and Robinson (1979) studied the ques-
tion of radiation from a northern boundary into a
finite domain, -with zero boundary conditions at the
meridional boundaries which make it rather different
from the infinite northern wall problem. In the latter
case, the basic result is that in the quiescent ocean the
far field can transmit energy radiated by the northern
boundary only if it has a westward phase speed.

All these models are, however, linear. Nonlinear
effects may be expected to modify the above results,
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as indicated by numerical experiments carried out with
fully nonlinear models in which mesoscale radiation
is observed to be excited and to radiate away from an
eastward-moving jet (Holland, 1978; Ikeda, 1981; Ikeda
and Apel, 1981).

The above problem is investigated here in the context
of a fully nonlinear, although simple, model in which
the meandering current again is idealized as a moving
northern boundary. In Section 2 we assess the model,
namely the quasi-geostrophic equivalent barotropic
potential vorticity equation in a zonal channel over
variable topography, and find free nonlinear wave so-
lutions in different parameter ranges.

In Section 3 the problem of boundary-forced non-
linear radiation is thoroughly examined in the weakly
nonlinear parameter range. Nonlinearity allows for the
production of radiation in the interior field through a
resonance mechanism. The resonant equilibrium-
forced solutions obey a forced Korteweg-de Vries
(KdV) equation and admit, for a specific choice of the
forcing, two equilibrium amplitudes.

Two further effects of nonlinearity can be demon-
strated analytically. First, in the limit of high nonlin-
earity, and for long-wave radiation, the resonant in-
terior response excited by an eastward-moving bound-
ary has a cross-channel structure very different from
that allowed by the corresponding linear model. This
structure is oscillatory, i.e., radiating, near the northern

"boundary. For sufficiently high nonlinearity, the excited -

eddy will have closed recirculation regions and may
detach from the boundary itself, propagating away from
it like Gulf Stream rings.

Second, allowing for a slow time modulation of the
northern boundary wave, in the weakly nonlinear case
the resonant interior response obeys a time-dependent
forced KdV equation. An initial condition corre-
sponding to the previously-found steady equilibrium
solution evolves, with soliton production in the region
directly affected by the forcing. On the long time scale
the interior response undergoes a nonlinear determin-
istic cascade process producing nonlinear radiation of
shorter wavelength and permanent form, i.e., smaller
nonlinear eddies.

Finally, in Section 4 the conclusions of the present
study are given and directions for future research are
discussed.

2. Free nonlinear radiation in the zonal channel

The model to be considered is the quasi-geostrophic,
equivalent barotropic potential vorticity equation over
variable relief in a zonal channel:

7 AR VR +f8H) =0, (2.1)

where primed quantities are dimensional and subscripts
indicate partial derivatives;
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re=ptd,

where f; is the (constant) Coriolis parameter; H is the
average depth; |Ad| the (small) depth variation around
the mean value H; x is the along-channel (east-west)
direction; y is the cross-channel (north-south) direc-

tion; ¥ is the velocity streamfunction;
v = 62 82
3y’

is the horizontal Laplac1an;

6 ay’
the Jacobian of (a, b);

= Ve'Hfo

the Rossby deformation radius; and g’ =
gravity.

The model (2.1) is scaled in a zonal channel of width
L, according to

y' =Ly, (L /0y)x.

Thus L,, L, are the characteristic wavelengths of the
motion in the y (cross-channel) and x (along-channel)
directions, respectively, and §, = L, /L, is their aspect
ratio. Furthermore,

=Tt =(Ly/c"t =
V' =y = (UL WY

where ¢’ is a characteristic phase speed of the motion.
We consider a quasi-linear topography

SEH'(Y) = By + vh(),

thus introducing an equivalent beta-effect.
With the above scaling the model (2.1) becomes

ay’ ax’
reduced

x'=Lx=

b

(Ll/‘slc’)t}

(2.2)

R? 93 R? L
2 ot (‘l’yy + 512¢xx) - ‘h ﬂ o l: + ’Yﬂl hy(y)]']/x
s V0 R b+ s =0, 23)
IL L T 2 s Yyy I ¥xx *

The equivalent barotropic model (2.1) has two intrinsic
length scales: the Rossby radius R and the north-south
wavelength L, . I shall consider parameter ranges with
L; = R. Then, the scale for a typical phase speed is
¢’ = BR? and the following dimensionless parameters
are defined:

512 = le/Lzz,

the already introduced aspect ratio of north-south
(cross-channel) to east-west (axial) wavelengths;

= RZ/LIZ’

the aspect ratio of the Roésby radius to north-south
wavelength;
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€= ‘YLl/ﬁs

the small parameter measuring the quasi-linearity of
the relief; and

Yo R _ % _ U

Ro= LT~ BL? " BLy

the B-Rossby number where U is the particle speed.
Then, (2.3) becomes

P2 Y+ 0700 = b1+ bt O

+ RoJ(¥, ¥y + 8. %x) = 0. (2.4)

Equation (2.4) allows for permanent-form nonlinear
wave solutions. To derive them, we pass to the reference
frame steadily translating with the wave, defined by

s=x—c¢r, 7T=1,

where ¢ is now the dimensionless phase speed. In this
frame, (2 4) can be written as

(‘P + rg ¥ {RoWy +8%) + y + €h(y) + cy})
or
Ro(Y,, + 8:%s) + y(1 + ¢) + eh(y)
= F[y/(8’c/Ro) + y]. (2.5)

In other words, the potential vorticity is expressed as
a functional F of the streamfunction in the moving
frame. I shall consider only permanent wave solutions
for which the functional F is analytic, thus excluding
all modon-like solutions which are, however, admitted
by (2.5) if F is taken to be multivalued (Larichev and
Reznik, 1976; Flierl er al., 1980). Looking for a solution
localized in space and decaying at x — *oo where
there is no background flow, we obtain the shape of
F:
HZ)=(1+0Z + eh(Z)

everywhere. Thus (2.5) becomes

P+ 59 = (1 + 0

L)) o

The nonlinear solutions are required to be of per-
manent form. Thus the weak nonlinearity must be
balanced by a weak dispersion. Nonlinearity can be
weak for two reasons: 1) Because the wave itself is
weak (Ro < 1). This corresponds to solutions having
U < ¢, if U is the particle speed. Then particles will
not be dynamically bound to the wave. 2) Because the
functional is quasi-linear (¢ <€ 1). Then U = ¢ and
particles can be bound to the wave which will have
closed recirculation regions.
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Nonlinearity balances dispersion if eRo/§ = §25,%
The most general parameter range in which this balance
can be achieved is: ¢ = 8* < 1; Ro = 8,2 € 1. Then
both 1) and 2) are true. From the definition of the
dimensionless parameters, this corresponds to length
scales L, > L, > R, the case of weak asymmetric
nonlinear waves over weak relief. Permanent form so-
lutions can then be found for (2.6), but these are not
discussed here.

Two limiting cases are, however, of more interest.
In the first case, condition 1) is relaxed. This is the
limit 4,2 = Ro — 1, in which the permanent wave
becomes symmetric and has high amplitude: U = c.
Topography is quasi-linear: ¢ = §* < 1. The corre-
sponding length scales are L, = L, > R. To solve (2.6)
in the simplest example, I specialize to quadratic to-
pography:

h(y) =

Then (2.6) becomes
2
VR =1+ c)¢ o'y ‘// 2 (f) . (2.8)

2.7)

Expanding in 62 we obtain

Zeroth-order
Co = — l ]

Vi = —eido + (Yo/2). (2.8a)
Equation (2.8a) admits radially symmetric solutions
analogous to those found by Flierl (1979b) with a mean
shear flow. They were proposed as models for Gulf
Stream rings, because their most important property
is that they trap water in their cores. The radially sym-
metric solution of (2.8a) can be found numerically,
imposing as boundary conditions

dbo
dr r=0

Order &

Yolr-o = 4; =B; Y—0 as r— +co.

This uniquely determines the eigenvalue ¢; which is
found to be a “reinforcement” to the westward linear
phase speed ¢, = —1 (= —BR?). In the reference frame
(Y + cy) this solution is shown in Fig. 1.

The second limit of interest occurs when relaxing
condition (2), namely, the quasi-linearity of the to-
pography. Then 6> — 1 and the related parameter
range is defined by length scales L, > L; = R; 8,2
= Ro < 1 is the small parameter of the system and
the wave amplitude is weak: U < ¢. We now keep the
relief A(y) general. Then (2.6) becomes, expanding
hly + 8,%(y/c)] in Taylor series at y,

wyy+6,2¢ss=(1+c)‘p+h £+62h2yy(¢) (2.9)

Expanding ¢ and c in terms of 8,2,
V=t 0 oM+ -,
C=C0+6|2C|+614C2+ LR
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FIG. 1. Parameter range L, = L, > R; 6> < 1, 6, = 1. High amplitude monopolé solution
(2.8a), radially symmetric over quadratic relief A(}) = y?/2 in the reference frame (Yo + c;¥)
with o = -1.
We get: Eq. (2.10) is the KdV equation. The permanent wave

Zeroth-order

Yo = 8(5)9(»)

by — (1 + 1t hy)¢ =0 (2.92)
Co
#(0) = ¢(1) = 0

This is a Sturm-Liouville problem. With zero or pe-
riodic boundary conditions at the channel walls,
Sturm-Liouville theory insures the existence of an in-
finite denumerable set of orthogonal eigenfunctions
¢, and related eigenvalues co,,. These are the equivalent
of the phase speeds of linear Rossby waves over to-
pography, dispersionless in the axial (x) direction. The
0O(3,%) problem is '

‘plyy - [1 + Lt hy:|¢|
Co

c h
=- ;0‘—2 (1 + Ao — Yoss + gyoyz Yol (2.9b)

The solvability condition for ¢, implies multiplying
(2.9b) through ¢(y), one of the eigensolutions of (2.9a),
and integrating over the channel width. This gives the
equation for g(s),

Ci (7%} 2
ss+—- ~ a2 =0, 1
Hges + 308~ 2 0 (2.10)

with
1
a =f ¢2dy
()}

1 |
= fo &1 + hy)dy (2.10a)

1 .
as = f hyy¢3dy
0 .

solution decaying to s — oo is the solitary wave
g(s) = A sech?(Bs). 2.11)

Values of 4, B and ¢, are obtained by substituting
(2.11) into (2.10):

2
A= 120 g (2.12a)
as
4 2
¢ = — 249 p (2.12b)
a

Equation (2.11) is a one-parameter family of solutions,
depending upon the value assigned to B. Also, as ev-
ident from (2.12a), the solution (2.11) is an “elevation”
(4 > 0) or “depression” (4 < 0) solitary wave according
to a;/a; s 0. These solutions are analogous to those
found by Malanotte-Rizzoli (1980a,b) for the baro-
tropic, quasi-geostrophic vorticity equation over vari-
able relief, for which the sinusoidal topography
h(y) = siny + sin(2y) was used. They also have a weak
amplitude. However, it can be shown that the Rossby
number can be numerically increased and the limit of
high amplitude (U = ¢) can be réached. The numerical
experiments of Malanotte-Rizzoli (1980b) demon-
strated that the solitary wave solutions maintain their
property of permanent shape even in the limit
Ro — 1, beyond the validity range of the analytical
theory. .

3. Equilibrium boundary-forced solutions

The problem of the existence of boundary-forced
nonlinear wave solutions, when the forcing is imposed
at the northern wall of the zonal channel, is now ad-
dressed. The northern wall boundary condition can
be thought of as a crude idealization of a time-depen-
dent northern current.
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Model (2.1) is nondimensionalized as in Section 2.
The equilibrium-forced radiation of (2.1) in the pa-
rameter range §° = 1; §,> < 1, corresponding to the
second case explored in Section 2, is studied in detail.
A completely analogous treatment can be repeated for
the very weakly nonlinear case §° < 1; §;2 < 1. The
opposite case of strongly nonlinear, symmetric eddies
with 8,2 = 1, 8> < 1 (first case treated in Section 2),
cannot be treated with the following asymptotic treat-
ment. It can be thought of, however, as the limit of
either of the above problems when increasing simul-
taneously the strength and symmetry of the solution.
This limit can be reached numerically.

With 8% = 1, Ro = §,%, and keeping the model in
time-dependent form, (2.1) is

Yo — Yo + ¥ + Al + 8w + T, )]
+ 6,°JY, ¥x) = 0. (3.1)

We impose at the northern wall a traveling wave forcing
WX, 1, 8) = filx, 1) = filx — csl).

The equilibrium-forced solution, if it exists, will have
a phase speed c fixed by the boundary driving:

C = Cp. (3.2b)
Thus, we seek a steady forced solution of the form
¥ = Y(x — ct).

We pass to the reference frame s = x — ¢t in which
the wave is steady. Following the procedure of Section
2, we expand ¢ and ¢, in power series of the small
parameter 8,2, The zero-order problem is identical to
(2.9a), with Y, = g(s)¢(»). The O(8,%) problem is now

1+h,
'wlyys - [ ]¢ls
1 h '
c’( GUAR) o Yo + ’0'7 Yobos,  (3.3)
with boundary condltlons
,0=0 =
(s, 0) at y O} 3.4)
¥is, 1) =fo(s) at y=1

Notice that in the free case, repeating for (3.3) the
treatment of Section 2, not only the solitary wave so-
lution (2.11) but also periodic cnoidal wave solutions
would be obtained. (See Malanotte-Rizzoli, 1982, for
a review of the solutions of the KdV equation.) These
were not allowed by (2.9b) because of the requirement,
made at the beginning of Section 2, for the solution
to be localized in space. This requirement is not made
here. There are two choices to satisfy the boundary
condition (3.4). In the first case, consider a boundary
forcing of O(1). Then (3.4) is

Yols, 0) = at y= 0}

(3.5)
Vols, 1) =fi(s) at y=1
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The equilibrium-forced solution is found at zero-order
and is given by

Yo = g(S)¢(y)} ’ (3.52)
8(s) = fus)
1+h,
P [1 T :Id’ - (3.5b)
#0) =0, ¢(1)=1
In general, the solution to (3.5b) is:
¢ = ¢(Ky)/$(K), (3.6)

where we define K as the average y-wavenumber.
Equation (3.6) is valid for all the values of ¢, 2 0 which
do not satisfy ¢(K) = 0, that is, the eigenfrequencies
¢on Of the free modes in the zonal channel. If ¢; = ¢,
the forced response is infinite, because system (3.5) is
simply the linear oscillator problem forced at one of
its resonant frequencies.

The most interesting case, however, is just when
¢ = con, one of the resonant eigenfrequencies. If
Jo» = O(1), the weakly nonlinear oscillator will obviously
respond in the same way as the purely linear oscillator,
as shown by (3.5) and (3.6). Consider then the weak
forcing case, f, = O(8,%). The zero-order problem is
now solved by

Yon = gn($)n(¥),  Yon(s, 0) = You(s, 1) =0, (3.7a)

with ¢ = ¢, and ¢y = ¢y, solutions of (2.9a). The O(5,?)
problem now is

1+ h)
wlyys - [ h ]‘pls
CI(I + all+ ) Yos = Yosss T ﬁ:_; YoVos,
\h(s, 0)=0

Yils, 1) = fy(9). (3.70)

In the present nonlinear case, a weak forcing of O(8,%)
at one of the resonant frequencies ¢, excites a finite
response of O(1).

The usual solvability condition applied to (3.7) gives
the equation for g,(s):

c as
A1 8nsss + ;nz A 8ns — 2 8n8ns = aﬁ’.\' (3°8)
Con Con
or
c a
@18nss + 5 M28n — 5582 = ofs + K, (3.82)
Con 2¢on
with K an integration constant,
o= ¢ny|y=l’ (3.8b)

and a,, a; and aj are given by (2.10a). Equation (3.8)
is the inhomogeneous form of the KdV equation. For
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a general forcing f;, the solutions of (3.8) can be found
numerically.
We can solve (3.8a) analytically for the specific case

fo = ap sech®(Bs), K=0, (3.9)

by seeking a solution of the same shape as the free
nonlinear wave
& = A sech’(Bs), (3.10)

and for the particular case when the O(d,%) boundary
phase speed
4a,cy*

G =—- B, =ct,

3.11)
a

that is, the O(8,%) phase speed of the free nonlinear

wave.

In the forced case the amplitude of the response is
fixed by the forcing wavenumber B and amplitude a,.
Specifically, it must satisfy

20[6'02

12¢y’B%a
+ 0 ! A+ a, = 0.
as as

A2

(3.12)
Equation (3.12) shows that multiple equilibrium re-
sponses exist if
(6c0282a1)2 S 2aco’ay
as a;

(3.12a)

Equation (3.12a) is a constraint on the possible wave-
lengths 1/B, once the forcing amplitude a, is given.
The multiple response curve (3.12a) is shown in Fig.
2 for the two cases a3 2 0.

Let us consider the expression (3.11) for ¢, = c¢¥.
For those reliefs 4(y) for which a, > 0 (as for a quadratic
topography A = y?/2), as a, > 0 always, ¢} < 0. Equa-
tion (3.12) can equivalently be written as

M<O

A

~

Az

(dap)

a3>0 A
/

FIG. 2. Multiple response curve (3.12) for the amplitude A4 of the
resonantly excited equilibrium response g = A sech’(Bs) with the
boundary forcing f, = a, sech®(Bs). The response amplitude A4 is
given as a function of the forcing amplitude («a,) for the two cases
a; 2 0, with a; defined by (2.10a).
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F1G. 3. Resonantly excited equilibrium nonlinear waves with a
boundary forcing f, =sech®(Bs) and a,=1 over the relief
hy) = =22y + 2.2y% (a) Lowest westward-propagating wave
Yo = A sech’(Bs)¢,u(y), where B = 0.7, 4 =~ —1, and §,;> =~ 0.1.
(b) Lowest westward-propagating wave ¥ = ¥ + 8,2, with y; as
in(@.B=2 A=-2and Ro =42~ 1.

2
I A C.L) B
as as
or
A=— 13a; (—c) + |:l (3az(—c, ))2 _ 2C02(aa,,)]l/2'
2 a 4 as as
(3.12b)

If a; < 0 and aa;, > 0, there are two equilibrium forced
solutions, one with 4, > 0 and the other with A4,
< 0. If aa, < 0 there are again two equilibrium forced
solutions, both with 4 > 0, if

1 (302(—01 ))2 (=a3)

(aap) > —

4 as 2¢o?
_ (=a) (6a,ci*B?\?
ST o = (Qap )mins

which is always satisfied.

If a; > 0, for (aa;) < 0 the two equilibrium responses
have 4, > 0, 4, < 0; for 0 < aa, < (aap)max they both
have 4 < 0. Thus, the two equilibrium responses always
exist.

With a boundary forcing f, = sech*(Bs), consider
the weakly nonlinear case 8,2 ~ 107'. In Fig. 3a
we show the equilibrium solution ¥, with ¢ = ¢
~ —s < 0, the lowest westward-propagating eigen-
mode over A(y) = —2.2y + 2.2y% With the above
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aspect ratio, we have for this mode B = 0.7; ¢
~ +'; > 0 as evaluated from (3.11); ¢,/,-; < 0, aa,
< 0; and a3 > 0. We display the solution with 4 < 0,
specifically 4 ~ —1 as evaluated from (3.12b). The
pattern of Fig. 3a is only the zero-order resonant equi-
librium response . The full solution of the problem
to O(8,%) is Yo + 6,2, In Fig. 3b we show the pattern
of (Yo + 8,%¢,), again for the lowest westward-prop-
agating eigenmode of Fig. 3a, but in the limit Ro =
8,2 — 1. In Fig. 3b, 4 = —2 and B = 2. From Fig. 3b
it is clear that the equilibrium resonant response (Yo
+ 8,4, is radiating away from the northern boundary.
Even though the limit Ro = 8,2 — 1 is outside the
validity range of the analytical treatment, Fig. 3b is

shown to emphasize the similarity of these resonant.

nonlinear eddy patterns with the eddies shed by un-
stable jets in numerical experiments (Holland, 1978;
Ikeda and Apel, 1981; Ikeda, 1981). This similarity is
obviously more striking going to the (numerical) limit
of high nonlinearity (high aspect ratio) but it is true
also for the weakly nonlinear case. In fact, the eddy
shapes excited in the numerical experiments quoted
above are often highly elongated and asymmetric.
I have examined the details of the equilibrium res-
onant solution under the forcing f;, = a, sech*(Bs) when
= ¢} as given by (3.11). Let us examine the behavior
of the resonant response for an arbitrary value of the
phase speed c¢;, under the same northern forcing. Then,
with K = 0, (3.8a) is
a, g + —c—li ag — 2 2 g% = aay sech®(Bs), (3.13)
0
where we have dropped the subscript # for simplicity.
For arbitrary c,, the solution of (3.13) will not be
the simple function sech?(Bs). First, from (3.13),
g ¥ 0 always. In the limit ¢, — o0, the asymptotic
solution of (3.13) is

&) =

that is, the solution tends asymptotically to zero. If
¢, — o0, g — o0, the asymptatic behavior is given by

= (2az/a3)cy, (3.14b)

a straight line in ¢,. The limit ¢; — 0 leads to

(eas)es®

ax¢,

sech*(Bs), (3.14a)

a18ss — 2 2 g = aay, sech*(Bs), (3.14¢c)
which is not amenable toa 51mple analytic solutxon
However, the forcing function is even around s = 0.
A Taylor series expansion of (3.14c¢) can be performed

around s = 0. This leads to

gs|s=0 = gsss|:=0 tee = 0:

- 4(aap)Bcy?
gssls—O = T s
as
algss|s=0 - '2';0'5 g2|s=o = adp.
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As g oc 1/g, unless (aay) — 0, the balance in the
third of the above relationships is essentially —as/2cy’g?
=~ aday. If (aay) — 0, we recover the limit of the free
nonlinear solution. Then, for ¢, — 0, near s = 0

_ +(—2(aa;,)c02)”2
g~

The solution is known when ¢; = ¢¥ < 0.

From the above limits, the behavior of the solution
can be inferred as a function of ¢,, if with 4 we now
indicate its maximum amplitude. Distinguish the fol-
lowing cases, considering topographles for which
a, > 0:

a) a < 0.

al) aa, > 0. :
From Fig. 2, at ¢, = cf two solutions exist, with
A, <0, 4, > 0. From (3.14a): lim g(s) = =0. From

C1—=x oo
(3.14b): lim g(s) = Foo. From (3.14d), when ¢, —

c1—too

0, near s = 0, g has two real solutions, one positive
and the other negative. Through continuity, two real
solutions can be inferred to exist for every s. The above
information can be summarized in the plot of Fig. 4a
(upper panel).

32) aa, <0, :
From Fig. 2, at ¢; = ¢¥ two solutions exist, both with
A > 0. From (3.14a): lim g(s) = 0. From (3.14b):

C1—+to0

Foo. From (3.14d); however, in this case

(3.144d)

lim g(s) =

Cc1—x
no real solutions exist for ¢; — 0 near s = 0. The
solutions are purely imaginary. Thus there will be a
region around ¢, — 0 in which no real solution exists.
The lower panel of Fig. 4a shows the above behavior.
In this case, no real solution exists when ¢; — 0, say
for ¢,V < ¢, < ¢;®. ‘

The corresponding two further cases:

bl) a3 > 0;, aa,>0,

b2) as > 0; aap< 0,
are shown in the upper and lower panels, respectively,
of Fig. 4b. From Figs. 4a and b we can conclude that
either two equilibrium resonant responses always exist
for arbitrary c¢,, or that no real solutions exist near
¢, — 0. The generalization to an arbitrary forcing func-
tion f, can be carried out only by solving (3.8a) nu-
merically. The possibility of a nonlinear resonance
cannot be excluded by the above specialized treatment.
However, as (3.8a) is a quadratic equation in the re-
sponse amplitude, it may be inferred that in the general
case also, no more than two equilibrium steady re-
sponses will be possible. )

We have thus far considered the weak amplitude
limit of asymmetric radiation in the zonal channel.
Let us focus again on the zero-order linear problem
(2.9a), always for a forcing function f, moving at one
of the resonant eigenfrequencies ¢, = ¢, of (2.9a).

Over reliefs for which A, > O everywhere, like
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aa, > 0 (upper panel) and aa, < 0 (lower panel). (b) Case a; > 0:
aa, > 0 (upper panel) and aa, < 0 (lower panel).

h = y?/2, a northward-sloping topography, the only
solutions to (2.9a) have a westward zero-order phase
speed. Thus, only a westward-moving northern
boundary will excite interior resonant responses ca-
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pable of radiating. Let us choose the topography A
= —2.2y + 3y?, again sloping northward, but for which
h, changes sign in the zonal channel. Such a relief is
shown in Fig. 5a, and allows for eastward-propagating
eigenmodes. However, the relief being very similar to
the purely northward-sloping case, the eastward-prop-
agating eigenmodes have a weakly oscillatory behavior,
confined to an interior region of the basin and decaying
away from it. Figure 5b shows the lowest eigenmode
with ¢y, > 0 for such a relief. This is not surprising
because, for weak nonlinearity, the zeroth-order prob-
lem gives a y-structure identical to the linear problem,
and a relief which is mostly northward sloping acts
essentially as an intensified 3-effect.

@ b hiy) = -2.2y + 3y®
0
y
=}
A
®
0
y
_|__
A
© oo
\ A\
vl
‘\ I{ !
\
Vo |
b
0 ‘J \
2K X 1 y

FIG. 5. (a) Shape of the relief 2(y) = —2.2y + 3y? in the zonal
channel 0 < y < 1. (b) Lowest eigenmode over the relief of (a),
eastward propagating for the linear or weakly nonlinear problem.
() Structure of the solution near the northern wall in the highly
nonlinear case Ro — 1 over general topography, and in particular
over a quadratic relief of the type shown in (a).
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Let us now increase the amplitude of the forcing at
the northern wall. We want the nonlinear resonant
response to be long-wave radiation in the zonal chan-
nel, with a wavelength aspect ratio 8, < 1 but with a
Rossby number Ro — 1. We consider therefore the
limit of a boundary forcing f, = O(1) at one of the
resonant frequencies ¢g,, which will excite a response
Yo = O(1/8,%). Then, rescaling problem (3.1) and put-
ting Y* = (1/8,2¢, (3.3) becomes

1
32 [TCWhs + ol +yr + Ayt
1

+ JW*, Y51 — el + WK, YY) = (3.15)
The lowest order (1/8,2) is now
1+ h,
¢B‘yys - [1 * :|1P3‘s
1
- C_O (‘l/&t\bgyyy - ¢3‘y\03‘yys) =0. (3.16)

Equation (3.16) is a nonlinear eigenvalue problem
whose eigenfunctions and eigenvalues co,, if they exist,
will be very different from those of (3.6a).

We can think of approaching (3.16) in two ways.
First, start from (3.7a) and force with a boundary wave
J»of gradually increasing amplitude and speed co,. The
study of (3.16) with ¢, = ¢, assigned will then allow
us to infer the properties of the resonant response in
the limit f, — 1.

Alternatively, we can study (3.16) directly as the
zero-order problem, with Y, = 0 at y = 0, 1, and see
whether solutions with oscillatory behavior which are
also eastward moving with ¢, > 0, do exist.

The behavior of (3.16) is explored near the northern
boundary y = 1. First we pass to the coordinate
y' =y — 1, for which (3.16) remains formally identical.
We then transform (3.16) into an equivalent nonlinear
problem, the approximate expression of which, valid
near the northern boundary y' = 0, is (see the Ap-
pendix)

Wy + [(1 + co)y' + RO — exp(¥d /coy)]

=¥+ + a1 =0, (B.17)

with boundary condition ¢§(s, 0) = 0 at y' = 0. Equa-
tion (3.17) is valid near y’ = 0. We can further ap-
proximate it by expanding exp(¥§ /coy’) in a Taylor
series of Y& as Y — 0 at y' = 0. Retaining terms to
O(Y4?), (3.17) becomes

1+ 2¢c0)y + h(y'
%y,y,_( o)y' () -

Coy

(1 + co)y' + h(y)
2c02y’2

XY+ [y + ) =0. (3.18)

Equation (3.18) is a KdV equation with variable
coefficients, valid in a layer near the northern boundary
where the coefficients are gradually varying functions
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of y'. 1t is thus equivalent to the KdV equation gov-
erning the propagation of cnoidal and solitary waves
in a channel of gradually varying depth and width
(Miles, 1979). Because (3.18) is not separable in
(s, "), the general shape of the solution locally in s
will be the equivalent of the solution for the gradually
varying channel, that is,

(s, ") ,
n(s)

where n(s) is the modulus of the Jacobian elliptic func-
tion cn and 0 < n < 1. The solution will thus have
the shape of a cnoidal wave, oscillatory in cross-channel
direction, with values for 4, B and 6 slowly varying
in y'. Also, the amplitude 4, wavelength B(s, y')/n(s)
and phase &(s, ') undergo a modulation during the
propagation along the channel. The boundary con-
dition y§ = 0 at J' = 0 is equivalent to quantizing,
locally in s, the reference phase (s, 0) at the northern
wall, and assigning a boundary value to it:

8s, 0) = 2/ + NK(s,0) with [/=0,1,2,....

Y& = A(s, y')en [ V' + (s, ’)], (3.19)

K(s, 0) is the value at ' = 0 of the related Jacobian
elliptic integral. This is consistent with the solution
for the cnoidal or solitary wave in the gradually varying
channel (Miles, 1979) in which the reference phase is
evaluated relative to a reference point.

Equation (3.19) shows that the y-structure of the
solution near the northern wall is now very different
from that of the weakly nonlinear case. This oscillatory
structure is modulated by the amplitude A(s, »');
A(s, ), B(s, ¥") and 4(s, )’) can be found by substituting
(3.19) into (3.18). This yields

6n(s) co’y'™?

A¥(s, y) = 1 = n(s) (1 + co)y’ + h(y)

[y + A3,
(3.192)

showing that the solution does not decay away from
the northern boundary. Equation (3.19a) also shows
that the solutions exist for all the reliefs for which A(y")
> 0 and A(0) ~ O(1). In fact, (3.19a) can be written
in this case as

6n(s)y ,
1 — n(s) Yy,

neglecting y’ with respect to A(y’) ~ O(1). This is true
for the specific case

A ~

(3.19b)

(O +1y
2 3
a purely northward-sloping relief, and in the previously
considered case, A(y) = 2.2y + 3y%
For this type of relief, (3.19b) also shows that the
solution exists for both ¢, 2 0, that is, also in the case

in which the boundary wave is eastward propagating.
Figure 5c shows the qualitative structure of (3.19) near

2
=7 _
h_z
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the northern boundary, and must be compared with
Fig. 5b, the solution in the weakly nonlinear case. The
above results indicate how the limit of high nonlinearity
may profoundly modify the interior field response and
allow for radiating interior responses even when the
northern boundary is eastward moving.

A second effect of nonlinearity can be investigated
for the weakly nonlinear system (3.1). Consider again
a weak boundary forcing f, = O(3,%) at one of the
resonant eigenfrequencies co, of the zero-order problem
(2.9a). Let the O(3,?) phase speed of the forcing wave—
the detuning from the linear speed co—be a slowly
varying function of a long time scale 7. The boundary
wave is moving at the constant zero-order speed ¢
with a slow modulation

Jo = 1o, T) = folx — cot, T) (3.20)

with T = §,%. Introducing the long time scale T, system
(3.1) becomes .

\byyt + 612\0ny - \bt - 612\0T + ¢x + hy\bx
+ 512[¢xxt + J(‘% ‘pyy)] + 614‘pxx7'
+ 0,0, ¥x) = 0. (3.21)

Passing again to the moving frame § = x — ¢of and
expanding ¥, in powers of 8,2, the zero order system
is the same:

1+ 4,

\[’Oyys - [l + :|¢Os =0,
Co

where now Y, = g(s, T)¢(y) and ¢(0) = 0, and ¢(1)
= 0. The O(3,%) system becomes

1+h
‘#lyys - [1 + y]wls
Co

1 +h,
C02
with ¥(s, 0) = 0; ¢(s, 1) = f,(s). Multiplying again

through by ¢, integrating across the channel and ap-
plying the boundary condition on ¢, at y = 1, gives

(3.22a)

1
¢gT - ¢gsss + F hyyd’zg s (322b)
0

2 2
as acy acy

+ g8~ —— g = ———frs, (323

&r a 88s a, &sss az‘fl‘z ( )

where a = ¢,/,-1, and a,, a, and a; are given by (3.8b).
Equation (3.23) is the time-dependent version of the
forced KdV equation. Notice that, had we not allowed
for a slow time evolution of the O(3,%) phase speed ¢,
but instead kept it constant, we would again obtain
the resonant equilibrium equation (3.8).

Equation (3.23) can be solved numerically by
choosing a specific shape for the forcing function f;.
Choose f, = a, sech*(Bs), for which, in the steady equi-
librium case, the solution is g = 4 sech’(Bs). Rescale
s through s = as/a,{. Equation (3.23) becomes
2,2 2

a,ax%¢ ac
gr+ 88— — 23 gy = — ——for. (3.24)
as a
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The unforced version of (3.24) is the canonical form
of the time-dependent KdV equation (Jeffrey and
Kakutani, 1972; Zabusky and Kruskal, 1965). To solve
it, a spectral numerical code based upon Fourier de-
composition has been developed, following Fornberg
and Whitham (1978) in a channel with 0 < y < 1 and
0 < x < 8, with periodic boundary conditions in x.

Equation (3.24) has been solved for the lowest west-
ward-propagating mode of A(y) = —2.2y + 2.2y%
shown in Fig. 3a. For this mode, ¢¢ ~ —'% and
¢ ~ Y in the steady equilibrium case. Evaluating a,,
a, and a; for this mode as in (2.10a), the dispersion
coefficient is

Vi ( 107!

)~

With the chosen forcing function f;, = a, sech®(B¢),
the right-hand side of (3.24) becomes

_aCoz
Jo
as as

a,co’ax’
033

4 2
= 290 4, B sech’(B¢) tanh(BY).

For the chosen mode a3 > 0 and a < 0. Choosing the
wavenumber of the forcing wave to be B = 1, we have

4(16’02

Bay =~ 2a,.
as
Equation (3.24) has been solved for the two specific
values of the forcing amplitude a,: 1) a, = —0.005; 2)
a, = —0.025. In both cases, (aap) > 0. From Fig. 2,
on the multiple response curve with a; > 0, for (aa,)
> 0 two possible response amplitudes are allowed in
the steady case, both negative, i.e., 4 < 0. With the
above values for a;, a, ¢, a;, a; and as, the values of
A can be evaluated from (3.12). With the initial con-
dition g(0, {) = A4 sech?(B¢), the numerical integration
of (3.24) for the cases 1) and 2) shows a completely
analogous evolution of the given initial condition on
the long time scale T, but it is slower for case 1) because
the forcing amplitude q, is weaker. Thus, we present
results relative to case 2) only. For this case, the two
equilibrium amplitudes obtained from (3.12) are A4,.
~ —0.03 and 4; =~ —1; we choose 4 = A, =~ —1.
Notice that the corresponding free nonlinear wave am-
plitude as given by (2.12a) is in this case Age. =~ —0.4,
which is also negative.
In Fig. 6 the forcing function

(4aco®/as)Bay sech®(B¢) tanh(BY)
~ —0.05 sech*(B¢{) tanh(B{)

for case 2) is shown at T = 0.

The numerical channel is X = 8 dimensionless units
long if Y = 1 is its width. For the chosen mode, the
Rossby number and aspect ratio are

€=0,"=LYL?*=(B/2)* = 0.25.

In Fig. 7 the initial evolution of the given initial con-
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fp, = -0.05 sech?® (BL) tonn (BL)

j_ 143

X0

L -1.43

FIG. 6. Shape of the forcing function f, = —0.05 sech*(B¢)
tanh(B¢) in the channel 1 < { < 8 with B = 1.

dition is shown in the reference frame of (3.24), moving
with the northern forcing wave. The slow distortion
of the initial wave under the asymmetric forcing func-
tion is evident. After n = 320 time steps, the forced
response has become completely asymmetric. Its am-
plitude continues to grow because the model has no
dissipation. After n ~ 960 time steps, the forced re-
sponse begins to break down into a number of
high amplitude nonlinear pulses. With a time step
DT = 1073 required for numerical stability, this cor-
responds to a long time scale 7 =~ O(1) or ¢ =~ 4 on
the short time scale. In Figs. 8a and b we show the
evolution of the given initial condition after break-
down. Specifically, Fig. 8a shows the initial condition
itself and its shape after n = 320 time steps, when it
has become asymmetric. The two successive responses
are at n = 1280 and n = 2240 time steps. It can be
noticed that the response breaks down first on the side
where its amplitude has become positive under the
influence of the forcing. However, the nonlinear pulses
thus produced decay rapidly when emerging from the
region in the channel directly affected by the forcing.
Figure 8b shows the successive evolution at # = 2880
and n = 3520 time steps, at which the numerical ex-
periments were ended. The behavior of the forced re-
sponse now shows some remarkable features. On the
side where the forced response has become positive,
namely the left part of the channel, the pulses which
are produced rapidly decay .to very small amplitude
as soon as they emerge from the region directly affected
by the forcing. Each nonlinear pulse also moves west-
ward while rapidly decreasing, as is evident when com-
paring the evolution at #n = 2880 with that at n = 3520.
At the center of the channel the forced response is
biggest, and its maximum amplitude shifts eastward
in the final stages of the experiment. On the right part
of the channel, where the forced wave was still negative
at T ~ O(1), the behavior is very different. Nonlinear
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pulses also are produced but 1) they move eastward,
and 2) they are much more regular in space and they
increase in amplitude from time step n = 2880 to
n = 3520. Notice that the regularly spaced pulses have
high amplitudes exactly out of the region of direct
forcing influence.

The above result is consistent with the properties
of the time-dependent unforced KdV equation. As
previously noted, the free nonlinear steady solitary
wave would have 4 ~ —0.4 in the present experiment.
Also, its (constant) nonlinear phase speed would be
¢ ~ Y, namely an eastward correction to the linear
phase speed ¢, =~ —Y%. When the forced response pulses
emerge from the direct forcing influence, they will be-
have like free nonlinear waves. In the channel region,
where at T ~ O(1) the forced amplitude is still negative,
they will be allowed to evolve as free solitons of the
KdV equation. In the opposite region, instead, they
will rapidly decay to dispersive wave packets. Also, the
free nonlinear pulses in the right region of the channel
move eastward. Note that the forced response is rep-
resented in the reference frame moving with the linear
phase speed co =~ —Y%. The limited length of the channel
and the periodic boundary conditions prevent a better
separation of the free nonlinear waves on the one side
from the dispersive decaying radiation on the other.

Let us now interpret the above results as resonant
radiation propagating away from the northern moving
boundary in the zonal channel. The boundary wave
is moving westward; thus a radiating forced response
is allowed in the present weakly nonlinear case. The
boundary wave also undergoes a siow modulation over
a long time scale 7. The forced response will then
exhibit a nonlinear cascade of energy to wavelengths
smaller than the initial wavelength L, = 1/B deter-
mined by the forcing wave. This cascade is determin-
istic. As the forcing has a limited spatial extent, the

of o

-5}

FiG. 7. Evolution of the initial condition g({) = 4 sech?(B{), with
B =1 and 4 = —1 in the reference frame moving with the forcing
wave at the initial state ¢ = 0, and at the successive dimensionless
times ¢ = 60, 180 and 240, and at the completely asymmetric state
t = 320.
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FI1G. 8. Evolution of the initial condition of Fig. 7 on the long time scale 7. (a) Initial condition at ¢ = 0 and successiye evolution at
the labeled dimensionless times. (b) Successive evolution of the pattern of (a) at the labeled dimensionless times.

forced nonlinear eddies will evolve according to the
different types of dynamics as soon as they are outside
the region directly affected by the forcing. In the region
in which the forced amplitude has the same sign as
the allowed free nonlinear waves, the smaller eddies
produced will evolve as free permanent-form nonlinear
structures. In the present case they are slower than the
boundary wave. Conversely, in the opposite region
they will obey a dispersive dynamics. In the present
case, the dispersive wave packets are faster than the
boundary wave. The final pattern will be composed
of a forced wave resonantly excited, radiating from
the moving northern boundary and breaking into
smaller and slower nonlinear eddies, together with dis-
persive faster radiation. The above picture seems to
be a consistent, though qualitative, model for regions
of intense mesoscale activity south of a moving bound-
ary current.

4. Conclusions

In this study we analyze the effects of nonlinearity
in determining the properties of free and boundary-
forced radiation in a zonal channel in the context of
a simple analytical model. The results of this inves-
tigation can be summarized as follows:

1) Nonlinear, permanent-form free solutions are
allowed for by the model in a variety of parameter
ranges. In the weak nonlinear limit these solutions are
nonlinear topographic Rossby waves asymmetric in
the zonal direction. In the limit of high nonlinearity,
the steady free solution is a radially symmetric
monopole with closed recirculation regions. The shape
is that typical of coherent eddies which have been ob-
served to be shed by an unstable eastward-flowing jet

_ like the Gulf Stream.
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2) For the boundary-forced case, a meandering cur-
rent is idealized as a moving northern boundary. The
weakly nonlinear case has been thoroughly investigated
over an arbitrary relief 4( ). The most important effect
of nonlinearity is to allow for the production of non-
linear radiation in the interior field through a resonance
mechanism. In the corresponding linear model the
interior response would be infinite. The resonant,
equilibrium-forced solutions obey a forced KdV equa-
tion, which can be solved in general only numerically.
Analytical solutions can be found for a specific shape
of the northern forcing wave. Under this assumption,
it can be shown that the resonant interior response
has multiple equilibria, that is, two equilibrium am-
plitudes for quite general values of the nonlinear phase
speed c;(A).

3) Always in the weakly nonlinear limit, a second
important effect of nonlinearity can be investigated
allowing for a slow time modulation of the northern
wall forcing. The resonant interior response then obeys
a time-dependent KdV equation. An initial condition
corresponding to the steady equilibrium solution valid
in the same parameter range evolves with soliton pro-
duction under the influence of the modulated forcing.
When the produced solitons emerge from the region
directly affected by the forcing, they propagate as free
permanent radiation in the direction allowed for by
the unforced KdV model. In the opposite direction
they evolve into dispersive wave packets. Thus, the
resonant interior response undergoes, on the long time
scale, a nonlinear, deterministic cascade process leading
to nonlinear radiation of shorter wavelength, smaller
eddies, together with dispersive radiation. These two
types of radiation travel with opposite phase speeds
with respect to the boundary wave.

4) The highly nonlinear, boundary-forced case can
be studied analytically only in the limit of high non-
linearity (Ro = 1) but small north-south to east-west
aspect ratio (3, < 1). This corresponds to the case of
resonantly excited long-wavelength radiation in the
zonal channel. Nonlinearity can be shown to modify
profoundly the interior field with respect to the purely
linear model. In the linear case, over a relief which is
"essentially northward sloping, an eastward-moving
boundary wave excites a response which, at best, has
an oscillatory nature only in some interior, limited
region. Near the northern boundary itself, this response
decays exponentially to zero. Conversely, in the highly
nonlinear case the resonant response is shown to have
an oscillatory behavior near the northern boundary
even when this boundary is eastward moving. Thus,
the limit of high nonlinearity also will allow radiation
to propagate into the far field from an eastward-moving
meandering current. In the limit ,> — 1, the excited
nonlinear eddy would tend to the monopole shape of
Fig. 1 with closed recirculation regions and might de-
tach from the boundary, propagating like a Gulf Stream
ring.
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The fully nonlinear case, with an aspect ratio §,°
= O(1), cannot be treated in the context of the present
asymptotic theory. It can be explored only through
numerical experiments carried out by directly inte-
grating the full model in the different parameter ranges
of physical significance. Numerical experiments are
therefore necessary to explore the possibility that a
nonlinear resonant mechanism like the one proposed
here will excite interior radiation profoundly different
from that produced in the context of a linear theory.
Such experiments should 1) allow for radiating solu-
tions when the northern jet is eastward moving, and
2) allow for eddy shapes to be excited, similar to the
free monopole solutions found in Section 1. Progress
in this direction is already under way.
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APPENDIX
Solution of (3.16) Near the Northern Boundary

The starting equation is

l+c+h
wﬂyys_——u\bOs

¢0y¢0yyx) =0
Co
(A1)

We want to explore the behavior of (Al) near the
northern boundary where y = 1. The change of co-
ordinate is

1
- (¢Os¢0yyy -
Co

y'=y-1.

Equation (A1) remains formally identical in the new
coordinate y":

1+¢+ h
‘I’Oy’y’: - ‘Po:
Co
1
- C_O (‘pOs‘pOy’y’y’ - ¢0y"p0y’y's) =0 (Ala)
Put
Yoyy = F(o, ¥, (A2)

an unknown functional of the two arguments (Yo, ¥).
Then

1) ‘;’Oy’ys J(‘,/Oyyay) ai,b ¢
oF O*F y'2
=/ (“"” o ) (%’ Nody 2)
»FF y? 8'F y* .
+J (‘”°’ Hody” F) i (‘”"’ FYRERE 24) ’

2) Jo, Yopy) = JI¥o, Fo, ¥ # 0,
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and (Ala) becomes
82 F y:2

oF ¥ 3*F »y*
(‘1/05 { - ’ +
3% - Oody’ 2

FF y° »*
Nody” 24

MNody? 6

+ ... At + hy) _lF(%’y,)}) —0,
Co ¢
or
OF ,_ &F y* &F y°
Wo”\ Ay 2 o9edy” 6
__OF yt (Lt +hy)
Mody” 24 c

— L Bo, y) = Gwo). (A3)
Co

The general solution of (A3) is
F=F H + F, ps

where Fy is the integral of the homogeneous part of
(A3) and F, is a particular integral depending on the
unknown function G(yy). '

We seek a particular integral of (A3) in the form

F, = aX(yo) + b(y"

for which
FF _ PF o
0oy Wody” ’
Equation (A3) is then exactly
OF, , (1+c)y +h(y) |1
—Ly - -—F,= . (A4
3 o p F, = G(Yo). (A4)

Substituting the expression for F), into (A4),

ay,ﬂ (L + o)y + h(y)
dyo Co
- Zx0) -2 = 6o (asa)
Differentiating once with respect to yo,
d2X d [a ]
—|—-X+G|.
d\l/o Yo Lo
The above identity admits no solution unless
d’x 4a I: :|
— =0, X+G|=0. ‘ASb
d%z dyo Leo ( )
The solutions of (A5b) are
X=pbh+aq
(A5c¢)

G=r—£(ﬂ%+¢])}’
Co

where p, g and r are integration constants. Substituting
(AS5c) into (A5a) we get

PAOLA MALANOTTE-RIZZOLI

1045

1+ "+ h(y’
BY) _ s Ut eV + Hy)
Co Co

With no loss of generality, take

r=0, a=1, p=1, g=0,

SO

by = coy' — [(1 + o)y’ + h(Y)] = —[¥"+ h())]
and
F, =40 — [y + h(»)). (A6)

To evaluate the homogeneous integral Fy the fol-
lowing approximation is made. We want to explore
the behavior of the solution to (Ala) near the northern
boundary y’ = 0, in a region where: - - -y* < y?
< y”? < y'. In this region we can approximate (A3),
retaining only the terms O()’). Near the northern
boundary y' = 0 the equation for Fy is then

oFy A +c)y +hy) 1
—=y - ——F , ) =~ 0.
R y o o n(Wo, V)
(AT)
Differentiating with respect to o,
g &Fu _ 1 0Fy
6% ¢ o ’
the solution of which is
oF
a_wH ~ H(y") exp(¥o/coy’). (A8a)
But from (A7),
OFy (1 + oy +h(y3+§r_'. (ASb)
o Co Coy
Equations (A8a) and (A8b) give
Fy(o, ¥') =~ coy’H(y") exp(¥o/co))
= [(1 + )y’ + h(y)] (A8c)

near the northern boundary.
We now require Y to be a localized structure in s,
namely

Yo—0 as s— too.
From
0Fy, ,. OFy
TH _ lim —2 = lim H(y") exp($o/coy’) = H(Y),
oy, lm "= lim (»") exp(¥o/coy y

it follows that

Frow = H(y'Wow + K(y) — K(y) as o — 0.

Without loss of generality, take the arbitrary constant
K(y) = 0. Then

Fye = lim Fy— 0.

§—0
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. From (AS8c) in the limit s — *o0, we obtain
(1 + o)y’ + A(y"
o)’ .

Because F; (o, ') is an analytical functional, we finally
have

Fu(o, ¥) =~ [(1 + co)y’" + h(y)lexp(¥o/coy) — 1].
‘ (A9)

H(y) =

The completé, approximate solution valid near the
northern boundary is then

Yoyy = F¥o, y) = Fu + F, = [(1 + c)y'
+ h(y)llexp(Yo/coy) — 11 + %o — [¥' + A(¥)].
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