温度、pH和Cl⁻浓度对NiTi形状 记忆合金电化学行为的影响

李年杏 王俭秋 韩恩厚 柯 伟

(中国科学院金属研究所材料环境腐蚀试验研究中心 沈阳 110016)

摘要:通过正交试验法,采用动电位扫描技术研究了温度、pH和 Cl⁻浓度对 NiTi 形状记忆合金在模拟口腔溶液中 电化学行为的影响.结果表明温度、pH和 Cl⁻浓度对 NiTi 的点蚀行为都有较大影响.溶液温度为 25 ℃时点蚀电位 最负,随着温度的升高,点蚀电位逐渐升高.溶液中的 Cl⁻浓度很低时(不超过 0.1 mol/L)点蚀电位较高,随着 Cl⁻ 浓度的增加,点蚀电位急剧下降.当溶液的 pH 为 6.0 时,点蚀电位最高.

关键词: NiTi 形状记忆合金 动电位扫描 正交试验法 生物相容性

中图分类号: TG172 文献标识码: A 文章编号:1005-4537(2006)04-0202-05

1 前言

近等原子比的 NiTi 形状记忆合金具有良好的 形状记忆效应和超弹性^[1,2],是一种理想的医用生 物材料,1971 年 NiTi 合金丝首次在畸齿矫正获得 临床应用^[3].NiTi 合金的形状记忆功能可以使合金 丝具有整形的作用,而它的超弹性使口腔医生可以 用很小的力在很大自由度上进行口腔内的操作,降 低了口腔组织的创伤,减轻了病人的痛苦.此外,在 牙齿矫正过程中,虽然 NiTi 合金丝的作用力使得牙 骨重新定位,牙齿逐渐移动,但是由于 NiTi 合金丝 的超弹性效应,牙齿移动产生的弹性松弛不会导致 外力的明显降低,因此整形作用会一直保持.NiTi 合金的形状记忆功能和超弹性使得其在畸齿矫正术 中表现出了极大的优越性.但是,口腔中的环境复杂 多变,特别是由于人的饮食习惯不同,进食时口腔中 唾液主要的变化参数(包括 Cl⁻浓度、pH 和温度)可 以同时在很大范围内变化.已有的研究表明,在中性 介质中 Cl^- 浓度增加会加速 NiTi 合金的点蚀萌生, 即 Cl⁻吸附可以破坏表面膜;当 Cl⁻浓度一定时, pH 越低,腐蚀速率越大^[4].但是目前为止,Cl⁻浓度、pH 和温度 3 个参数对 NiTi 合金局部腐蚀的协同作用 还不很清楚,因此有必要研究在不同温度、Cl⁻浓度 和 pH 情况下的 NiTi 合金的极化行为.

由于参数变化的多样性和协同性,本文采用正 交试验法,通过电化学测试技术,系统研究这3个参 数对 NiTi 形状记忆合金的电化学行为的影响.

2 实验方法

实验材料为 NiTi 形状记忆合金,其成份(at%) 为:Ni 50.9%,Ti 49.1%.热处理工艺为 800 ℃保温 10 h,水淬至室温,然后 500 ℃保温90 min,水淬至 室温.DSC 测得其逆相变特征温度为 A_s =22.5 ℃, A_i =26.5 ℃(图 1).电化学实验试样的有效工作面 积为 1 cm²,非工作面用环氧树脂涂封,工作表面用 金相砂纸打磨至 800[#].恒电位仪用 solatron S1 – 1287,饱和甘汞电极(SCE)为参比电极,Pt 电极为辅 助电极.电路连结完毕后,先将试样浸入模拟溶液中 稳定 60 min,监测其自腐蚀电位,然后测量极化曲 线,扫描范围为 – 0.25 V ~ 2.0 V(相对于开路电位 OPC),扫描速度 0.5 mV/s,当电流密度达到 10⁻³ A/cm² 时终止实验.

采用的模拟溶液基本组成为: Na₂HPO₄ 260 mg/L, NaCl 700 mg/L, KSCN 300 mg/L, KH₂PO₄ 200 mg/L, NaHCO₃ 1500 mg/L, KCl 1200 mg/L. 其 pH 值为 7.6, Cl⁻浓度为 0.028 mol/L. 通过添加 NaCl 调节 Cl⁻浓度, 添加乳酸或 NaOH 调节溶液的 pH, 用恒 温仪控制溶液温度. 正交试验编号及各参数的数值 见表 1.

文中的电位均换算为相对于标准氢电极 (NHE).

3 结果与讨论

在模拟口腔溶液中,模拟溶液温度对 NiTi 形状 记忆合金电化学行为的影响见图 2.按照正交试验 的直观分析法^[5],在同一温度下,另两个参数根据

定稿日期:2005-12-25

基金项目:国家自然科学基金项目(GS0471071)和"百人计划项目" 作者简介:李年杏,1980年生,男,湖北荆州人,硕士生,研究方向为 力学化学交互作用

正交表遍取各水平,平均值正好反映该温度下的值. 所以每个图中的4个电位的平均值定义为该温度下的电位.从图可知温度由10℃升至50℃时,NiTi 在模拟溶液中的自腐蚀电位分别为-0.324 V、 -0.318 V、-0.38 V和-0.376 V,点蚀电位分别 为0.958 V、0.277 V、0.819 V和0.944 V.可以看 出,NiTi 在模拟溶液中的点蚀电位先随着温度的升 高而减小,当温度为25℃时达到最小值,然后随着 温度的继续升高而变大.温度为10℃和25℃时 NiTi 在模拟溶液中的自腐蚀电位大小基本相同,温 度为37℃和50℃时的自腐蚀电位大小基本相同.

图 3 为 pH 值对 NiTi 在模拟口腔溶液中电化 学行为的影响.根据直观分析法,可知溶液由酸性变 为碱性的过程中,即溶液的 pH 值由 3.0 依次变为 9.0 时, NiTi 在各溶液中的自腐蚀电位依次为 -0.283 V、-0.423 V、-0.354 V和-0.339 V,点蚀 电位分别为 0.704 V、0.892 V、0.751 V和 0.651 V. 可见随着溶液 pH 值的增加, NiTi 在模拟口腔溶液 中的自腐蚀电位逐渐减小,当 pH 为 6.0 时达到最 负,然后随着 pH 值的继续增加而增大. NiTi 在模拟 口腔溶液中的点蚀电位随着 pH 值的增加而增加, 当溶液的 pH 值为 6.0 时达到最大值,而后随着 pH 值的继续增加而减小.

ø pH3.0, Cl'=0.028mol/L

pH7.6, Cl*=0.05mol/L

pH6.0. Cl = 0.10mol/L

pH9.0, CI = 0.50mol/L

2.0

1.5

1.0

(a)

 Table 1 Various conditions for potentiodynamic polarization test

 according to the orthogonal test

No.	т/°С	$[Cl^{-1}]/mol \cdot L^{-1}$	pH
1	10	0.028	3.0
2	10	0.05	7.6
3	10	0.10	6.0
4	10	0.50	9.0
5	25	0.028	7.6
6	25	0.05	3.0
7	25	0.10	9.0
8	25	0.50	6.0
9	37	0.028	6.0
10	37	0.05	9.0
11	37	0.10	3.0
12	37	0.50	7.6
13	50	0.028	9.0
14	50	0.05	6.0
15	50	0.10	7.6
16	50	0.50	3.0

Fig.1 DSC curve of NiTi after heat treatment

(b)

23

(d)

-3

pH7.6, CI = 0.028mol/L

pH3.0, CI = 0.05mol/L

pH9.0, Cl'=0.10mol/L

pH6.0, Cl'=0.50mol/L

2.0

1.0

1.5 - 🕺

0

Fig. 2 Potentiodynamic polarization curves for NiTi in synthetic saliva of (a) 10 °C, (b) 25 °C, (c) 37 °C and (d) 50 °C at various pH and Cl⁻ concentrations

Fig.3 Potentiodynamic polarization curves for NiTi in synthetic saliva of pH (a) 3.0, (b) 6.0, (c) 7.6 and (d) 9.0 at various temperature and Cl⁻ concentrations

Fig.4 Potentiodynamic polarization curves for NiTi in synthetic saliva with Cl⁻ concentration at (a) 0.028 mol/L, (b) 0.050 mol/L, (c) 0.10 mol/L and (d) 0.50 mol/L at various pH and temperature

图 4 为 Cl⁻浓度对 NiTi 在模拟口腔溶液中电 化学行为的影响.根据直观分析法可以得出当溶液 中的 Cl⁻浓度由小变大时,NiTi 在各溶液中的自腐 蚀电位分别为-0.384 V、-0.34 V、-0.342 V和
-0.333 V,点蚀电位分别为 0.779 V、0.863 V、
0.834 V和 0.523 V.可见随着 Cl⁻浓度的增加,

NiTi在模拟口腔溶液中的自腐蚀电位会逐渐增大, 而其点蚀电位却会先随着 Cl⁻浓度的微量增加而变 小,而后随着 Cl⁻浓度的继续增加而急剧减小.

NiTi 在模拟口腔溶液中的腐蚀性能决定了它 的使用行为,并且由于进食等因素造成口腔内部腐 蚀环境复杂,主要表现在温度、Cl⁻浓度和 pH 的变 化,另外材料本身由于温度变化也会发生相变,相变 也会影响到腐蚀行为.由于参数变化的多样性,所以 采用正交试验方法,研究材料与温度、Cl⁻浓度和 pH 之间协同作用的规律.

从实验结果中可以看出, NiTi 在模拟口腔溶液 中具有自钝化能力, 并且在不同条件下的极化曲线 都有明显的钝化区间. 维钝电流几乎不随电位的变 化而变化, 温度、Cl⁻浓度和 pH 的改变不会显著改 变维钝电流的大小, 只改变钝化电位的区间和点蚀 电位的大小.

一般来说,自腐蚀电位表明了材料在特定介质 中的离子化趋势,自腐蚀电位越负,其离子化趋势越 强,反之亦然^[6].根据图 2 结果的平均值表明,实验 温度为 10 ℃和 25 ℃时 NiTi 在模拟溶液中的自腐 蚀电位相当,实验温度为 37 ℃和 50 ℃时 NiTi 在模 拟溶液中的自腐蚀电位相当,且比温度为 10 ℃和 25 ℃时要负一些,说明随着温度的升高,NiTi 在模 拟溶液中的离子化趋势增加.根据本文所采用材料 的逆相变温度可知,温度为 10 ℃时材料处于马氏体 态,而温度为 37 ℃和 50 ℃时材料为奥氏体态.可 见,NiTi 形状记忆合金的高温奥氏体态比低温马氏 体态的自腐蚀电位低,离子化趋势大.

温度对 NiTi 在模拟溶液中点蚀电位的影响见 图 2. 温度从 10 ℃ 变到 25 ℃ 时, NiTi 在模拟溶液中 的点蚀电位随之降低,温度为25℃时达到最小值. 温度不超过 22.5℃时,材料处于单一的马氏体态, 因此得知 NiTi 马氏体态的点蚀电位随着温度的升 高而降低. 当温度超过 22.5 ℃时, 材料由单一的马 氏体态逐渐向奥氏体态转变,在模拟溶液中的点蚀 电位也随着温度的升高而增大,但是其增大的速率 却随着温度的升高而逐渐减小,即伴随着 NiTi 向单 相奥氏体态转变,其在模拟溶液中的点蚀电位逐渐 增加,且有逐步稳定的趋势.溶液温度为10℃和50 ℃时,NiTi在模拟溶液中的点蚀电位大小相当,说 明温度为 25 ℃时 NiTi 形状记忆合金在模拟溶液中 点蚀电位的大幅降低与其逆相变有关,即动态相变 过程影响表面膜的抗点蚀能力,单相的马氏体态或 奥氏体态的表面膜的抗点蚀能力相当.

图 3 表明了溶液 pH 对 NiTi 极化行为的影响.

溶液的 pH 为 6.0 时(图 3b)NiTi 在溶液中的自腐 蚀电位最低,说明溶液的 pH 为 6.0 时 NiTi 在溶液 中的离子化趋势最强.与此同时,溶液的 pH 为 6.0 时 NiTi 在溶液中的点蚀电位最高,说明此条件下 NiTi 在溶液中的钝化膜最为稳定.溶液的酸性逐步 增强时(图 3a),NiTi 在模拟溶液中的自腐蚀电位逐 渐增大,点蚀电位逐渐降低,即 NiTi 在溶液中的钝 化膜随着酸性的增强而逐渐不稳定.相反,溶液的碱 性逐渐增强时(图 3c、3d),NiTi 在模拟溶液中的自 腐蚀电位逐渐增加,点蚀电位逐渐降低,即 NiTi 在 溶液中的钝化膜随着碱性的增强而逐渐变得不稳 定.上述正交试验的结果进一步证实了 Cheng Y 等^[4]和 Huang H H 等^[7] 在酸性溶液中以及 Darabara M 等^[6]在碱性环境中的研究结果.

在模拟溶液中 NiTi 由于表面形成了钝化层而 具有良好的耐蚀性,然而在一些极端条件下仍然能 够发生点蚀等局部腐蚀,尤其是当溶液中有 Cl⁻存 在时.Cl⁻会在钝化膜的薄弱位置吸附,并与基体形 成可溶性的化合物,从而加速局部腐蚀.图4表明, 当溶液中的 Cl⁻浓度小于 0.05 mol/L 时(图 4a), NiTi 的点蚀电位较高,且随着 Cl⁻浓度的增加,点蚀 电位增加(图 4b、4c),而后随着的 Cl⁻浓度继续增 加,其点蚀电位急剧下降(图 4d).也就是说,当 Cl⁻ 浓度不超过 0.1 mol/L 时, NiTi 在溶液中的钝化膜 随着 Cl⁻浓度的增加而变得逐渐稳定,一旦 Cl⁻浓 度超过 0.1 mol/L 时,其钝化膜会随着 Cl⁻浓度的 继续增加而迅速破坏. Cheng Y 等^[4]的研究结果表 明,当 Cl⁻浓度一定时, pH 越小, 腐蚀速率越大. 而 正交实验结果表明(图 4c),当 Cl⁻浓度一定时,点蚀 电位与 pH 没有线性关系, pH 为 9, 温度为 25 ℃时, 点蚀电位最低,这与 Cheng Y 等^[4]的结果不符.可 见,当考虑 Cl⁻浓度和 pH 对 NiTi 腐蚀速率的影响 时,必须考虑温度的影响,因为温度变化导致的相变 影响其腐蚀行为.

4 结论

(1)NiTi 在模拟口腔溶液中具有良好的钝化性 能.

(2)相变过程对 NiTi 形状记忆合金在模拟口腔 溶液中的电化学行为有显著负面影响,降低材料的 点蚀电位.马氏体态的 NiTi 形状记忆合金在溶液中 的离子化趋势显著低于奥氏体态的 NiTi 形状记忆 合金.

(3)NiTi形状记忆合金在弱酸性溶液中的离子 化趋势最强,其钝化膜在弱酸性溶液中最稳定. (4)溶液中的 Cl⁻浓度很低时(不超过 0.1 mol/L), NiTi 的钝化膜很稳定,一旦溶液中的 Cl⁻浓度超过 0.1 mol/L 时, NiTi 的钝化膜会随着 Cl⁻浓度的增 加而迅速破坏.

(5)Cl⁻浓度一定时,NiTi在口腔溶液中的点蚀 电位与 pH 没有线性变化关系,点蚀电位受 pH 和温 度的协同影响.

参考文献:

- [1] Otsuka K, Ren X B. Recent developments in the research of shape memory alloys[J]. Intermetallics, 1999, 7:511 - 528
- [2] Otsuka K, Kakeshita T. Science and technology of shape memory alloys; new developments [J]. MRS Bulletin, 2002, February: 91 -100
- [3] Andreasen G F, Hilleman T B. An evaluation of 55 cobalt substitut-

ed nitinol wire for orthodontics[J]. J. American Dental Association, 1971, 82:1373 – 1375

- [4] Cheng Y, Cai W, Zhao L C. Effects of Cl⁻ ion concentration and pH on the corrosion properties of NiTi alloy in NaCl solution [J]. J. Mater. Sci. Lett., 2003, 22:239-240
- [5] Shanghai science and technology communication station. Designing Methods for Orthogonal Testing - Methods for Numerous Factors [M]. Shanghai: Shanghai People's Publishing House, 1975 (上海市科学技术交流站组编.正交试验设计法一多因素的试验 方法[M].上海:上海人民出版社, 1975)
- [6] Darabara M, Bourithis L, Zinelis S, et al. Susceptibility to localized corrosion of stainless steel and NiTi endodontic instruments in irrigating solutions[J]. International Endodontic Journal, 2004, 37:705 - 710
- [7] Huang H H. Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva[J]. J. Biomed Mater. Res., 2003, 66(4):829-839

EFFECTS OF TEMPERATURE, CI⁻ CONCENTRATION AND pH ON ELECTROCHEMICAL BEHAVIOR OF NITI SHAPE MEMORY ALLOY

LI Nianxing, WANG Jianqiu, HAN Enhou, KE Wei

(Environmental Corrosion Center, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016)

Abstract: Potentiodynamic polarization measurement was used to study effects of temperature, Cl^- concentration and pH on the electrochemical behavior of NiTi shape memory alloy (SMA) in the synthetic saliva according to the orthogonal testing method. The results showed that temperature, Cl^- concentration and pH had great influence on the pitting behavior of NiTi. The breakdown potential was most negative at 25 °C, and it increased with the increase of temperature. The breakdown potential kept in high level when the Cl^- concentration was not more than 0.1 mol/L, while it dropped sharply with the continuous increase of Cl^- concentration. The breakdown potential was highest at the solution of pH 6.0.

Key words: NiTi shape memory alloy, potentiodynamic polarization measurement, orthogonal testing method, biocompatibility